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Abstract

Monoids and Categories of Noetherian Modules

by

Gary John Brookfield

In this dissertation we will investigate the structure of module categories by considering
how modules can be constructed by extensions from other modules. The natural way to
do this is to define for a module category S, a commutative monoid (M(S),+) and a map
Λ: S → M(S) so that the relevant information about S is transferred to M(S) via Λ.
Specifically, we construct M(S) so that if A,B,C ∈ S and there is a short exact sequence
0 → A→ B → C → 0, then Λ(B) = Λ(A) + Λ(C) in M(S). We also require that M(S) be
the largest monoid with this property, meaning that M(S) has the universal property for
such maps.

Let R be a ring, R-Mod the category of left R-modules and R-Noeth the category of
Noetherian left R-modules. Then we will prove

• M(R-Mod) is a conical commutative refinement monoid.
• M(R-Noeth) is semi-Artinian and strongly separative, meaning that

2a = a+ b =⇒ a = b

for all a, b ∈M(R-Noeth).
• The Krull dimension of a Noetherian module can be determined from its image in
M(R-Noeth).

• If R is left fully bounded Noetherian, in particular, if R is commutative Noetherian,
then M(R-Noeth) is Artinian, primely generated and weakly cancellative, and has
≤-multiplicative cancellation.

The strong separativity of M(R-Noeth) leads to one of the most interesting results of
this dissertation: If A,B,C are left R-modules such that A⊕C ∼= B⊕C with C Noetherian,
then A and B have isomorphic submodule series.
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1 Introduction

It is the hope of all module theorists that modules can be understood and classified by
considering how they can be built from a family of simpler building blocks. The prototype
for this idea is the classification of Noetherian Z-modules, that is, finitely generated Abelian
groups: Every such group is a finite direct sum of the groups Z and Zpn for p, n ∈ N and
p prime. Thus the building blocks for finitely generated Abelian groups are the groups Z
and Zpn , and the glue that holds them together is the direct sum operation. Moreover, two
finitely generated Abelian groups are isomorphic if and only if they are built from the same
building blocks. This is the best possible situation and reflects a complete understanding of
Noetherian Z-modules.

This happy situation, when it occurs, has many simple consequences. Some of these
which will be important in discussing other module categories, we list here:

• Cancellation: If A, B and C are Noetherian Z-modules such that A ⊕ C ∼= B ⊕ C,
then A ∼= B.

• Multiplicative Cancellation: IfA andB are Noetherian Z-modules such thatAn ∼= Bn

for some n ∈ N, then A ∼= B.
• Refinement: If A1, A2, B1 and B2 are Noetherian Z-modules such that A1 ⊕ A2

∼=
B1 ⊕B2, then there are Noetherian Z-modules C11, C12, C21 and C22 such that

A1
∼= C11 ⊕ C12 A2

∼= C21 ⊕ C22

B1
∼= C11 ⊕ C21 B2

∼= C12 ⊕ C22.

If we write A . B when A is isomorphic to a direct summand of B, then we have
• Antisymmetry: If A and B are Noetherian Z-modules such that A . B . A, then
A ∼= B.

• .-Cancellation: If A, B and C are Noetherian Z-modules such that A⊕C . B⊕C,
then A . B.

• .-Multiplicative Cancellation: If A and B are Noetherian Z-modules such that
An . Bn for some n ∈ N, then A . B.

• Decomposition: If A, B1 and B2 are Noetherian Z-modules such that A . B1 ⊕B2,
then there are Noetherian Z-modules C1, C2 such that C1 . B1, C2 . B2 and
A ∼= C1 ⊕ C2.

• Descending Chain Condition: If A1 & A2 & A3 & . . . is a decreasing sequence of
Noetherian Z-modules then there is an N ∈ N such that An ∼= AN for all n ≥ N .

All of the above properties derive from the classification theorem for Z-Noeth. (The
notation used in this dissertation is explained at the end of this section.) The reason
for their importance is that, for other rings and in other circumstances, they occur even
without a complete classification theorem, and hence can be considered consolation prizes
when a complete classification is not possible. Indeed, almost no category of modules can
be classified the simple way that Z-Noeth is. Even though the full classification may not
be possible, there is still some hope that some of these other weaker properties may occur.
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Before considering more general module categories, we note the special properties that
the building blocks of Z-Noeth have: A nonzero Noetherian Z-module P is one of the
building blocks described above if it has the following property:

• Primeness: If A and B are Noetherian Z-modules such that P . A⊕B, then either
P . A or P . B.

It will be very useful to add an element of abstraction to the classification of Noetherian
Z-modules which will enable us to discuss the successes and failures of similar classification
schemes for other module categories:

Definition 1.1. Let R be a unital ring and S ⊆ R-Mod a class of left R-modules which
is closed under finite direct sums and contains the zero module. For any module A ∈ S, let
{∼= A} be its isomorphism class. Let V (S) be class of all isomorphism classes of S. We will
write + for the operation on V (S) induced by the direct sum, that is,

{∼= A}+ {∼= B} = {∼= A⊕B}
for all A,B ∈ S.

It is easy to see that V (S) is a well defined commutative monoid (though perhaps not a
set; see 5.1). The identity element of V (S) is the image of the zero module, {∼= 0} = {0},
which we will write as 0 ∈ V (S).

The classification of Noetherian Z-modules discussed above is then a statement about
V (Z-Noeth):

• V (Z-Noeth) is a free commutative monoid with basis {∼= Z} and {∼= Zpn} for
p, n ∈ N and p prime (5.13).

Corresponding to the properties of Z-Noeth described above are the following monoid
properties. These we define for an arbitrary commutative monoid M :

P1: Cancellation: If a, b, c ∈M such that a+ c = b+ c, then a = b.
P2: Multiplicative Cancellation: If a, b ∈ M such that na = nb for some n ∈ N, then

a = b.
P3: Refinement: If a1, a2, b1, b2 ∈ M such that a1 + a2 = b1 + b2, then there are

c11, c12, c21, c22 ∈M such that

a1 = c11 + c12 a2 = c21 + c22

b1 = c11 + c21 b2 = c12 + c22.

For A,B ∈ Z-Noeth we have

(A . B) ⇐⇒ (∃C such that A⊕ C ∼= B) ⇐⇒ (∃C such that {∼= A}+ {∼= C} = {∼= B}).
Accordingly, in an arbitrary commutative monoid M , we define a relation ≤ by

a ≤ b ⇐⇒ ∃c ∈M such that a+ c = b

for a, b ∈M (6.1). Thus, A . B in Z-Noeth if and only if {∼= A} ≤ {∼= B} in V (Z-Noeth).
Corresponding to the remaining properties of Z-Noeth we then get the following monoid
properties:

P4: Antisymmetry: If a, b ∈M such that a ≤ b ≤ a, then a = b.
P5: ≤-Cancellation: If a, b, c ∈M such that a+ c ≤ b+ c, then a ≤ b.
P6: ≤-Multiplicative Cancellation: If a, b ∈ M such that na ≤ nb for some n ∈ N, then

a ≤ b.
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P7: Decomposition: If a, b1, b2 ∈M such that a ≤ b1 + b2, then there are c1, c2 ∈M such
that c1 ≤ b1, c2 ≤ b2 and a = c1 + c2.

P8: Descending Chain Condition: If a1 ≥ a2 ≥ a3 ≥ . . . is a decreasing sequence in M ,
then there is an N ∈ N such that an ≥ aN for all n ≥ N . Note that we require
an ≥ aN rather than an = aN . See Section 2 for details.

The basis elements of V (Z-Noeth) can be characterized within M = V (Z-Noeth) as
those elements 0 6= q ∈M with the following property:

• Primeness: If a, b ∈M such that q ≤ a+ b, then either q ≤ a or q ≤ b.

Elements of a commutative monoid which satisfy this condition are called prime ele-
ments.

Any free commutative monoid, in particular V (Z-Noeth), has all of the properties P1-
P8. In arbitrary commutative monoids these properties are not independent of each other.
For example, if a commutative monoid has refinement then it has decomposition. One of
the main purposes of this dissertation is to prove other interdependencies. For example, we
will show that if a commutative monoid has refinement and the descending chain condition
then it also has ≤-multiplicative cancellation (13.1). These same conditions do not suffice
to make the monoid cancellative.

With this new level of abstraction we can discuss structure theorems for module categories
of the following form: Let S be a class of modules and Λ: S →M a surjective map where M
is a commutative monoid with monoid operation + induced from some module composition
operation in S. Then a structure theorem for S is simply some statement, with P1-P8
serving as prototypes, about the structure of M . The significance and utility of such a
theorem depends on these criteria:

C1: How big is S? The bigger, the better.
C2: How small are the equivalence classes Λ−1(a) for a ∈ M? The ideal situation is

that these equivalence classes are isomorphism classes of modules, so that knowing
Λ(A) = Λ(B) in M implies A ∼= B as modules. Such a map provides the most
detailed information on S.

C3: Which of the properties P1-P8 does the monoid M have? The more it has, the closer
the theorem is to the ideal represented by the classification of Z-Noeth.

C4: Is there a small class of prime elements of M such that every element of M is a
finite sum of these elements? If so, are elements of M uniquely expressible as sums
of these elements? Is M isomorphic to the free commutative monoid generated by
these elements?

As is usual, any structure theorem involves making a compromise of these conflicting
goals. It is the main theme of this dissertation that gains can be made in items C1, C3
and C4 of this list by sacrificing the ideal situation in C2. Before explaining this, we
will show by example that even for a commutative Noetherian ring R and S = R-Noeth,
maintaining the ideal situation in C2, requires compromises in C3. Specifically, we will
show that V (R-Noeth) does not, in general, have refinement, decomposition, cancellation,
multiplicative cancellation, or ≤-multiplicative cancellation.
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Example 1.2. Let S = R[X,Y ]/(X2 + Y 2 − 1), the coordinate ring of the unit circle. We
will write x, y for the images of X,Y in S. Let Φ: S → S be the ring automorphism such
that Φ(x) = −x, Φ(y) = −y and Φ(r) = r for all r ∈ R. Let R = {r ∈ S | Φ(r) = r}.
One readily confirms that R is the subring of S consisting of all polynomials such that the
total degree of each term is even. Considered as functions on the unit circle, R contains all
polynomials f(x, y) such that f(x, y) = f(−x,−y).

Let A = {a ∈ S | Φ(a) = −a}. Considered as functions on the unit circle, A contains all
polynomials f(x, y) such that f(x, y) = −f(−x,−y). A is not a subring of S, but it is an
R-submodule, since if r ∈ R and a ∈ A, then Φ(ra) = Φ(r)Φ(a) = −ra, that is, ra ∈ A.

We will prove that A 6∼= R as R-modules by showing that A is not cyclic: Suppose f ∈ A.
Then it is a topological fact that there must be some point (x0, y0) on the unit circle such
that f(x0, y0) = 0. If x0 6= 0, then the polynomial x ∈ A is nonzero at (x0, y0), so is not in
Rf . Similarly, if y0 6= 0, then the polynomial y ∈ A is nonzero at (x0, y0), so is not in Rf .
Since, of course, x0 = y0 = 0 is not possible, we have Rf 6= A. Thus A is not cyclic and
can not be isomorphic to R.

Next we will show that A⊕A ∼= R⊕R as R-modules: Define Ψ: S ⊕ S → S ⊕ S by

Ψ(s1, s2) = (s1x+ s2y, s1y − s2x)

for all (s1, s2) ∈ S ⊕ S. It is easy to check that Ψ is an R-module homomorphism, that
Ψ ◦Ψ = idS, and that Ψ(R⊕R) = A⊕A and Ψ(A⊕A) = R⊕R. Thus A⊕A ∼= R⊕R.

Let r = {∼= R} and a = {∼= A} in the monoid V (R-Noeth). Then we have 2a = 2r but
a 6= r. Thus V (R-Noeth) does not have multiplicative cancellation.

Since X2 + Y 2 − 1 is irreducible, S is a domain, and since R is a subring, R is also a
domain. In particular, R has no nontrivial direct summands, so that A 6. R and a 6≤ r.
It is then easy to see that the inequality a ≤ r + r can not be decomposed, which means
V (R-Noeth) does not have decomposition or refinement. Also, we have 2a ≤ 2r but a 6≤ r,
so that V (R-Noeth) does not have ≤-multiplicative cancellation.

We also want to show that cancellation can fail in V (R-Noeth), for R a commutative
Noetherian ring. One standard example of this, due to Kaplansky and Swan [29] is the
following:

Example 1.3. Let R = R[X,Y, Z]/(X2 + Y 2 + Z2 − 1), the coordinate ring of the unit
sphere. We will write x, y, z for the images of X,Y, Z in R. Let η: R ⊕ R ⊕ R → R be
the R-module homomorphism defined by η(a, b, c) = ax+ by + cz. Since η(x, y, z) = 1, this
homomorphism is surjective. Let P = ker η, then we get the short exact sequence

0 → P → R⊕R⊕R
η→ R→ 0.

Since R is projective, this sequence splits to give (R⊕R)⊕R ∼= P ⊕R. In [29, Theorem
3] and [23, 11.2.3] a topological argument, similar to the argument used in Example 1.2, is
used to show that P 6∼= R⊕R.

Let r = {∼= R} and p = {∼= P} in the monoid V (R-Noeth). Then we have 2r+r = p+r
but 2r 6= p. Thus V (R-Noeth) is not cancellative.

For many more examples of this type see [21].
In particular, from these examples we see that for R a commutative Noetherian ring,

V (R-Noeth) can not be a free commutative monoid, and so there is little hope of under-
standing the structure of this monoid in terms of sums of building blocks as was done for
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V (Z-Noeth). Of course, these difficulties are not made any easier if we want to study
noncommutative rings or non-Noetherian modules.

We should mention here a few other situations where, in spite of the above examples, one
can say something about V (S). The properties of V (Z-Noeth) that we have been discussing
occur for any PID, commutative or noncommutative. So if R is a PID, then V (R-Noeth)
is a free commutative monoid with basis {∼= R} and all elements {∼= A} where A is an
indecomposable Noetherian R-module. In this case V (R-Noeth) has all of the properties
P1-P8.

If R is any ring and S = R-len, the class of R-modules of finite length, then the Krull-
Remak-Schmidt-Azumaya Theorem is equivalent to saying that V (S) is a free commutative
monoid with basis all elements {∼= A} where A is an indecomposable finite length module.
In more generality, we get the same result if S is the set of all R-modules which are finite
direct sums of modules with local endomorphism rings.

It seems that, except for some simple cases, V (R-Noeth) is too complicated to get a
handle on – the monoid V (R-Noeth) retains too much of the complexity of R-Noeth itself.
One approach to this problem, the one taken in this dissertation, is to define a commutative
monoid M(S) for each class of modules S and a map Λ: S → M(S) in which we abandon
the ideal hoped for in C2, in exchange for gains in C1, C3 and C4. We do this by changing
the glue that we use to hold modules together. Instead of the direct sum operation, we use
extensions. Specifically, we will consider a module B to be built from the modules A and
C if there is a short exact sequence

0 → A→ B → C → 0

in R-Mod. Of course, in this circumstance, the module B is not determined, even up to
isomorphism, by the modules A and C, and this is exactly where we make our compromise
in C2.

The details of the construction of the monoidM(S) are in Section 16 so we will just outline
the main features here: Let S be a Serre subcategory (16.1) of R-Mod. The monoid M(S)
and the map Λ: S → M(S) are constructed so that the monoid operation is induced from
extensions in the same way that the operation in V (S) is induced from direct sums. Thus
we require that if A,B,C ∈ S and there is a short exact sequence 0 → A → B → C → 0,
then Λ(B) = Λ(A) + Λ(C). Such maps are said to respect short exact sequences. We also
require that the monoid M(S) be universal for maps which respect short exact sequences
from S to arbitrary monoids. Another way of saying this is that we require Λ and M(S) to
compromise C2 as little as possible given our choice of glue.

It turns out that it is possible to construct uniquely (up to monoid isomorphism) such a
monoid. The image of a module A in M(S) will be written as [A]. For any Serre subcategory
S ⊆ R-Mod, the monoid M(S) is contained in M(R-Mod) so we do not need to distinguish
[A] ∈M(S) from [A] ∈M(R-Mod). The image of the zero module [0] is the identity element
of M(S).

What do we lose by studying M(S) rather than V (S)? Certainly M(S) contains less
information about S than V (S). In regard to C2, we can be quite precise about when
two modules map to the same element of M(S): If A,B ∈ S, then [A] = [B] if and only
if the modules have isomorphic submodules series. That is, there are submodule series
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0 = A0 ≤ A1 ≤ · · · ≤ An = A and 0 = B0 ≤ B1 ≤ · · · ≤ Bn = B and a permutation of the
indices σ, such that Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n.
For a simple example, consider again Z-Noeth and the modules Z and Z ⊕ Z2. These

are, of course, non-isomorphic modules since they map to distinct elements of V (Z-Noeth).
On the other hand, we have the standard short exact sequences

0 → Z → Z → Z2 → 0

and
0 → Z → Z⊕ Z2 → Z2 → 0

in Z-Noeth, so in M(Z-Noeth) we get [Z] = [Z] + [Z2] = [Z⊕Z2]. In our analogy, each of
the modules Z and Z⊕ Z2 is built from Z and Z2, but they are glued together in different
ways. The monoid M(Z-Noeth) records only that they are made from the same parts,
and ignores the way they are constructed from these parts. This means that no property of
M(Z-Noeth) can distinguish these two modules. For example, the fact that Z is a uniform
module and Z ⊕ Z2 is not, can not be seen in the structure of M(Z-Noeth). On the plus
side, both of these modules have Krull dimension 1, and this is a property that can be
seen in the monoid, since the Krull dimension function on Z-Noeth respects short exact
sequences. See 17.4. This loss of information about S in going from V (S) to M(S) should
not be considered a disadvantage if, in compensation, we have better information about
M(S) than about V (S).

The above example shows another important feature of M(Z-Noeth), that it is not can-
cellative: We have [Z] = [Z] + [Z2], but [Z2] 6= [0] = 0. The reason that cancellation fails
here is that [Z] is too big compared with [Z2]. One of the main results of this disserta-
tion (17.4) is that we do get cancellation in M(R-Noeth) when the size of the canceled
element is controlled relative to the remaining elements. Specifically, for any ring R, if
a, b, c ∈M(R-Noeth) with a+ c = b+ c and c ≤ a, then a = b. This cancellation property
is called strong separativity and is equivalent to

2a = a+ b =⇒ a = b

for all elements a, b of a monoid. See 8.12.
We show that strong separativity occurs in Example 1.3:

Example 1.3 (continued). We have R ⊕ R ⊕ R ∼= P ⊕ R with, of course, R and P
Noetherian. In M(R-Noeth) we get 3[R] = [R] + [P ] and hence 2(2[R]) = (2[R]) + [P ].
Since M(R-Noeth) is strongly separative, this implies 2[R] = [P ] and [R ⊕ R] = [P ]. We
will confirm that R⊕R and P have isomorphic submodule series even though R⊕R 6∼= P . . .

It is easily checked that the homomorphism τ : R ⊕ R ⊕ R → P given by τ(a, b, c) =
(a, b, c)− η(a, b, c)(x, y, z) is the projection from R⊕R⊕R onto P . Thus P is generated by
τ(1, 0, 0), τ(0, 1, 0) and τ(0, 0, 1).

Note that τ(x, y, z) = 0 and, more generally, τ(a, b, c) = 0 if and only if (a, b, c) is
a multiple of (x, y, z). With this fact, a simple calculation shows that τ is monic when
restricted to R⊕R⊕ 0, so that the submodule Q = τ(R⊕R⊕ 0) = Rτ(1, 0, 0) +Rτ(0, 1, 0)
is isomorphic to R⊕R.

To investigate the quotient module P/Q we define the homomorphism γ: R → P/Q by
γ(c) = τ(0, 0, c) + Q. This homomorphism is surjective by construction and a calculation
shows that ker γ = Rz. Thus P/Q ∼= R/Rz.
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Since R is a domain, we also have Rz ∼= R. Thus 0 ≤ Q ≤ P and 0 ≤ R ⊕Rz ≤ R ⊕R
are isomorphic submodule series for P and R ⊕ R with factors isomorphic to R ⊕ R and
R/Rz.

In contrast, the same example shows that if R is commutative Noetherian, V (R-Noeth)
may not be strongly separative: We have in Example 1.3 that 2r + r = p + r, and hence
2(2r) = (2r) + p, but 2r 6= p.

The strong separativity ofM(R-Noeth) leads to one of the most interesting results of this
dissertation (17.10): If A,B,C are modules such that A⊕ C ∼= B ⊕ C with C ∈ R-Noeth,
then [A] = [B] in M(R-Mod).

The strong separativity of M(R-Noeth) is a consequence of two other important prop-
erties of M(R-Mod). The first of these is that for any ring R, the monoid M(R-Mod) has
refinement (16.10). This is itself a result of the Schreier refinement theorem for submodule
series in modules. The second of these properties is that M(R-Noeth) is a semi-Artinian
monoid (14.1). This is a weak type of descending chain condition for monoids which will be
discussed in Sections 14 and 13.

The situation for semi-Artinian refinement monoids seen in M(R-Noeth) is an example
of another of the main themes of this dissertation, that commutative refinement monoids
which have descending chain conditions also have cancellation properties. As well as the
semi-Artinian monoids already mentioned, we will define Artinian monoids which satisfy
the descending chain condition of P9 (2.13). In Section 19, we will show that if R is a
fully bounded Noetherian (FBN) ring, in particular, if R is commutative Noetherian, then
M(R-Noeth) is an Artinian monoid.

Artinian refinement monoids have the strongest descending chain condition and so have
many cancellation properties. These include ≤-multiplicative cancellation, as well as the
weak cancellation and midseparativity properties that are defined in 9.1. They also have
the property that every element is a sum of prime elements. This is getting quite close to
the ideal situation in C4, though there are some subtleties about the unique representation
of elements by sums of primes.

In Section 19 we will show another interesting aspect of M(R-Noeth) when R is a
Dedekind domain, that the ideal class group of the ring is embedded in the monoid in a
natural way. Thus one can consider the monoid M(R-Noeth) as a generalization of the
ideal class group in the sense that it contains similar information. Though the ideal class
group is defined only for Dedekind domains, the monoid is defined for any ring.

Apart from this introduction, the dissertation falls naturally into three parts:

Part B. Ordered Classes. As mentioned above, the order structure of a commutative re-
finement monoid is crucial in understanding its cancellation properties. In this part
of the dissertation we collect all the definitions and theorems about ordered classes
which we will need to study monoids in Part C. In addition, we will investigate the
Krull length function which will enable us to get a handle on the order structure
of Noetherian and Artinian modules. This in turn will allow us to derive the order
properties of the corresponding monoids M(R-Noeth) and M(R-Art) in Part D.

Part C. Commutative Monoids. The bulk of this dissertation is devoted to the investiga-
tion of the relation between the order and cancellation properties of commutative
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refinement monoids. Because of the absence of a suitable source in the semigroup
literature, we will have to start at a very basic level with the discussion of various
isomorphism theorems, free monoids, direct products and direct sums of monoids.
The preorder on monoids and the refinement and decomposition properties are in-
troduced in Sections 6 and 7. In Sections 8 and 9, we define the main cancellation
properties: separativity, strong separativity, weak cancellation and midseparativity.
Primely generated refinement monoids have a lot of cancellation properties. These
we discuss in Section 11.

Finally, in the last four sections of Part C, we consider cancellation in commutative
monoids with chain conditions. Artinian refinement monoids have the strongest
chain condition and hence the most cancellation properties. Semi-Artinian refinement
monoids have a weaker chain condition and a correspondingly smaller number of
cancellation properties.

Part D. Modules. In the final part of the dissertation, we apply our understanding of order
and cancellation in monoids to monoids constructed from categories of modules. The
construction itself and its basic properties are discussed in Section 16. One of the
main results of this dissertation is that M(R-Noeth) is a semi-Artinian refinement
monoid with no proper regular elements, and so is strongly separative. This theorem
and its consequences are in Section 17.

In the final section we discuss the case where R is an FBN or commutative Noe-
therian ring. We will show that, in this circumstance, M(R-Noeth) is an Artinian
refinement monoid and has as a consequence strong cancellation properties. In fact,
considerable information aboutM(R-Noeth) can be obtained because we know what
the prime elements look like. This is used in the last theorem of the dissertation
which shows that for a Dedekind domain R, the ideal class group is embedded in
M(R-Noeth).

No graduate student works in a vacuum. The study of modules, in particular, has a
long history filled with folklore, open conjectures, failed conjectures, personalities, hopes
and ideas. Complementary to this history is current information: Who is doing what? Who
wants to know what? What’s hot? What’s not? What might make a good thesis topic? All
this behind-the-scenes information, though not written down, is as vital to success as the
theorems that one claims to be learning.

Thus, in the long development of this dissertation, I have enormously benefitted from
the help of my supervisor, Ken Goodearl. He has kept me from trying to prove obviously
false theorems, pointed out the probably true ones, and directed me to the appropriate
references for those already known. He provided examples and counterexamples, asked the
right questions, and knew how to find the answers. Not to be forgotten are the hours
he spent checking the proofs, reducing the number of typos and making suggestions for
improvements to this dissertation. Perhaps most important, he made the process of getting
a Ph.D. a pleasure.
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A Note on Notation

We collect here most of the notation that will be used in this dissertation complete with
references to the precise definitions whenever possible.

N Natural numbers, {1, 2, 3, . . .}
Z Integers
Z+ Non-negative integers, {0, 1, 2, 3, . . .}
(Z+)∞ Z+ ∪ {∞}
Zn Cyclic group of order n ∈ {2, 3, 4, . . .}
R Real numbers
R+ Non-negative real numbers
R++ Strictly positive real numbers
C Complex numbers
{0,∞} The monoid such that ∞+∞ = ∞
Ord The class of ordinal numbers
Ord∗ Ord ∪ {−1}
Card The class of cardinal numbers
Krull The Krull monoid. See 3.21.

Throughout this dissertation R will be a unital ring. The following are Serre subcategories
of R-modules:

R-Mod The category of left R-modules.
R-Noeth The full subcategory of R-Mod consisting of all Noetherian modules.
R-Art The full subcategory of R-Mod consisting of all Artinian modules.
R-len The full subcategory of R-Mod consisting of all modules of finite length.

Though we are using here the nomenclature and notation of category theory, we will only
be interested in full subcategories of R-Mod. So we will think of categories as subclasses of
the objects of R-Mod, and modules as elements, rather than objects, of these categories.

Let A and B be modules.
A ∼= B A is isomorphic to B.
{∼= A} Isomorphism class containing the module A
A ≤ B A is a submodule of B
A . B A is isomorphic to a direct summand of B
A ∼ B Modules A and B have isomorphic submodule series. See 16.2.
[A] The ∼-equivalence class containing the module A.
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Let L be a preordered class, M⊆ L and x, y ∈ L.
L◦ The dual of L. See 2.1.
{≤ x} {y ∈ L | y ≤ x}
{≥ x} {y ∈ L | y ≥ x}
[x, y] {z ∈ L | x ≤ z ≤ y}
x ≡ y x ≤ y ≤ x
{≡ x} {y ∈ L | y ≡ x}
L The universal poclass associated with L. See 2.2.
↓M The lower class generated by M.
⇓L The class of lower classes of L ordered by inclusion. See 2.4.
AradL The Artinian radical of L. See 2.16.
x ∨ y The supremum (join) of x and y.
x ∧ y The infimum (meet) of x and y.

Let M and M ′ be commutative monoids, N a submonoid of M , α ∈ Ord and a, b ∈M .
M ∼= M ′ M is isomorphic to M ′. See 5.3.
I ≤M I is an order ideal of M . See 6.12.
a ≤ b There is some c ∈M such that a+ c = b
{≤ a} {b ∈M | b ≤ a}
a ≡ b a ≤ b ≤ a. See 6.3.
{≡ a} {b ∈M | b ≤ a ≤ b}, the ≡-equivalence class containing a ∈M . See 6.3.
M The universal partially ordered monoid constructed from M . See 6.3.
a� b a+ b ≤ b. See 6.5.
{� a} {b ∈M | b� a}
a ≺ b There is some n ∈ N such that a ≤ nb. See 6.16.
{≺ a} {b ∈M | b ≺ a}
a � b a ≺ b ≺ a. See 6.18.
{� a} {b ∈M | b ≺ a ≺ b}, the Archimedean component containing a.
M̃ The universal semilattice monoid constructed from M . See 6.18.
a ∼r b a+ r = b+ r. See 10.2.
[a]r The ∼r-congruence class containing a ∈M .
a ∼N b See 5.5
[a]N The ∼N -congruence class containing a ∈M .
AradM The Artinian radical of M . See 12.3.
AradαM See 14.3.
sradM The semi-Artinian radical of M . See 14.3.
socM The socle of M . See 14.21.
socαM See 14.25.
LradM The Loewy radical of M . See 14.25.
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2 Artinian Ordered Classes

In this section we present the notation, definitions, and propositions we will need to
discuss the order structure of monoids, and hence, the order structure of module categories.
The monoids that we will study may not be sets - typically a monoid will be constructed
from a module category, and the fact that the objects of a category do not, in general, form
a set is reflected in the size of the monoids we will have to deal with. As a consequence, we
discuss in this section ordered classes rather than ordered sets.

The prototypical ordered class is the class of ordinals, (Ord,≤). Ord has the property
that for any ordinal α, the elements of Ord which are less than α form a set. This is typical
of the ordered classes which will arise from module categories. See, in particular, 16.13.

Definition 2.1.

• A partially ordered class, (L,≤), is a nonempty class L and a relation ≤ on L
which is

1. reflexive: (∀x ∈ L) (x ≤ x)
2. transitive: (∀x, y, z ∈ L) (x ≤ y and y ≤ z =⇒ x ≤ z)
3. antisymmetric: (∀x, y ∈ L) (x ≤ y and y ≤ x =⇒ x = y).

We will abbreviate “partially ordered class” as “poclass”, and “partially ordered
set” as “poset”. The greatest and least elements of any poclass L, if they exist will
be labeled > and ⊥ respectively. A bounded poclass is a poclass which has both a
maximum and a minimum element.

• A preordered class, (L,≤), is a nonempty class L and a relation ≤ on L which is
reflexive and transitive, that is, it satisfies 1 and 2 above. Every preordered class L
has a dual preordered class, L◦, with the same elements as L but reverse order.

• A function ψ: K → L between preordered classes is increasing if

(∀x1, x2 ∈ K) (x1 ≤ x2 =⇒ ψ(x1) ≤ ψ(x2)).

Note that if ψ is increasing as a function from K to L, it is also increasing as a func-
tion from K◦ to L◦. A function ψ: K → L between preordered classes is decreasing
if it is increasing as a function between Kand L◦.

• A function ψ: K → L between preordered classes is an isomorphism if it is increas-
ing and there exists an increasing function φ: L → K such that φ◦ψ and ψ◦φ are the
identity maps on K and L respectively. If such a function exists then K and L are
isomorphic. Note that a bijective increasing function may not be an isomorphism.
See 2.9 for an example.

If K and L◦ are isomorphic, then we say K and L are anti-isomorphic.
• If a function ψ: K → L between preordered classes restricts to an isomorphism
ψ: K → ψ(K), we will say that ψ is an embedding, and that K is embedded in
L. It is easy to check that ψ is an embedding if and only if

(∀x1, x2 ∈ K) (x1 ≤ x2 ⇐⇒ ψ(x1) ≤ ψ(x2)).
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Of course, any subclass of a preordered class L is embedded in L by the inclusion
map.

It is convenient to use the the following notation: Let L be a preordered class, and x ∈ L.
We will write

{≤ x} = {z ∈ L | z ≤ x}
{≥ x} = {z ∈ L | z ≥ x}.

This form of notation we will extend to other relations as appropriate, for example, {< x},
{≡ x}, {≺ x}. Also, if x ≤ y in L, we will write

[x, y] = {z ∈ L | x ≤ z ≤ y}.
Let L1 and L2 be two preordered classes. We will write L1×L2 for the Cartesian product

of L1 and L2 with order given by

(x1, x2) ≤ (y1, y2) ⇐⇒ (x1 ≤ y1 and x2 ≤ y2)

for all (x1, x2), (y1, y2) ∈ L1 × L2. Notice that {≤ (x1, x2)} = {≤ x1} × {≤ x2} for
(x1, x2) ∈ L1 × L2.

There are projection maps π1: L1×L2 → L1 and π2: L1×L2 → L2 defined by π1(x1, x2) =
x1 and π2(x1, x2) = x2. Also each of L1 and L2 can be embedded in L1 × L2: If x1 ∈ L1

then the map from L2 to L1×L2 given by x2 7→ (x1, x2) is an embedding. We have defined
preordered classes to be nonempty so that such embeddings always exist.

It is easy to show that L1 × L2
∼= L2 × L1 and (L1 × L2)× L3

∼= L1 × (L2 × L3).
If ψ1: K1 → L1 and ψ2: K2 → L2 are maps between preordered classes, then we will write

ψ1 × ψ2 for the map from K1 ×K2 to L1 × L2 given by

(ψ1 × ψ2)(x1, x2) = (ψ1(x1), ψ2(x2)).

If ψ1 and ψ2 are increasing, then so is ψ1 × ψ2.

Any preordered class L has a poclass, to be called L, associated with it:

Definition 2.2. Let L be a preordered class. Define a relation ≡ on L by

x ≡ y ⇐⇒ x ≤ y and y ≤ x.

It is easily shown that ≡ is an equivalence relation. We will write {≡ x} for the equivalence
class containing x ∈ L, and L = L/≡ for the class of equivalence classes. L is a poclass
when given the order

{≡ x} ≤ {≡ y} ⇐⇒ x ≤ y.

Thus the map {≡ }: L → L taking x to {≡ x} is increasing. Of course, if L happened to be
partially ordered to start with, then this map is an isomorphism of L and L.

Proposition 2.3. Let ψ: K → L be an increasing function between preordered classes. If L
is a poclass, then there exists a unique increasing function ψ̄ making the following diagram
commute.

K
ψ //

{≡ }
��

L

K
ψ̄

??�������
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Proof. Straight forward. �

If M is a nonempty subclass of a preordered class L, then M is defined as above,
independently of its embedding in L. But since M is easily seen to be isomorphic to
{{≡ x} ∈ L | x ∈M} ⊆ L, we will make the following identification:

M = {{≡ x} ∈ L | x ∈M}.
One can readily check that for preordered classes L1 and L2, we have L1 × L2 = L1×L2.

Definition 2.4. A subclass J ⊆ L of a preordered class is a lower class of L if

(∀x ∈ J ) ({≤ x} ⊆ J ).

The class of lower classes of L we will denote by ⇓L, and we will order ⇓L by inclusion.
Some authors use “hereditary subclass” for “lower class”.

A subclass J ⊆ L of a preordered class is an upper class of L if

(∀x ∈ J ) ({≥ x} ⊆ J ).

The class of upper classes of L we will denote by ⇑L, and we will order ⇑L by inclusion.

Thus ∅ and L are upper classes and lower classes of L. Also {≤ x} is a lower class and
{≥ x} is an upper class of L for any x ∈ L. Note that ⇓L and ⇑L are poclasses even if L
is only preordered.

It is easily checked that arbitrary unions and intersections of lower classes are also lower
classes, (thus ⇓L is a complete bounded lattice). In particular, if M ⊆ L is an arbitrary
subclass, then M generates a lower class ↓M defined by

↓M =
⋂
{J ∈⇓L | M ⊆ J},

or equivalently,
↓M =

⋃
{{≤ x} | x ∈M}.

If J is a lower class in L, then it is a union of≡-equivalence classes and J is a lower class in
L. In fact, it is easy to see that the function {≡ } induces an isomorphism {≡ }: ⇓L →⇓L.

Of course, everything we have said in the previous paragraph applies to upper classes as
well. In particular, we will write ↑M for the upper class generated by M ⊆ L. If J is a
lower class of L then the complement of J , L \ J , is an upper class, and this is easily seen
to provide an anti-isomorphism between ⇓L and ⇑L.

We introduce next certain classes of functions (exact, exact◦ and strictly increasing)
which, we will find later (2.17), behave well with respect to Artinian and Noetherian pre-
ordered classes.

First we note that increasing functions can be characterized by how they act on upper
and lower classes:

Proposition 2.5. Let ψ: K → L be a function between preordered classes. Then the
following are equivalent:

1. ψ is an increasing function.
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2. {≤ ψ(x)} ⊇ ψ({≤ x}) for all x ∈ K.
3. ψ−1 maps lower classes of L to lower classes of K.
4. {≥ ψ(x)} ⊇ ψ({≥ x}) for all x ∈ K.
5. ψ−1 maps upper classes of L to upper classes of K.

Proof.
1 ⇒ 2 If y ∈ ψ({≤ x}), then there is x′ ≤ x such that y = ψ(x′). Since ψ is increasing,

ψ(x′) ≤ ψ(x), that is, y ∈ {≤ ψ(x)}.
2 ⇒ 3 Let M be a lower class of L. If x ∈ ψ−1(M) then we have ψ(x) ∈ M and also

ψ({≤ x}) ⊆ {≤ ψ(x)} ⊆ M. Thus {≤ x} ⊆ ψ−1(M).
3 ⇒ 1 If x ∈ K then {≤ ψ(x)} is a lower class in L so by hypothesis, ψ−1({≤ ψ(x)}) is a

lower class in L. Since x is in ψ−1({≤ ψ(x)}), so is any x′ ≤ x, that is ψ(x′) ≤ ψ(x).
By duality, 1 implies 4 implies 5 implies 1. �

We will be interested in functions which have properties “inverse” to those of increasing
functions:

Proposition 2.6. Let ψ: K → L be a function between preordered classes. Then the
following are equivalent:

1. {≤ ψ(x)} ⊆ ψ({≤ x}) for all x ∈ K.
2. ψ maps lower classes of K to lower classes of L.

Also the following are equivalent:
3. {≥ ψ(x)} ⊆ ψ({≥ x}) for all x ∈ K.
4. ψ maps upper classes of K to upper classes of L.

Proof.
1 ⇒ 2 Let M be a lower class of K and y ∈ ψ(M). Then there is some x ∈ M such that

y = ψ(x), so {≤ y} = {≤ ψ(x)} ⊆ ψ({≤ x}) ⊆ ψ(M).
2 ⇒ 1 If x ∈ K then {≤ x} is a lower class in K and hence, ψ({≤ x}) is a lower class in L.

Since ψ(x) is in ψ({≤ x}), we have {≤ ψ(x)} ⊆ ψ({≤ x}).
Of course, the equivalence of 3 and 4 follows by duality. �

Items 1 and 2 are not equivalent to 3 and 4, so we are led to define two types of functions:

Definition 2.7. A function ψ: K → L between poclasses is exact if it satisfies either 1
or 2 of the conditions of the previous proposition. It is exact◦(dual-exact) if it satisfies
either of conditions 3 or 4.

Some easy examples:
• The map {≡ }: L → L is increasing, exact, exact◦ and surjective.
• If M ⊆ L, then the embedding of M into L is always increasing, but it is exact if

and only if M is a lower class, and exact◦ if and only if M is an upper class. Thus
the restriction of an exact function to a lower class is an exact function.

• The projections π1 and π2 of L1 × L2 onto L1 and L2, are increasing, exact and
exact◦.

Proposition 2.8. Let ψ: K → L be a bijection. Then ψ is exact if and only if ψ is exact◦

if and only if ψ−1 is increasing.
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Proof. Easy consequence of 2.5 and 2.6. �

Example 2.9. A function ψ: K → L which illustrates exactness, and the relations among
the previous three propositions is:

L

•

•

•

•
•

??
??

??
?

•
ψ --

l i g e c a _ ]

•

�������
•--

i g e d b ` _ ]

•

��
��

��
�

•&&
d ^ Y R

•

???????

•((
c a ^ \ Z X V T

K

>

⊥

>

⊥

The function ψ is increasing but not exact or exact◦. The function ψ−1 is exact and exact◦

but not increasing. Note also that ψ is an increasing bijection but not an isomorphism.

Definition 2.10. A function ψ: K → L between preordered classes is strictly increasing
if it is increasing and

(∀x1, x2 ∈ K) (x1 ≤ x2 and ψ(x1) ≥ ψ(x2) =⇒ x1 ≥ x2).

If K and L are poclasses, then this definition coincides with the usual one, namely, x1 < x2

implies ψ(x1) < ψ(x2). The reason for the peculiar form of this definition is that we want a
map ψ: K → L between preordered classes to be strictly increasing if and only if the induced
map between K and L is strictly increasing in the usual sense. Exact and exact◦ maps also
have this property:

Proposition 2.11. Let ψ: K → L be an increasing function between preordered classes.
Then there is a unique increasing function ψ̄: K → L which makes the following diagram
commute:

K
ψ //

{≡ }
��

L

{≡ }
��

K
ψ̄ // L

Further, ψ̄ is exact (exact◦, strictly increasing) if and only if ψ is exact (exact◦, strictly
increasing).

Proof. Using 2.3, we get a unique increasing function from K to L making the diagram com-
mute. The claim about exact and exact◦ functions follows from the fact that the functions
{≡ } induce isomorphisms between ⇓L and ⇓L, and between ⇓K and ⇓K.

It is a simple calculation to establish the property of strictly increasing functions. �

It is also an easy calculation to check the following:
• The composition of increasing (strictly increasing, exact, exact◦) functions is again

increasing (strictly increasing, exact, exact◦).
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• If ψ1: K1 → L1 and ψ2: K2 → L2 are maps between preordered classes, and ψ1 and
ψ2 are increasing (strictly increasing, exact, exact◦), then so is ψ1 × ψ2.

Lemma 2.12. Consider the following commutative diagram with K, L and M preordered
classes:

K σ //

ψ   A
AA

AA
AA

A L
τ

��
M

1. If σ is surjective and increasing, and ψ is exact (exact◦), then τ is exact (exact◦).
2. If τ is injective and increasing, and ψ is exact (exact◦), then σ is exact (exact◦).

Proof. We prove 1 in the exact case only. The other cases are similar:
Let J be a lower class in L. Since σ is surjective, we have σ(σ−1(J )) = J , and so

ψ(σ−1(J )) = τ(σ(σ−1(J ))) = τ(J ).

The function ψ is exact and σ is increasing, so ψ(σ−1(J )) = τ(J ) is a lower class in M.
Since τ maps lower classes of L to lower classes of M, it is an exact function. �

The following definitions are standard for poclasses:

Definition 2.13.

• A poclass L is Artinian if either of the following equivalent properties is true:
1. Every nonempty subclass of L has a minimal element.
2. For every decreasing sequence x1 ≥ x2 ≥ x3 ≥ . . . in L, there is an N ∈ N

such that xn = xN for all n ≥ N .
• A poclass L is Noetherian if either of the following equivalent properties is true:

3. Every nonempty subclass of L has a maximal element.
4. For every increasing sequence x1 ≤ x2 ≤ x3 ≤ . . . in L, there is an N ∈ N

such that xn = xN for all n ≥ N .

The equivalence of 1 and 2 (or 3 and 4) is an easy and standard result. Of course, any
subclass of an Artinian (Noetherian) poclass is also Artinian (Noetherian).

We extend these definitions to apply to preordered classes in a rather simple minded but
nonetheless useful way:

Definition 2.14. A preordered class L is Artinian (Noetherian) if and only if L is
Artinian (Noetherian).

It is easily checked that if M is a subclass of a preordered class L, then M is Artinian
(Noetherian) if and only if M is an Artinian (Noetherian) subclass of L.

It is a standard result that for poclasses L1 and L2, we have that L2 × L2 is Artinian
(Noetherian) if and only if L1 and L2 are Artinian (Noetherian). This result extends easily
to preordered classes using the equation L2 × L2 = L1 × L2, which is valid for preordered
classes.
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It is convenient to define minimal (maximal) elements for preordered classes in such a
way that the definitions of Artinian and Noetherian preordered classes take the same form
as in 2.13:

Definition 2.15. If M is a subclass of a preordered class L, then an element x ∈ M is
minimal in M if

(∀y ∈M) (y ≤ x =⇒ y ≥ x).
Maximal elements are defined dually.

In a poclass, of course, minimal and maximal have their usual meanings. We have made
these definitions so that x ∈M is minimal in M if and only if {≡ x} is minimal in M.

With this definition, a preordered class L is Artinian if and only if any of the following
are true:

1. Every nonempty subclass of L has a minimal element.
2. For every decreasing sequence x1 ≥ x2 ≥ x3 ≥ . . . there is an N ∈ N such that
xn ≥ xN for all n ≥ N .

Of course, a dual statement is true for Noetherian preordered classes.
We have noted already that an arbitrary union of lower classes is a lower class. It is also

easy to see that an arbitrary union of Artinian lower classes is Artinian: Any decreasing
sequence in the union, x1 ≥ x2 ≥ x3 ≥ . . ., is contained in the same Artinian lower class
that contains x1. Thus we define

Definition 2.16. The Artinian radical of a preordered class L, written AradL, is the
union of all Artinian lower classes. As we have seen, it is also the largest Artinian lower
class.

Clearly, a lower class is Artinian if and only if it is contained in the Artinian radical.

Now we can we present the main theorem of this section:

Theorem 2.17. Let ψ: K → L be a function between preordered classes and ∅ 6= M⊆ L.
1. If ψ is strictly increasing and M is Artinian, then ψ−1(M) is Artinian.
2. If ψ is strictly increasing and M is Noetherian, then ψ−1(M) is Noetherian.
3. If ψ is exact and increasing, and K is Artinian, then ψ(K) is Artinian.
4. If ψ is exact◦ and increasing, and K is Noetherian, then ψ(K) is Noetherian.

If K is a poclass, then the hypothesis that ψ is increasing can be dropped from 3 and 4.
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Proof.
1. Let J ⊆ ψ−1(M) be nonempty, and let x0 ∈ J be chosen so that ψ(x0) is minimal

in ψ(J ) ⊆M. We claim x0 is minimal in J .
If y ∈ J and y ≤ x0, then ψ(y) ≤ ψ(x0), so, by the minimality of ψ(x0), we have

ψ(y) ≥ ψ(x0). Since ψ is strictly increasing, this implies x0 ≤ y.
2. Dually.
3. Let J ⊆ ψ(K) be nonempty and let x0 be minimal in ψ−1(J ). We claim that ψ(x0)

is minimal in J .
If y ∈ J and y ≤ ψ(x0) then y ∈ {≤ ψ(x0)} ⊆ ψ({≤ x0}), so there is some x ≤ x0

such that y = ψ(x). But x ∈ ψ−1(J ), so by the minimality of x0, we get x ≥ x0

and, since ψ is increasing, y = ψ(x) ≥ ψ(x0).
4. Dually

If K is partially ordered, then in the last line of the proof of 3 we get, by the minimality
of x0, that x = x0 and so y = ψ(x0). �

Corollary 2.18. Let ψ: K → L be a function between preordered classes.
1. If ψ is strictly increasing, then ψ−1(AradL) ⊆ AradK.
2. If ψ is exact and increasing, then ψ(AradK) ⊆ AradL.
3. If ψ is exact, strictly increasing and injective, then AradK = ψ−1(AradL).
4. If ψ is exact, strictly increasing and surjective, then AradL = ψ(AradK).
5. If J is a lower class in L, then AradJ = (AradL) ∩ J .

Proof.
1. AradL is an Artinian lower class, so by 2.17 and 2.5, ψ−1(AradL) is an Artinian

lower class in K.
2. AradK is an Artinian lower class, so by 2.17 and 2.6, ψ(AradK) is an Artinian lower

class in L.
3. Using 1 and 2 we get

AradK = ψ−1(ψ(AradK)) ⊆ ψ−1(AradL) ⊆ AradK.

Thus AradK = ψ−1(AradL).
4. Using 1 and 2 we get

AradL = ψ(ψ−1(AradL)) ⊆ ψ(AradK) ⊆ AradL.

Thus AradL = ψ(AradK).
5. The inclusion ψ: J → L is exact, strictly increasing and injective, so from 3 we get

AradJ = ψ−1(AradL) = (AradL) ∩ J .
�

Let ψ: K → L be an increasing function between preordered classes. From 2.17 we have
that, if K is Artinian and ψ is exact, then ψ(K) is Artinian. We will see next that, with the
stronger hypothesis on K that ⇓K is Artinian, and the weaker hypothesis on ψ that ψ is
increasing, we can get the same conclusion.
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Though everything here applies, via 2.11, to preordered classes, it will be convenient to
discuss only poclasses. We introduce some standard concepts for poclasses:

Definition 2.19.
• A chain is a subclass C of a poclass which is totally ordered, that is, c1, c2 ∈ C implies
c1 ≤ c2 or c2 ≤ c1.

• An antichain is a subclass A of a poclass such that if a1, a2 ∈ A and a1 ≤ a2, then
a1 = a2.

A chain is Artinian and Noetherian if and only if it is finite. More generally we have

Lemma 2.20. A poclass L is both Artinian and Noetherian if and only if all chains in L
are finite.

Proof. If L is both Artinian and Noetherian, then any chain is Artinian and Noetherian and
so is finite.

Conversely, suppose all chains in L are finite. Then the image of any decreasing or
increasing sequence in L is finite. Thus L is Artinian and Noetherian. �

We now consider the condition that ⇓L is Artinian for a poclass L:

Proposition 2.21. [17] Let L be a poclass. Then the following are equivalent:
1. ⇓L is Artinian.
2. L is Artinian and contains no infinite antichains.
3. Every nonempty subclass of L has a nonzero finite number of minimal elements.
4. Every infinite subclass of L contains an infinite strictly increasing sequence.
5. Every infinite sequence a1, a2, a3, . . . in L whose image is infinite, contains a strictly

increasing subsequence.
6. Every nonempty upper class in L is finitely generated.
7. ⇑L is Noetherian.

Proof.
1 ⇒ 2 L is embedded in the Artinian poclass ⇓ L via the map x 7→ {≤ x}. Hence L is

Artinian.
Suppose L contained an infinite antichain A = {a1, a2, . . . }. Then the sequence

of lower classes

↓A ⊇↓(A \ {a1}) ⊇↓(A \ {a1, a2}) ⊇ . . . ,

is strictly decreasing, so ⇓L could not be Artinian.
2 ⇒ 3 Since L is Artinian, any nonempty subclass of L has a minimal element, and since

the minimal elements form an antichain, there must be a finite number of them.
3 ⇒ 4 Suppose M1 ⊆ L is infinite. Let A1 be the set of minimal elements of M1. Then

M1 =
⋃
a∈A1

({≥ a} ∩M1).

Since M1 is infinite and A1 is finite, there must be some a1 ∈ A1 such that
{≥ a1} ∩M1 is infinite. Set M2 = {> a1} ∩M1. Then M2 is infinite, and we can
use the above process to get some a2 ∈M2 such that M3 = {> a2}∩M2 is infinite.
Repetition of this process then gives a strictly increasing sequence a1 < a2 < a3 < . . .
in M1.
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4 ⇒ 5 Let a1, a2, a3, . . . be an infinite sequence in L such that A = {a1, a2, a3, . . .} is infinite.
By hypothesis, there is an injective function σ: N → N such that

aσ(1) < aσ(2) < aσ(3) < . . .

is a strictly increasing sequence. We define another function ψ: N → N inductively
by ψ(1) = 1 and

ψ(n+ 1) = min{m ∈ N | σ(m) > σ(ψ(n)) and aσ(m) > aσ(ψ(n))}
for n ∈ N. This is well defined since for a fixed n the sets {m | σ(m) ≤ σ(ψ(n))} and
{m | aσ(m) ≤ aσ(ψ(n))} are finite, so there is some N ∈ N such that σ(m) > σ(ψ(n))
and aσ(m) > aσ(ψ(n)) for all m ≥ N .

By construction, σ(ψ(1)) < σ(ψ(2)) < σ(ψ(2)) < . . ., and so

aσ(ψ(1)) < aσ(ψ(2)) < aσ(ψ(3)) < . . .

is a strictly increasing subsequence of the original sequence.
5 ⇒ 6 Suppose to the contrary that J 6= ∅ is an upper class of L which is not finitely

generated. We proceed inductively to construct a sequence a1, a2, . . . of distinct
elements in J as follows:

Let a1 ∈ J be arbitrary. For the induction step, suppose we have already chosen
a1, a2, . . . , an ∈ J . Since J is not finitely generated, J \ ( ↑ {a1, a2, . . . , an}) is
nonempty, and we pick an+1 to be any element of this subclass.

By construction, {≥ an} does not contain am for any m > n. In particular, for
any n ∈ N, {≥ an} contains at most a finite number of elements from the sequence.
Hence a1, a2, . . . has no infinite strictly increasing subsequence.

6 ⇒ 7 Let J1 ⊆ J2 ⊆ J3 ⊆ . . . be an increasing sequence of upper classes. Set J =⋃
n∈N Jn, then J is also an upper class so is finitely generated. Each of these gener-

ators is in some Jn, so there must be some index N such that JN contains all the
generators. Thus JN = J and Jn = JN for all n ≥ N .

7 ⇒ 1 ⇓L and ⇑L are anti-isomorphic.
�

Note that any totally ordered Artinian poclass satisfies 2 of this proposition. In particular,
⇓(Z+) is Artinian.

Combining 2.20 and this proposition we get immediately

Corollary 2.22. Let L be a poclass. Then the following are equivalent:
1. L is finite.
2. ⇓L is Artinian and L is Noetherian.
3. L has no infinite chains or infinite antichains.

Corollary 2.23. Let ψ: K → L be an increasing function between poclasses. If ⇓ K is
Artinian then so are ⇓ψ(K) and ψ(K).

Proof. From 2.5, ψ−1 maps lower classes of ψ(K) to lower classes of K. This map is strictly
increasing. By 2.17, ⇓K being Artinian then implies that ⇓ψ(K) is Artinian. From 2.21,
⇓ψ(K) Artinian implies ψ(K) is Artinian. �
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Corollary 2.24. Let ψ: K → L be a map between poclasses.
1. If ⇓K is Artinian, L Noetherian and ψ increasing then ψ(K) is finite.
2. If ⇓K is Artinian, L Artinian and ψ decreasing then ψ(K) is finite.

Proof.
1. From 2.23, ⇓ψ(K) is Artinian. We also have ψ(K) is Noetherian, so, by 2.22, ψ(K)

is finite.
2. Dually.

�

Item 2 of this corollary can be considered as a generalization of the fact that the image
of any decreasing sequence (that is, the image of Z+ under a decreasing function) in an
Artinian poclass is finite.

Proposition 2.25. Let L1 and L2 be poclasses. Then ⇓(L1 ×L2) is Artinian if and only
if ⇓L1 and ⇓L2 are Artinian.

Proof. The poclasses ⇓ L1 and ⇓ L2 are easily seen to embed in ⇓ (L1 × L2). Thus if
⇓(L1 × L2) is Artinian, then so are ⇓L1 and ⇓L2.

Conversely, suppose ⇓ L1 and ⇓ L2 are Artinian. Let (x1, y1), (x2, y2), (x3, y3), . . . be
an infinite sequence in L1 × L2 such that A = {(x1, y1), (x2, y2), (x3, y3), . . .} ⊆ L1 × L2 is
infinite. We will show that this sequence has a strictly increasing subsequence. . .

Since A is infinite, at least one of the projections π1(A) ⊆ L1 and π2(A) ⊆ L2 must
be infinite. Without loss of generality, we will assume that π1(A) ⊆ L1 is infinite. Using
2.21.5, there is a subsequence of (x1, y1), (x2, y2), (x3, y3), . . . in which the first components
are strictly increasing. Call the image of this new sequence A′. We get two cases:

• Suppose π2(A′) is infinite. Then, using 2.21.5 again, there is a subsequence in A′
with the second components strictly increasing. Since the first components are also
strictly increasing, this provides a strictly increasing subsequence in A.

• Suppose π2(A′) is finite. Since A′ is infinite, there must be some y0 ∈ π2(A′) such
that

{x ∈ L1 | (x, y0) ∈ A′}
is infinite. The restriction of the subsequence in A′ to those elements whose second
component is y0, is then a strictly increasing subsequence in A.

�

We have already noted that ⇓(Z+) is Artinian, so using this proposition inductively, we
get that ⇓(Z+)n is Artinian for all n ∈ N.

Corollary 2.26. Let L be a preordered class, n ∈ N and ψ: (Z+)n → L an increasing
function. Then the image of ψ is an Artinian subclass of L.

Proof. Composing ψ with the canonical map from L to L gives an increasing map from
(Z+)n to a poclass. Applying 2.23, we get that ψ((Z+)n) is an Artinian subclass of L. Thus
ψ((Z+)n) is an Artinian subclass of L. �

This result is crucial in proving that finitely generated submonoids are Artinian in 12.7.
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Let A be an infinite subclass of a poclass L. From 2.21, we get that if ⇓A is Artinian
then any infinite subclass of A contains an infinite strictly increasing sequence. This is
an unnecessarily strong condition on A if one wants to know only that A itself contains a
strictly increasing sequence.

In the next proposition we consider the dual case. This proposition gives a condition on
A that ensures that it contains an infinite strictly decreasing sequence. The significance of
this condition will become apparent in the following corollary and in 12.12.

Theorem 2.27. Let A be an infinite subclass of a poclass L such that A =
⋃
n∈NAn,

where An is a finite antichain for all n ∈ N and

(∀n ∈ N)(∀a ∈ An+1) (∃a′ ∈ An such that a ≤ a′).

Then A contains an infinite strictly decreasing sequence.

Proof. Set
A∗ = {(n, an) | n ∈ N and an ∈ An},

the disjoint union of the An. Let π: A∗ → A be the projection onto A: π(n, an) = an.
Define a relation on A∗ by (m,am) ≤ (n, an) if m ≥ n and there is a chain,

am ≤ am−1 ≤ . . . ≤ an,

such that ai ∈ Ai for i = m − 1,m − 2, . . . , n + 1. It is easy to check that ≤ is a partial
order on A∗, and that π is an increasing function.

Also easy to see are the following:
1. If m ≥ n and am ∈ Am, then there is some an ∈ An such that (m,am) ≤ (n, an).
2. If l ≥ m ≥ n, al ∈ Al and an ∈ An such that (l, al) ≤ (n, an), then there is some
am ∈ Am such that (l, al) ≤ (m,am) ≤ (n, an)

We will construct a decreasing sequence (1, a1) ≥ (2, a2) ≥ (3, a3) ≥ . . . in A∗ such that
π({≤ (n, an)}) is infinite for all n ∈ N:

From 1, every element of A∗ is in {≤ (1, a)} for some a ∈ A1, that is,

A∗ =
⋃
a∈A1

{≤ (1, a)}.

Since π(A∗) = A is infinite and A1 is finite, there is some a1 ∈ A1 such that π({≤ (1, a1)})
is infinite.

We continue by induction: Suppose we have (n, an) ∈ A∗ such that π({≤ (n, an)}) is
infinite. Note that, since An is an antichain, (n, a′n) ∈ {≤ (n, an)} if and only if a′n = an.
Let

Bn+1 = An+1 ∩ π({≤ (n, an)}).
Then, from 2, every element of {≤ (n, an)}, except (n, an), is in {≤ (n + 1, a)} for some
a ∈ Bn+1, that is,

{≤ (n, an)} = {(n, an)} ∪
⋃

a∈Bn+1

{≤ (n+ 1, a)}.

Since π({≤ (n, an)}) is infinite and Bn+1 is finite, there must be some an+1 ∈ Bn+1 ⊆ An+1

such that π({≤ (n+ 1, an+1)}) is infinite.
We will show that sequence a1 ≥ a2 ≥ . . . in A has no minimum element. . .
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Suppose to the contrary that there is some N ∈ N such that an = aN for all n ≥ N . This
means, in particular, that aN ∈ An for all n ≥ N .

If (n, a′n) ≤ (N, aN ), then n ≥ N , a′n ≤ aN and a′n, aN ∈ An. Since An is an antichain,
this implies a′n = aN and hence π(n, a′n) = aN .

This is true for all (n, a′n) ∈ {≤ (N, aN )}, and so we have π({≤ (N, aN}) = {aN}. This,
of course, contradicts π({≤ (N, aN )}) being infinite. �

Since strictly decreasing sequences in Artinian poclasses are not possible, we get imme-
diately

Corollary 2.28. Let A be an subclass of an Artinian poclass L such that A =
⋃
n∈NAn,

where An is a finite antichain for all n ∈ N and

(∀n ∈ N)(∀a ∈ An+1) (∃a′ ∈ An such that a ≤ a′).

Then A is finite.

Corollary 2.29. [3, page 183] Let L be an Artinian poclass. Then the class of all finitely
generated lower classes of L ordered by inclusion is Artinian.

Proof. Let J1 ⊇ J2 ⊇ . . . be a decreasing sequence of finitely generated lower classes of L.
For n ∈ N, let An be a finite set of generators of Jn. By deleting redundant generators from
this set, we can assume that An is an antichain. Further, since

An+1 ⊆ Jn+1 ⊆ Jn =
⋃
a∈An

{≤ a},

for every element a ∈ An+1, there is some a′ ∈ An such that a ≤ a′. Thus A =
⋃
n∈NAn

satisfies the hypothesis of 2.28 and A is finite.
For all n ∈ N, let Kn = Jn ∩ A. Note that Kn ∈⇓A, and that Jn is generated by Kn as

a lower class of L. Then K1 ⊇ K2 ⊇ . . . is a decreasing sequence in ⇓A, so there is some
N ∈ N such that Kn = KN for all n ≥ N . Hence Jn = JN for all n ≥ N . �

In our discussion of the order in module categories and the order of submodules within
modules, we will need to have at hand some information about lattices. The standard
reference for lattice theory is G. Birkhoff, Lattice Theory, 3rd ed. [3]. For the reasons
explained at the beginning of this section, we will allow the possibility that a lattice may
be a proper class:

Definition 2.30. A lattice is a poclass L such that every pair of elements, x, y ∈ L, has
a supremum, x ∨ y, and an infimum, x ∧ y.

Note that y = y ∧ (x ∨ y) = y ∨ (x ∧ y) in a lattice.
A bounded lattice is a lattice which has a maximum element > and a minimum element

⊥. Note that if a lattice has a maximal (minimal) element, then this element is maximum
(minimum). Thus any Artinian lattice has a minimum element.

A lattice L is distributive if

(∀x, y, z ∈ L) (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z))
and

(∀x, y, z ∈ L) (x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)).
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These two properties are equivalent and to prove distributivity it suffices to show

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).

A lattice L is modular if

(∀y1, y2, x ∈ L) (y1 ≤ y2 =⇒ y1 ∨ (x ∧ y2) = (y1 ∨ x) ∧ y2).

Any distributive lattice is modular.

Lemma 2.31. Let L be a lattice and x ∈ L. Define the map λ: L → {≤ x} × {≥ x} by
λ(y) = (x ∧ y, x ∨ y) for all y ∈ L.

1. If L is modular then λ is strictly increasing.
2. If L is distributive then λ is an embedding.

Proof. λ is clearly an increasing function.
1. Suppose y1 ≤ y2 in L such that λ(y1) = λ(y2). Then x∧y1 = x∧y2 and x∨y1 = x∨y2,

so

y1 = y1 ∨ (x ∧ y1) = y1 ∨ (x ∧ y2) = (y1 ∨ x) ∧ y2 = (y2 ∨ x) ∧ y2 = y2.

Thus if y1 < y2 then we must have λ(y1) < λ(y2).
2. Suppose y1, y2 ∈ L such that λ(y1) ≤ λ(y2). Then x∧y1 ≤ x∧y2 and x∨y1 ≤ x∨y2,

so
y1 = y1 ∨ (x ∧ y1) ≤ y1 ∨ (x ∧ y2) = (y1 ∨ x) ∧ (y1 ∨ y2)
≤ (y2 ∨ x) ∧ (y1 ∨ y2) = (y1 ∧ x) ∨ y2 ≤ (y2 ∧ x) ∨ y2
= y2.

Thus y1 ≤ y2 if and only if λ(y1) ≤ λ(y2).
�

The most important property of modular lattices is the following:

Lemma 2.32. [3, Theorem 13, page 13] Let L be a modular lattice and a, b ∈ L. Then
the maps φ: [b, a ∨ b] → [a ∧ b, a] given by x 7→ x ∧ a, and ψ: [a ∧ b, a] → [b, a ∨ b] given by
y 7→ y ∨ b are inverse isomorphisms.

Proof. The functions ψ and φ are clearly increasing.
Let x ∈ [b, a ∨ b]. Applying φ to the inequality b ≤ x ≤ a ∨ b we get

φ(b) = b ∧ a ≤ φ(x) ≤ φ(a ∨ b) = (a ∨ b) ∧ a = a.

Thus φ maps into [a ∧ b, a] as claimed.
Further,

ψ(φ(x)) = (x ∧ a) ∨ b = (a ∨ b) ∧ x = x.

The second equality is due to the modularity of L and the inequality b ≤ x. The last equality
comes from the fact that x ≤ a ∨ b. Thus ψ ◦ φ is the identity map on [b, a ∨ b].

The remainder of the proof is done similarly. �
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3 The Length Function on Ordered
Classes

In this section we develop the concept of length functions on poclasses. These are partic-
ularly useful when applied to Artinian modular lattices, such as the lattice of submodules
of an Artinian or Noetherian module. This we will do in Section 4.

The results to be presented in these two sections are extensions and abstractions of
results in T. H. Gulliksen, A Theory of Length for Noetherian Modules [13]. With the
greater abstraction used in this section we can put Noetherian and Artinian modules on
the same footing. In particular, using the lattice theory developed in this section, we will
construct in Section 4, the Krull length function on the module categories R-Noeth and
R-Art for a ring R.

This section is outside the main subject of this dissertation and can be skipped by read-
ers who are prepared to accept the existence of the Krull length function. For a simpler
development of the Krull length function for Noetherian modules see [6, Section 4].

This section depends heavily on the arithmetic of the ordinal numbers. For the details of
ordinal arithmetic see W. Sierpinski, Cardinal and Ordinal Numbers [28] or M. D. Potter,
Sets, An Introduction [25]. We collect here a few of those facts that are relevant:

Notation: We will use lowercase Greek letters for elements of Ord, the class of ordinal
numbers. The first infinite ordinal is written ω.

• Ordinal addition is associative but not commutative. For example, ω+1 6= 1+ω = ω.
• Ordinal addition is cancellative on the left: α + β = α + γ =⇒ β = γ. Also
α+ β ≤ α+ γ =⇒ β ≤ γ.

• For a fixed ordinal α, the map from Ord to Ord given by β 7→ α + β is strictly
increasing.

• If α ≤ β, then β−α is the unique ordinal γ such that β = α+γ, hence β = α+(β−α).
For any α, β ∈ Ord, we have β = (α+ β)− α.

• For a fixed ordinal α, the map from {≥ α} ⊆ Ord to Ord given by β 7→ β − α is
strictly increasing.

• An ordinal α 6= 0 has the property that β + α = α for all β < α if and only if it has
the form α = ωγ for some ordinal γ.

• Any nonzero ordinal can be expressed uniquely in the normal form

ωγ1 + ωγ2 + · · ·+ ωγn

where γ1 ≥ γ2 ≥ · · · ≥ γn are ordinals. This same form can be written

ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where γ1 > γ2 > · · · > γn and n1, n2, . . . , nn ∈ N. To add two ordinals in either of
these forms one needs only to use the rule that ωγ + ωδ = ωδ if γ < δ. For example,
(ωω + ω3 + ω2 + 1) + (ω3 + ω) = ωω + ω32 + ω.
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Definition 3.1. Let L be a poclass. Then a length function on L is a strictly increasing
function from L to Ord.

Proposition 3.2. If a poclass L has a length function then L is Artinian.

Proof. Since Ord is Artinian, we can apply 2.17.1. �

We will shortly prove that the converse of this proposition is true if L a set. But first,
we note that if L has any length function, then there is a smallest length function on L:

Define λL: L → Ord by

λL(x) = min{λ(x) | λ is a length function on L}
for all x ∈ L. If x < y in L, then there is some length function λ: L → Ord such that
λ(y) = λL(y), so λL(x) ≤ λ(x) < λ(y) = λL(y). Thus λL is a length function.

Definition 3.3. If L has a length function, then the length function λL as constructed
above will be called the minimum length function on L. If L has a maximum element >
then we define the length of L by lenL = λL(>).

Let L be a poclass with a length function and M ⊆ L a nonempty subclass. Then λL
restricts to a length function on M, so for any x ∈M we have λM(x) ≤ λL(x). If M is, in
addition, a lower class of L we will get the converse inequality. To show this, we consider
first the case M = {≤ x} for some x ∈ L.

Proposition 3.4. If a poclass L has a length function and x ∈ L, then len{≤ x} = λL(x).

Proof. Set M = {≤ x} so λM(x) = lenM. If M = L then x = > and the result is
immediate.

Otherwise we have the case where K = L \M is not empty.
Since K has a length function, we can define λ: L → Ord by

λ(y) =

{
λM(y) y ∈M
λM(x) + 1 + λK(y) y ∈ K

for all y ∈ L. One can easily check that λ is strictly increasing, so that λL(x) ≤ λ(x) =
λM(x) = lenM.

From the discussion preceding the proposition we have also λL(x) ≥ λM(x) = lenM, so
finally len{≤ x} = λL(x). �

Note that the order of the summation in the definition of λ is crucial to its claimed
properties.

Corollary 3.5. Let L be a poclass with a length function and M⊆ L a lower class of L.
Then λM(x) = λL(x) for all x ∈M.

Proof. Given x ∈M, we have {≤ x} ⊆ M. Thus λM(x) = len{≤ x} = λL(x). �

It can be easily checked that we have defined λL so that λOrd(α) = len{≤ α} = α for all
ordinals α, and len[α, β] = β − α for all ordinals α ≤ β.

Proposition 3.6. Let L be a poclass with a length function and a maximum element.
1. λL is exact.
2. If α ≤ lenL, then there is some x ∈ L such that λL(x) = α.
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3. For all x ∈ L, len{≤ x}+ len[x,>] ≤ lenL.
4. If x ∈ L, then len{≤ x} = lenL if and only if len[x,>] = 0.

Proof.
1. We need to show that {≤ λL(x)} ⊆ λL({≤ x}) for all x ∈ L. . .

Suppose to the contrary, that there is an ordinal α ≤ λL(x), such that no y ≤ x
satisfies λL(y) = α. Clearly α 6= λL(x) so we have α < λL(x). Set

K = {y ≤ x | α < λL(y)}.

We have x ∈ K, so K is not empty. Let y0 ∈ K be chosen so that λL(y0) is minimum
in λL(K) ⊆ Ord. Define λ: L → Ord by

λ(y) =

{
λL(y) y 6= y0

α y = y0

for all y ∈ L. It is not hard to show that λ is a length function on L which is smaller
that λL. This contradicts the definition of λL.

2. Since λL is exact we have {≤ λL(>)} ⊆ λL({≤ >}), and so {≤ lenL} ⊆ λL(L).
3. Define λ: [x,>] → Ord by λ(y) = λL(y)−λL(x). The function λ is well defined and

strictly increasing, so len[x,>] ≤ λ(>) = λL(>)− λL(x) = lenL − len{≤ x}. Hence
len{≤ x}+ len[x,>] ≤ lenL.

4. Easy.
�

From this proposition, λL is an exact strictly increasing function from L to Ord. In fact,
we will see in 3.11 that λL is the only such function.

A simple example illustrating 2 and 3 of the proposition is the poset L = {≤ ω} ⊆ Ord
with > = ω. For any n ∈ N ⊆ L we have len{≤ n} = n and len[n,>] = ω. In particular,
len{≤ n}+len[n,>] = n+ω = ω = lenL, whereas len[n,>]+len{≤ n} = ω+n > ω = lenL.
Thus the order of addition in 3.6.3 is crucial. Notice also that for any x ∈ L, len[x,>] is
either 0 or ω, that is, there are only a finite number of possible values for len[x,>]. This is,
in fact, always the case for modular lattices as we will see in 3.35.

Another useful example to have at hand is

Example 3.7. Let L be the poset illustrated below which contains chains of all finite lengths
but no infinite chain: (Here “etc.” means that there are chains of length 6, 7, 8, etc., which
are connected between > and ⊥).
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Clearly lenL = ω. Also, len{≤ x} = λL(x) = 2 and len[x,>] = 1, so one can see that, in
general, knowing len{≤ x} and len[x,>] does not give any upper bound on lenL.

Proposition 3.8. If a poclass L has a length function, then λL satisfies

λL(x) =

{
0 if x is minimal in L
sup{λL(y) + 1 | y < x} otherwise

for all x ∈ L.

Proof. From 3.4, λL(x) is determined by {≤ x}. If x is minimal in L, then {≤ x} = {x} so
λL(x) = 0.

If x is not minimal, then {≤ x} = {x}∪{< x} with {< x} not empty. Since λL is strictly
increasing, we have λL(x) > λL(y) for all y < x. Indeed, from 3.6.2, λL(x) must be the
smallest such ordinal.

Equivalently, λL(x) is the smallest ordinal such that λL(x) ≥ λL(y) + 1 for all y < x.
Thus λL(x) = sup{λL(y) + 1 | y < x} �

If L is an Artinian poset then above description of λL can be used to define λL. Slightly
more generally we have the following:

Proposition 3.9. Let L be an Artinian poclass such that {≤ x} is a set for all x ∈ L.
Then L has a length function, and λL is defined inductively by

λL(x) =

{
0 if x is minimal in L
sup{λL(y) + 1 | y < x} otherwise

for all x ∈ L.

Proof. Let λ′: L → Ord be defined by

λ′(x) =

{
0 if x is minimal in L
sup{λ′(y) + 1 | y < x} otherwise

for all x ∈ L. It is a standard induction argument to show that λ′ is well defined by the above
equation, the key point being that any subset of Ord has a supremum, [15, Section 20], so
sup{λ′(y) + 1 | y < x} is defined whenever λ′(y) is defined for all y < x.

We check that λ′ is a length function. . .
Suppose x1 < x2 in L. Then λ′(x2) = sup{λ′(y) + 1 | y < x2} ≥ λ′(x1) + 1, so

λ′(x1) < λ′(x2). Thus λ′ is strictly increasing and a length function.
It remains to show that λ′ is the smallest length function and so λ′ = λL. . .
Suppose λ: L → Ord is strictly increasing. Set B = {x ∈ L | λ(x) < λ′(x)}. If B 6= ∅ then

it must have a minimal element, x0. x0 can not be minimal in L since λ(x0) < λ′(x0) = 0
is not possible. Hence λ′(x0) = sup{λ′(y) + 1 | y < x0}.

If y < x0 then y 6∈ B so we get λ′(y) ≤ λ(y) < λ(x0). Thus λ′(y) + 1 ≤ λ(x0) for any
y < x0. But then we would get λ′(x0) ≤ λ(x0), contradicting x0 ∈ B.

Therefore we have B = ∅ and λ′(x) ≤ λ(x) for all x ∈ L. �

The most important properties of strictly increasing functions and exact functions are
given in the next proposition, which should be compared with 2.17:
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Proposition 3.10. Let ψ: K → L be a function between poclasses.
1. If ψ is strictly increasing and ψ(K) has a length function, then K has a length function

and λK(x) ≤ λψ(K)(ψ(x)) for all x ∈ K.
2. If ψ is exact and K has a length function, then ψ(K) has a length function and
λψ(K)(ψ(x)) ≤ λK(x) for all x ∈ K.

3. If ψ is strictly increasing and exact, then ψ(K) has a length function if and only if
K has a length function, and in that case, λK(x) = λψ(K)(ψ(x)) for all x ∈ K.

Proof.
1. λψ(K) ◦ ψ: K → Ord is a length function on K. Thus, for all x ∈ K, we have
λK(x) ≤ λψ(K)(ψ(x)).

2. Define λ: ψ(K) → Ord by λ(y) = min(λK ◦ ψ−1(y)) for all y ∈ ψ(K). Note that
λ(ψ(x)) ≤ λK(x) for all x ∈ K.

We will show that λ is strictly increasing. Let y1 < y2 in ψ(K) and x2 ∈ K be
such that ψ(x2) = y2 and λK(x2) = λ(y2). Then y1 ∈ {≤ ψ(x2)} ⊆ ψ({≤ x2}), so
there is some x1 ≤ x2 such that ψ(x1) = y1. Since y1 6= y2 we must have x1 < x2

and hence λ(y1) = λ(ψ(x1)) ≤ λK(x1) < λK(x2) = λ(y2).
Since λ is a length function on ψ(K), we have λψ(K)(y) ≤ λ(y) for all y ∈ ψ(K).

Thus for x ∈ K, we get λψ(K)(ψ(x)) ≤ λ(ψ(x)) ≤ λK(x).
3. Immediate from 1 and 2.

�

If L is given with a length function then this proposition can be put in a simpler form:

Corollary 3.11. Let ψ: K → L be a function between poclasses such that L has a length
function.

1. If ψ is strictly increasing, then K has a length function and λK(x) ≤ λL(ψ(x)) for
all x ∈ K.

2. If ψ is exact and K has a length function, then λL(ψ(x)) ≤ λK(x) for all x ∈ K.
3. If ψ is strictly increasing and exact, then K has a length function and λK(x) =
λL(ψ(x)) for all x ∈ K.

Proof.
1. This follows from 3.10.1 and the fact that λψ(K)(y) ≤ λL(y) for all y ∈ ψ(K).
2. This follows from 3.10.2 and the fact that, since ψ is exact, ψ(K) is a lower class in
L, and so, from 3.5, λψ(K)(y) = λL(y) for all y ∈ ψ(K).

3. Immediate from 1 and 2.
�

This proposition has the immediate corollary that if K is a poclass with a length function,
then the only strictly increasing exact function from K to Ord is λK.

Also immediate from 3.11 is

Corollary 3.12. Let ψ: K → L be a function between poclasses with length functions and
maximum elements.

1. If ψ is strictly increasing then lenK ≤ lenL.
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2. If ψ is exact then lenK ≥ lenψ(K).
3. If ψ is exact and strictly increasing then lenK = lenψ(K).

Consider the poclass Ord×Ord. This poclass is Artinian and for any (α, β) ∈ Ord×Ord,
{≤ (α, β)} ∼= {≤ α} × {≤ β} is a set. Thus, from 3.9, Ord ×Ord has a length function.
The function λOrd×Ord gives a new operation on ordinals that will be the key to the rest
of this section:

Definition 3.13. Define the operation natural sum, ⊕, on ordinals by

α⊕ β = λOrd×Ord(α, β)

for ordinals α and β. Note that α⊕ β = len{≤ (α, β)} = len({≤ α} × {≤ β}).

The natural sum of ordinals was originally defined by G. Hessenberg [16, pages 591-594]
as in Definition 3.17 (see also [28, page 363]). In 3.18, we will show that these two definitions
for the natural sum are equivalent.

We will shortly prove many properties of the natural sum, but its existence is sufficient
to prove the following:

Proposition 3.14. Let K and L be poclasses.
1. K × L has a length function if and only if K and L have length functions.
2. If K×L has a length function, then λK×L(x, y) = λK(x)⊕λL(y) for all (x, y) ∈ K×L.
3. If K and L have length functions and maximum elements then

len(K × L) = lenK ⊕ lenL.

Proof. If K×L has a length function, then since K and L can be embedded in K×L, they
have length functions.

Conversely, if K and L have length functions, set λ = λK × λL. Thus λ maps K × L to
Ord ×Ord and is defined by λ(x, y) = (λK(x), λL(y)) for all x ∈ K and y ∈ L. Since λK
and λL are strictly increasing and exact, so is λ.

From 3.11.3, K × L has a length function and

λK×L(x, y) = λOrd×Ord(λ(x, y)) = λK(x)⊕ λL(y)

for all (x, y) ∈ K × L.
3 follows directly from 2. �

Proposition 3.15. The natural sum is a commutative and associative operation.

Proof. This follows from the rule α⊕ β = len({≤ α} × {≤ β}), and the commutativity and
associativity of the direct product operation on poclasses. �

Proposition 3.16. Let α, β, α1, β1, . . . be ordinals. Then
1. α⊕ 0 = 0⊕ α = α

2. (α1 ⊕ β) + α2 ≤ (α1 + α2)⊕ β

3. α+ β ≤ α⊕ β, β + α ≤ α⊕ β

4. α1 + β1 + α2 + · · ·+ αn + βn ≤ (α1 + α2 + · · ·+ αn)⊕ (β1 + β2 + · · ·+ βn)

Proof.
1. α⊕ 0 = len({≤ α} × {0}) = len{≤ α} = α
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2. Set L = {≤ (α1 + α2, β)} ⊆ Ord×Ord, and x = (α1, β). Then len{≤ x} = α1 ⊕ β
and len[x, (α1 + α2, β)] = len[α1, α1 + α2] = α2. We can now apply 3.6.3 to get
len{≤ x}+ len[x, (α1 + α2, β)] ≤ lenL, that is, (α1 ⊕ β) + α2 ≤ (α1 + α2)⊕ β.

3. These are special cases of 2 with α1 = 0.
4. By induction from 2.

�

Consider the natural sum of two ordinals which are given in normal form, for example,
α = ωω + ω3 + ω2 + 1 and β = ω3 + ω. Using 3 of this proposition, we get the inequalities
α+ β = ωω + ω32 + ω ≤ α⊕ β, and β + α = α = ωω + ω3 + ω2 + 1 ≤ α⊕ β.

Using 4 of this proposition, we can interleave the terms of these two normal forms and
add them to get a greater lower bound for α ⊕ β. There is a unique way of doing this so
that no cancellations occur in adjacent terms of this sum, namely: Write down the terms
gathered from both the normal forms in decreasing order and then add. In the example, we
have the six terms ωω, ω3, ω3, ω2, ω, 1 so

ωω + ω3 + ω3 + ω2 + ω + 1 = ωω + ω32 + ω3 + 1 ≤ α⊕ β.

We will show that this method actually gives us the natural sum of α and β, not just a
lower bound for it. But first we need to formalize this construction:

Definition 3.17. Let α and β be nonzero ordinals. With suitable re-labeling, the normal
forms for these ordinals can be written using the same strictly decreasing set of exponents
γ1 > γ2 > · · · > γn:

α = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

β = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where ni,mi ∈ Z+, that is we allow mi, ni to be zero.
Now we define the operation ⊕′ by

α⊕′ β = ωγ1(m1 + n1) + ωγ2(m2 + n2) + · · ·+ ωγn(mn + nn).

This is a well defined operation because of the uniqueness of the normal forms for ordinals.
In addition, we define 0⊕′ α = α⊕′ 0 = α, and 0⊕′ 0 = 0.

Proposition 3.18. The operations ⊕ and ⊕′ are identical.

Proof. From 3.16.4, α⊕′β ≤ α⊕β for any ordinals α and β. To show the opposite inequality
we need only show that ⊕′: Ord×Ord → Ord is strictly increasing:

Since ⊕′ is commutative and increasing, it suffices to show only that α⊕′ (β+1) > α⊕′β.
But this follows easily from the definition of ⊕′, in fact, α⊕′ (β + 1) = (α⊕′ β) + 1. �

Corollary 3.19. The operation ⊕ is cancellative, that is, α⊕ β = α⊕ γ implies β = γ.

Proof. Using the uniqueness of normal forms, it is easy to see that ⊕′ is cancellative, so this
corollary follows from the previous proposition. �

Notice that ⊕ is cancellative on both sides, unlike ordinary ordinal addition.

We next consider the special case when L is a modular lattice.
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Recall from 3.6, that if L is a poclass with a length function and a maximum element,
and x ∈ L, then len{≤ x}+ len[x,>] ≤ lenL. In contrast to this result, there is, in general,
no function of len{≤ x} and len[x,>] which gives an upper bound for lenL. This situation
changes if L is a modular lattice . . .

Proposition 3.20. Let L be a bounded modular lattice with a length function, and x ∈ L.
Then

len[⊥, x] + len[x,>] ≤ lenL ≤ len[⊥, x]⊕ len[x,>].
In addition, len[⊥, x] = lenL if and only if len[x,>] = 0.

Proof. The first inequality and the last claim we have from 3.6. For the second inequality,
we define λ: L → [⊥, x]× [x,>] as in 2.31:

λ(y) = (x ∧ y, x ∨ y)
for all y ∈ L.

Since L is modular, λ is strictly increasing, and we can use 3.12.1 and 3.14.3 to get

lenL ≤ len([⊥, x]× [x,>]) = len[⊥, x]⊕ len[x,>].

�

For modular lattices, this proposition reduces many questions about the relationship
between len[⊥, x], len[x,>] and lenL to ordinal arithmetic.

The most important example of this arises from the observation that for any nonzero
ordinals α and β, α + β and α ⊕ β have the same leading term in their normal forms.
Further this leading term depends only on the leading terms of α and β. For example, if
α = ωω+ω3+ω2+1 and β = ω3+ω, then α+β = ωω+ω32+ω and α⊕β = ωω+ω32+ω3+1,
both having the leading term ωω.

This suggests that we define a map, to be called the Krull length, on ordinals which picks
out the leading term of a normal form. Since 0 has no normal form we have to make a
special case for it.

First we define the range of this map:

Definition 3.21. We define Krull = (Ord× N) ∪ {0} with operation + given by
1. 0 + 0 = 0
2. 0 + (γ, n) = (γ, n) + 0 = (γ, n) for all (γ, n) ∈ Ord× N
3.

(γ1, n1) + (γ2, n2) =


(γ1, n1) if γ2 < γ1

(γ2, n2) if γ1 < γ2

(γ1, n1 + n2) if γ1 = γ2

for all (γ1, n1), (γ2, n2) ∈ Ord× N.

In Section 5, we will consider (Krull,+) to be a monoid, but here we simply consider it
to be a class with a binary operation.

Definition 3.22. For an ordinal α = ωγ1n1 + ωγ2n2 + · · · + ωγnnn in normal form, we
define the Krull length of α by Klen(α) = (γ1, n1) ∈ Krull. We also define Klen(0) = 0.

It will also be useful to have a name for the map which picks out the exponent of the
leading term for normal forms:
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Definition 3.23. Let Ord∗ = Ord ∪ {−1}.
We define a map κ: Krull → Ord∗ by κ(γ, n) = γ for (γ, n) ∈ Ord×N, and κ(0) = −1.
For an ordinal α, we define the Krull dimension of α by Kdim(α) = κ(Klen(α)).

We have defined Kdim such that, for an ordinal α = ωγ1n1 + ωγ2n2 + · · · + ωγnnn in
normal form, we have Kdim(α) = γ1. Also Kdim(0) = −1.

It is easy to confirm the following:

Proposition 3.24. If α and β are ordinals then
1. Klen(α+ β) = Klen(α⊕ β) = Klen(α) + Klen(β)
2. Kdim(α+ β) = Kdim(α⊕ β) = max{Kdim(α),Kdim(β)}

For a poclass with a length function and a maximum element we use these same function
names as follows:

Definition 3.25. Let L be a poclass with a length function and a maximum element. Then
we define the Krull length of L by

KlenL = Klen(lenL)

and the Krull dimension of L by

KdimL = Kdim(lenL).

Finally, we can put 3.20, 3.24 and this definition together to get

Proposition 3.26. Let L be a bounded modular lattice with a length function and x ∈ L.
Then

1. KlenL = Klen[⊥, x] + Klen[x,>]
2. KdimL = max{Kdim[⊥, x],Kdim[x,>]}

We next consider the following question: If L is a bounded modular lattice with a length
function, what are the possible values of len[x,>] for elements x ∈ L? The surprising
answer is that there are only a finite number of possibilities. This is to be contrasted
with the possible values of len[⊥, x] which, by 3.6, include all ordinals α ≤ lenL, and with
Example 3.7 which is a non-modular lattice such that len[x,>] takes on all natural numbers.

Definition 3.27. A poclass L with a length function and a maximum element is critical
if len[x,>] = lenL for all x < >.

Note that the trivial poclass with one element and length 0 is critical.

Proposition 3.28. Let L be a poclass with a length function and a maximum element. If
L is critical then lenL = 0 or lenL = ωγ for some ordinal γ. If L is, in addition, a modular
lattice then the converse is true.

Proof. Suppose L is critical with lenL = α > 0. By 3.6.2, for every β < α there is some
x ∈ L such that len{≤ x} = β. By assumption, len[x,>] = α, so from 3.6.3, β + α ≤ α.
That is, β + α = α for all β < α. This implies that α = ωγ for some γ ∈ Ord.

Suppose L is a modular lattice, lenL = ωγ and x < >. Then len[⊥, x] < ωγ so
Kdim[⊥, x] < γ. From 3.26, KdimL = max{Kdim[⊥, x],Kdim[x,>]} so we must have
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Kdim[x,>] = KdimL = γ, that is, len[x,>] ≥ ωγ . On the other hand, since [x,>] is a
sublattice of L we have len[x,>] ≤ lenL = ωγ .

�

We will say L is γ-critical if it is critical and lenL = ωγ .
See Example 3.7 for a lattice L which is not critical even though lenL = ω.

Definition 3.29. A critical series for a bounded poclass L, is a sequence

⊥ = x0 < x1 < · · · < xn = >
in L such that [xi−1, xi] is γi-critical for i = 1, 2, . . . , n, and γ1 ≥ γ2 ≥ · · · ≥ γn.

As an example we consider again the modular lattice L = {≤ ω} ⊆ Ord and the series
0 < 1 < 2 < ω in L. Each of the factors of this series is critical, len[0, 1] = len[1, 2] = 1 = ω0,
len[2, ω] = ω, but the series itself is not, since the factors are not decreasing in length. There
are of course many other series in L whose factors are all critical, but there is only one critical
series, namely 0 < ω.

In more generality, we will show that any bounded modular lattice with a length function
has a critical series, and the lengths of the factors in any such series are uniquely determined
by the length of the whole lattice, though the series itself is not unique.

Lemma 3.30. Let L be a bounded modular lattice with a length function, and α, β ∈ Ord
such that α+ β = α⊕ β.

1. If lenL = α+ β, then there is some x ∈ L such that len[⊥, x] = α and len[x,>] = β.
2. If there is x ∈ L such that len[⊥, x] = α and len[x,>] = β then lenL = α+ β.

Proof.
1. From 3.6, there is some x ∈ L such that len[⊥, x] = α. We will show len[x,>] = β.

From 3.20, α + len[x,>] ≤ α + β = α ⊕ β ≤ α ⊕ len[x,>]. Cancellation in
the first inequality gives len[x,>] ≤ β. Cancellation in the second inequality gives
β ≤ len[x,>].

2. This follows directly from 3.20.
�

The obvious question to ask here is: For what ordinals α and β does α+ β = α⊕ β?

Lemma 3.31. Suppose α + β = α ⊕ β = ωγ1 + ωγ2 + · · · + ωγn in normal form where
γ1 ≥ γ2 ≥ · · · ≥ γn. Then α = 0 or β = 0, or there is some i ∈ {1, 2, . . . , n − 1} such that
α = ωγ1 + ωγ2 + · · ·+ ωγi and β = ωγi+1 + ωγi+2 + · · ·+ ωγn .

Proof. Easy ordinal arithmetic. �

For example, if lenL = ωω + ω32 + 1, then the previous two lemmas guarantee the
existence of an x ∈ L such that len[x,>] is any of the following ordinals:

0, 1, ω3 + 1, ω32 + 1, ωω + ω32 + 1.

More generally,

Proposition 3.32. Suppose L is a bounded modular lattice with a length function, and
lenL = ωγ1 + ωγ2 + · · · + ωγn in normal form where γ1 ≥ γ2 ≥ · · · ≥ γn. Then for any
ordinal of the form β = ωγi + ωγi+1 + · · · + ωγn with i ∈ {1, 2, . . . , n}, there is an element
x ∈ L such that len[x,>] = β.
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Lemma 3.33. Let L be a bounded modular lattice with a length function. Then the following
are equivalent

1. lenL = ωγ1 + ωγ2 + · · ·+ ωγn in normal form with γ1 ≥ γ2 ≥ · · · ≥ γn.
2. L has a critical series ⊥ = x0 < x1 < · · · < xn = > with [xi−1, xi] γi-critical for
i = 1, 2, . . . , n.

Proof. This is a simple induction from 3.30 and 3.31. �

Proposition 3.34. Suppose L is a bounded modular lattice with a length function, and L
has the critical series ⊥ = x0 < x1 < · · · < xn = > with [xi−1, xi] γi-critical. Let y ∈ L and
set yi = y ∨ xi for i = 0, 1, 2, . . . , n. Then len[yi−1, yi] is ωγi or zero. Further, the sequence
y = y0 ≤ y2 ≤ · · · ≤ yn = >, after removal of duplicate entries, forms a critical series for
[y,>].

Proof. We remind the reader that for any a and b in a modular lattice, [b, a∨b] is isomorphic
to [a∧b, a]. In this proof we set a = xi and b = yi−1. Then a∨b = xi∨yi−1 = xi∨(xi−1∨y) =
xi∨y = yi, and a∧b = xi∧yi−1 = xi∧(xi−1∨y) = xi−1∨(xi∧y). The last equality uses the
modularity of the lattice. Thus [yi−1, yi] ∼= [xi−1∨(xi∧y), xi]. But xi−1 ≤ xi−1∨(xi∧y) ≤ xi,
so, [yi−1, yi] is isomorphic to a final segment of [xi−1, xi]. Since [xi−1, xi] is γi-critical, either
len[yi−1, yi] = 0 or len[yi−1, yi] = ωγi .

The claim that y = y0 ≤ y2 ≤ · · · ≤ yn = > forms a critical series for [y,>] is then
clear. �

Corollary 3.35. Suppose L is a bounded modular lattice with a length function, and
lenL = ωγ1n1 + ωγ2n2 + · · · + ωγnnn in normal form with γ1 > γ2 > · · · > γn. Then for
any x ∈ L,

len[x,>] = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

for some mi ∈ Z+ such that mi ≤ ni for all i.

Continuing with the example lenL = ωω + ω32 + 1 . . .
If x ∈ L , then len[x,>] is one of the following ordinals:

0, 1, ω3, ω3 + 1, ω32, ω32 + 1, ωω, ωω + 1,

ωω + ω3, ωω + ω3 + 1, ωω + ω32, ωω + ω32 + 1

It is perhaps useful to collect in one place everything we now know from 3.6, 3.30, 3.31
and 3.35 about the sublattices [⊥, x] and [x,>] of a bounded modular lattice:

Proposition 3.36. Suppose L is a bounded modular lattice with a length function. We
write lenL = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn in normal form with γ1 > γ2 > · · · > γn.

• For every ordinal α ≤ lenL there exists some x ∈ L such that len[⊥, x] = α.
• For every ordinal α of the form

α = ωγimi + ωγi+1ni+1 + · · ·+ ωγnnn

where 1 ≤ i ≤ n and mi ≤ ni, there exists some x ∈ L such that len[x,>] = α.
Notice the change of normal form from 3.32.
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• For any x ∈ L,

len[x,>] = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

for some mi ∈ Z+ such that mi ≤ ni for all i.
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4 The Krull Length of Artinian and
Noetherian Modules

In this section we apply the results of our study of length functions to Noetherian and
Artinian modules. In particular, we construct the Krull length function on the module cate-
gories R-Noeth and R-Art for a ring R. This function is a generalization of both the usual
composition length function on modules of finite length, and the Krull dimension function
on Noetherian modules. The Krull length function is critical in proving the cancellation
properties of the corresponding monoids, M(R-Noeth) and M(R-Art).

We will also define a Krull dimension for Artinian and Noetherian modules and show
that, for Noetherian modules, this new definition coincides with the standard definition of
Krull dimension given by R. Gordon and J. C. Robson [12].

Throughout this section, R will be a fixed ring. If A ∈ R-Mod, we will write L(A) for the
poset of submodules of A ordered by set inclusion, and L◦(A) for the poset of submodules
of A ordered by reverse set inclusion, that is, the dual of L(A).
L(A) is a modular lattice with > = A and ⊥ = 0 in which A1 ∧ A2 = A1 ∩ A2 and

A1∨A2 = A1 +A2 for all A1, A2 ∈ L(A). L◦(A) is a modular lattice with > = 0 and ⊥ = A
in which A1 ∧A2 = A1 +A2 and A1 ∨A2 = A1 ∩A2 for all A1, A2 ∈ L◦(A). For the details
of these claims about L(A), see L. Rowen, Ring Theory, Volume 1, [27, pages 7-9].

If A is an Artinian module, then L(A) is an Artinian poset, so using 3.25, we can define
the length, Krull length and Krull dimension of A by

len◦A = lenL(A)

Klen◦A = KlenL(A)

Kdim◦A = KdimL(A).

Similarly, if A is a Noetherian module, then L◦(A) is an Artinian poset, and we can define
the length, Krull length and Krull dimension of A by

len◦A = lenL◦(A)

Klen◦A = KlenL◦(A)

Kdim◦A = KdimL◦(A).

In the Artinian case len◦A = 0 if and only if A = 0. In the Noetherian case, len◦A = 0
if and only if A = 0.

This duplication of nomenclature among Artinian and Noetherian modules will not lead
to confusion since if A happens to be both Artinian and Noetherian, then A has finite length
and its composition length coincides with both len◦A and len◦A.

The key to using our information about Artinian lattices to study modules is the following:
Let 0 → A → B → C → 0 be an exact sequence in R-Mod, and A′ the image of A in B.
Then L(C) ∼= [A′, B] ⊆ L(B), and L(A) ∼= [0, A′] ⊆ L(B). So, from 3.20 and 3.24, we get
the main result of this section:
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Proposition 4.1. Let 0 → A→ B → C → 0 be an exact sequence in R-Mod.
• If A,B,C ∈ R-Art, then

len◦A+ len◦ C ≤ len◦B ≤ len◦A⊕ len◦ C
Klen◦B = Klen◦A+ Klen◦ C

Kdim◦B = max{Kdim◦A,Kdim◦ C}
Further, A ∼= B if and only if len◦ C = 0 if and only if len◦A = len◦B.

• [13, 2.1] If A,B,C ∈ R-Noeth, then

len◦ C + len◦A ≤ len◦B ≤ len◦ C ⊕ len◦A

Klen◦B = Klen◦A+ Klen◦ C

Kdim◦B = max{Kdim◦A,Kdim◦ C}
Further, C ∼= B if and only if len◦A = 0 if and only if len◦ C = len◦B.

As a simple application of this proposition we deduce a standard property of Artinian
and Noetherian modules:

Corollary 4.2. Let φ: B → B be an module endomorphism.
1. If B ∈ R-Art and φ is injective, then φ is surjective.
2. If B ∈ R-Noeth and φ is surjective, then φ is injective.

Proof.

1. If φ is injective then we get the exact sequence 0 → B
φ→ B → cokerφ→ 0 in R-Art.

From 4.1, cokerφ = 0, so φ is surjective.
2. By duality.

�

Corollary 4.3.
1. If A,B ∈ R-Art, then len◦(A⊕B) = len◦A⊕ len◦B.
2. If A,B ∈ R-Noeth, then len◦(A⊕B) = len◦A⊕ len◦B.

Proof.
1. The canonical short exact sequence 0 → A → A ⊕ B → B → 0 gives the inequality

len◦(A⊕B) ≤ len◦A⊕ len◦B. To prove the converse inequality, we consider the map
ψ: L(A) × L(B) → L(A ⊕ B) defined by ψ(A′, B′) = A′ + B′. This map is strictly
increasing, so we can use 3.12 and 3.14 to get

len◦A⊕ len◦B = len◦ L(A)⊕ len◦ L(B)

= len◦(L(A)× L(B))

≤ len◦ L(A⊕B)

= len◦(A⊕B).

2. The function ψ defined above is also strictly increasing as a map from L◦(A)×L◦(B)
to L◦(A⊕B). So a similar argument works for Noetherian modules.

�
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Using the cancellative property of ⊕ (3.19) we get

Corollary 4.4. Let A,B,C ∈ R-Mod such that A⊕B ∼= A⊕ C.
1. If A,B,C ∈ R-Art, then len◦B = len◦ C.
2. If A,B,C ∈ R-Noeth, then len◦B = len◦ C.

Corollary 4.5. [13, 2.11] If A and B are submodules of a Noetherian module then A+B
is a direct sum if and only if len◦(A+B) = len◦A⊕ len◦B.

Proof. Define φ: A ⊕ B → A + B by φ(a, b) = a + b for a ∈ A and b ∈ B. This map is
surjective and has kernel isomorphic to A ∩B. Using the exact sequence

0 → A ∩B → A⊕B
φ→ A+B → 0

and 4.1, we get A ∩ B = 0 if and only if len◦(A ∩ B) = 0 if and only if len◦(A ⊕ B) =
len◦(A+B). Thus A+B is a direct sum if and only if len◦(A+B) = len◦A⊕ len◦B. �

We next rewrite 3.36 as it applies to Artinian and Noetherian modules:

Proposition 4.6. Let A be an Artinian module and write

len◦A = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

in normal form with γ1 > γ2 > · · · > γn.
1. For every ordinal α ≤ len◦A there exists a submodule A′ ≤ A such that len◦A′ = α.
2. For every ordinal α of the form

α = ωγimi + ωγi+1ni+1 + · · ·+ ωγnnn

where 1 ≤ i ≤ n and mi ≤ ni, there exists a submodule A′ ≤ A with len◦(A/A′) = α.
3. For any submodule A′ ≤ A,

len◦(A/A′) = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

for some mi ∈ Z+ such that mi ≤ ni for all i.

Proposition 4.7. Let A be a Noetherian module and write

len◦A = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

in normal form with γ1 > γ2 > · · · > γn.
1. For every ordinal α ≤ len◦A there exists a submodule A′ ≤ A with len◦(A/A′) = α.
2. For every ordinal α of the form

α = ωγimi + ωγi+1ni+1 + · · ·+ ωγnnn

where 1 ≤ i ≤ n and mi ≤ ni, there exists a submodule A′ ≤ A such that len◦A′ = α.
3. For any submodule A′ ≤ A,

len◦A′ = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

for some mi ∈ Z+ such that mi ≤ ni for all i.

For the remainder of this section we will discuss only Noetherian modules. The reason
for this is that we need to show that, for Noetherian modules, Kdim◦ is the same as the
Krull dimension in the sense of Gordon and Robson [12].
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Definition 4.8. The Krull dimension (in the sense of Gordon and Robson) [12],
[11, Chapter 13], of a module A ∈ R-Mod, which we will denote by KdimA ∈ Ord∗, is
defined inductively as follows:

• KdimA = −1 if and only if A = 0.
• Consider an ordinal γ. Assume that we have defined which modules have Kdim equal

to δ for every δ < γ. Then KdimA = γ if and only if
(a) A does not have Kdim less than γ, and
(b) for every countable decreasing chain A1 ≥ A2 ≥ . . . of submodules of A,

Kdim(Ai/Ai+1) < γ for all but finitely many indices.

This definition does not provide a Kdim for all modules. However, any Noetherian module
has a Kdim. See [11, 13.3].

Lemma 4.9. Let A ∈ R-Noeth with Kdim◦A = γ. Then for any ordinal δ < γ, there is
a decreasing sequence A1 ≥ A2 ≥ . . . in A such that Kdim◦(Ai−1/Ai) = δ for all i.

Proof. Set A1 = A. Since Kdim◦A1 = γ, we have len◦A1 ≥ ωγ > ωδ. Thus, by 4.7.1, there
is some submodule A2 ≤ A1 such that len◦(A1/A2) = ωδ. We have Kdim◦(A1/A2) = δ
and Kdim◦A1 = max{Kdim◦A2,Kdim◦(A1/A2)}, so Kdim◦A2 = γ, and we can repeat the
process to get A3, A4 . . . as required.

�

In the next lemma we use the easily proved fact that if α, β ∈ Ord with α > 0, then
β + α ≤ α if and only if β + α = α if and only if Kdimβ < Kdimα.

Lemma 4.10. Let A1 ≥ A2 ≥ . . . be a decreasing sequence of submodules of a nonzero
Noetherian module A with Kdim◦A = γ. Then Kdim◦(Ai−1/Ai) < γ for all but a finite
number of indices.

Proof. Since the sequence of ordinals len◦A1 ≥ len◦A2 ≥ len◦A3 ≥ . . . is decreasing, there
is some n ∈ N such that len◦Ai = len◦An for all i ≥ n. If An is the zero module, then
Kdim◦(Ai−1/Ai) = −1 < γ for all i > n and we are done.

Otherwise, if An is nonzero, we have len◦An > 0. Suppose i > n. Then, using the
short exact sequence 0 → Ai → An → An/Ai → 0, we have len◦(An/Ai) + len◦An =
len◦(An/Ai) + len◦Ai ≤ len◦An. Hence Kdim◦(An/Ai) < Kdim◦An, and, since also
Ai−1/Ai ≤ An/Ai and An ≤ A, we get Kdim◦(Ai−1/Ai) < Kdim◦A = γ. �

Proposition 4.11. For all A ∈ R-Noeth, Kdim◦A = KdimA.

Proof. Suppose the claim is not true. Among all modules in R-Noeth which serve as
counterexamples, let A have minimum Kdim◦. Set γ = Kdim◦A. Then γ > −1 and for any
module B with Kdim◦B < γ we have Kdim◦B = KdimB.

Using Lemma 4.9, we see that, for any δ < γ, the module A fails part (b) of the definition
of having Kdim equal to δ. Thus A does not have Kdim less than γ, and A satisfies part
(a) of the definition of having KdimA = γ.

Also, by Lemma 4.10, A satisfies part (b) of this definition. Therefore KdimA = γ, and
A is not a counterexample. �

We should point out that if A is an Artinian module, then KdimA = 0. Therefore
KdimA = Kdim◦A if and only if A has finite length.
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5 Commutative Monoids

In this section we will present the basic definitions and properties of commutative monoids
and semigroups. The basic references for the semigroup literature are A. H. Clifford and G.
B. Preston, The Algebraic Theory of Semigroups, Vol. I [7], and J. M. Howie, Fundamentals
of Semigroup Theory [18]. In these books, semigroup operations are written multiplicatively.
In our discussion, we will use additive notation since we are only interested in commutative
semigroups. Thus, to the extent that it does not conflict with a pre-existing usage, we will
write + for all semigroup/monoid operations and 0 for the identity element of monoids.

The other difference from these references, is that the semigroups and monoids we will
discuss need not be sets. For example, the class of cardinal numbers with cardinal addition
is a monoid by our definition. This situation is forced upon us by our interest in monoids
which are derived from categories of modules, and the fact that such categories are often
proper classes. See, in particular, 16.13.

Definition 5.1.

• A semigroup (M,+) is a nonempty class M with a binary operation + which is
associative. A commutative semigroup is a semigroup (M,+) in which the oper-
ation + is commutative.

• An element 0 of a semigroup (M,+) is an identity if a = 0 + a = a + 0 for all
a ∈M . If a semigroup has an identity, it is unique.

• An element ∞ of a semigroup (M,+) is called infinite if ∞+ a = ∞ for all a ∈M .
If a semigroup has an infinite element, then it is unique.

• A monoid (M,+, 0) is a semigroup (M,+) with identity 0. A commutative
monoid is a monoid (M,+, 0) in which the operation + is commutative.

• A subsemigroup (I,+) of a monoid (M,+) is a nonempty subclass I ⊆ M which
is itself a semigroup with the same operation as in M . That is, I is closed under the
operation +. A subsemigroup of a commutative semigroup is commutative.

• A submonoid (I,+, 0) of a monoid (M,+, 0) is a nonempty subclass I ⊆M which
is itself a monoid with the same identity and operation as in M . That is, I is closed
under the operation + and contains 0. A submonoid of a commutative monoid is
commutative.

From this point on, all semigroups and monoids will be assumed to be commutative. As
is usual, we will write M rather than (M,+) or (M,+, 0) if the operation and identity are
clear from the context.

Among the most frequently used monoids and semigroups are

• (N,+) – the natural numbers with addition.
• (Z+,+) – the nonnegative numbers with addition.
• (Z,+) – the integers with addition.
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By default, we will assume that N, Z+ and Z are semigroups with addition as operation.
Any of these sets could also be a semigroup with the operations multiplication, max{·, ·} or
min{·, ·}.

We also will use the following monoids:
• Zn – the cyclic group of order n ∈ {2, 3, 4, . . .}.
• {0,∞} – the two element monoid such that 0 is an identity and ∞ is an infinite

element.
Other notational conventions for special monoids and semigroups can be found in the intro-
duction.

Given a semigroup M , we can construct a monoid M0 by adjoining a new element 0 to
M such that 0+a = a for all a ∈M0. Similarly, we can construct a semigroup M∞ with an
infinite element by adjoining a new element ∞ to M such that ∞+ a = ∞ for all a ∈M∞.

Any semigroup M has a module-like action of N on its elements given by na =
∑n
i=1 a

for any n ∈ N and a ∈M . Thus 1a = a, 2a = a+ a, 3a = a+ a+ a, etc. If M is a monoid
then we will extend this to a Z+ action by defining 0a = 0 for all a ∈M .

Proposition 5.2. Let M be a semigroup (monoid).
1. If {Iα | α ∈ I} is a family of subsemigroups (submonoids) of M , then I = ∩α∈IIα,

if nonempty, is a subsemigroup (submonoid) of M .
2. If {Iα | α ∈ I} is a family of subsemigroups (submonoids) of M which is totally

ordered by inclusion, then I = ∪α∈IIα is a subsemigroup (submonoid) of M .

Proof. Routine. �

Let Y be a nonempty subclass of a semigroup M . Using 1 of this proposition, we de-
fine the subsemigroup generated by Y to be the intersection of all subsemigroups which
contain Y . For example, the subsemigroup generated by a single element a ∈ M is the
set {a, 2a, 3a, . . .}. The elements of the sequence (a, 2a, 3a, . . .) may not be distinct, so the
subsemigroup generated by a could be finite. See [18, Section 1.2] for a discussion of all
possible semigroups generated by a single element. In the general case, the subsemigroup
generated by Y consists all finite sums of elements of Y .

Similarly, if M is a monoid, then we define the submonoid generated by a subclass Y ⊆M
to be the intersection of all submonoids which contain Y . The submonoid generated by a
single element a ∈M is {0, a, 2a, 3a, . . .}. In general, the submonoid generated by Y consists
of 0 and all finite sums of elements of Y .

If K = {Iα | α ∈ I} is a family of submonoids then we will write∑
α∈I

Iα or
∑

K

for the submonoid generated by the union ∪α∈IIα = ∪K. If I = {1, 2, . . . , n}, we will use
the alternative notation

n∑
i=1

Ii = I1 + I2 + . . .+ In.

Since Ii is a monoid for i = 1, 2, . . . , n, we have

I1 + I2 + . . .+ In = {a1 + a2 + . . .+ an | ai ∈ Ii for i = 1, 2, . . . , n}.
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Definition 5.3.
1. A map φ: M → N between semigroups is a semigroup homomorphism if

(∀a, b ∈M) (φ(a+ b) = φ(a) + φ(b))

2. A map φ: M → N between monoids is a monoid homomorphism if it is a semi-
group homomorphism and φ(0) = 0.

3. Two semigroups, M and N , are isomorphic, written M ∼= N , if there is a bijective
semigroup homomorphism φ: M → N . In this case, φ is called an isomorphism
and its inverse, φ−1, is also a bijective semigroup homomorphism.

If M and N are monoids which are isomorphic as semigroups as above, then φ and
φ−1 are necessarily monoid homomorphisms. So it is not necessary to define two types of
isomorphisms, one for semigroups and one for monoids.

The inclusion map of a subsemigroup (submonoid) in a semigroup (monoid) is a semigroup
(monoid) homomorphism.

If φ: M → N is a semigroup or monoid homomorphism, then we will write imφ = φ(M)
for the image. It is easy to see that imφ is a subsemigroup of N .

If φ is a monoid homomorphism then we will write kerφ = {m ∈M | φ(m) = 0} for the
kernel of φ. Also easy to see is that kerφ is a submonoid of M and imφ is a submonoid of
N .

Notice that these homomorphisms respect the N and Z+ actions on semigroups and
monoids respectively. Specifically, if φ: M → N is a semigroup homomorphism, then
φ(na) = nφ(a) for all a ∈ M and n ∈ N, and if φ: M → N is a monoid homomorphism,
then φ(na) = nφ(a) for all a ∈M and n ∈ Z+.

Definition 5.4. A congruence on a semigroup M is an equivalence relation ∼ on M
such that

(∀a, b, c ∈M) (a ∼ b =⇒ a+ c ∼ b+ c).
We will write [a] = {b ∈ M | b ∼ a} for the congruence class containing a, and M/∼ for
the class of congruence classes. If we have several congruences, ∼I , ∼α, etc., to consider
simultaneously, then we will write [a]I , [a]α, etc., for the corresponding congruence classes.

If ∼ is a congruence on a semigroup M , then M/ ∼ is a semigroup when given the
operation + defined by

[a] + [b] = [a+ b]
for all a, b ∈ M . The map σ: M → M/∼ defined by σ(a) = [a] is a semigroup homomor-
phism. We will call M/∼ the quotient of M by ∼, and σ the quotient homomorphism
from M to M/∼.

If M is a monoid, then M/∼ is a monoid with identity [0] and σ is a monoid homomor-
phism.

The above construction provides a homomorphism from M for every congruence on M .
In the other direction, one easily checks that if φ: M → N is any semigroup or monoid
homomorphism, then the equivalence ∼ defined by

a ∼ b ⇐⇒ φ(a) = φ(b)



Section 5: Commutative Monoids 44

is a congruence on M , and (M/∼) ∼= im(φ). Thus we see that there is a bijection between
congruences on M and homomorphic images of M (up to isomorphism).

The class of congruences on a semigroup or monoid has a natural partial order: If ∼α
and ∼β are two congruences on a semigroup or monoid M , then we write ∼α⊆∼β if

(∀a, b ∈M) (a ∼α b =⇒ a ∼β b)

or, equivalently, if

{(a, b) ∈M ×M | a ∼α b} ⊆ {(a, b) ∈M ×M | a ∼β b}.

If ∼α⊆∼β there is a surjective (semigroup or monoid) homomorphism fromM/∼α toM/∼β
given by [a]α 7→ [a]β for all a ∈M .

The main property of this partial order that we will use is that any family of congruences
has an infimum: Let {∼α| α ∈ I} be a family of congruences on M for some index class I.
Define the relation ∼ by

a ∼ b ⇐⇒ (∀α ∈ I) (a ∼α b)
for all a, b ∈ M . This relation is easily seen to be a congruence and the infimum of
{∼α| α ∈ I} with respect to the partial order described above.

The existence of infima of families of congruences allows us to define congruences using
generators. This is best explained with an example: Consider the congruence ∼ on Z+

generated by 3 ∼ 4. By this statement we mean that the congruence ∼ is the infimum of
all congruences ∼α on Z+ such that 3 ∼α 4. A calculation shows that we get ∼-congruence
classes {0}, {1}, {2} and {3, 4, 5, . . .}, so (Z+/∼) = {[0], [1], [2], [3]} with [3] infinite.

If we had been discussing groups, rings or modules, we would have that the image of a
homomorphism φ: M → N is isomorphic toM/ kerφ. Even though monoid homomorphisms
have kernels, there is no similar rule for monoid homomorphisms. Nonetheless, given a
monoid M and homomorphism φ, we construct below a monoid, to be called M/ kerφ,
which is as large as possible among homomorphic images of M with kerφ as kernel.

Definition 5.5. Let I be a submonoid of a monoid M .
1. Define a congruence ∼I on M by

m ∼I m′ ⇐⇒ (∃ a, a′ ∈ I such that m+ a = m′ + a′).

We will write M/I for M/∼I , the quotient monoid. Elements of M/I are written
in the form [m]MI , or [m]I . See the notation convention following 5.7.

2. We will say I is normal in M if

(∀a ∈ I) (∀m ∈M) (a+m ∈ I =⇒ m ∈ I).

One readily checks that if σ: M →M/I is the quotient homomorphism, then I ⊆ ker(σ)
with equality if and only if I is normal. In fact, I is the kernel of a monoid homomorphism
from M if and only if it is normal. Most submonoids we will discuss in subsequent sections
will be normal, indeed they have the stronger property of being order ideals. See 6.12.

Quotients of monoids by submonoids are useful because of their universal property:
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Proposition 5.6. Let φ: M → N be a monoid homomorphism and I be a submonoid of M
such that I ⊆ ker(φ). Then φ factors uniquely through M/I, that is, there exists a unique
monoid homomorphism φ̂: M/I → N such that the following diagram commutes:

M
φ //

σ

��

N

M/I
φ̂

==zzzzzzzz

Here σ: M →M/I is the quotient homomorphism.

Proof. Straight forward. �

By this proposition, M/I is, in a sense, the “largest” homomorphic image of M with
kernel containing I.

This universal property of quotient monoids suffices to allow us to prove theorems which
are similar to those of modules, so long as we consider only those homomorphisms which
arise from taking quotients by submonoids:

Suppose we have submonoids A ⊆ B ⊆ C. From these we get quotient monoids B/A,
C/A and C/B. We have, for b ∈ B,

[b]CA = {b′ ∈ C | ∃ a, a′ ∈ A such that b+ a = b′ + a′} ∈ C/A

and
[b]BA = {b′ ∈ B | ∃ a, a′ ∈ A such that b+ a = b′ + a′} ∈ B/A.

and, as we will see in Example 5.9, [b]CA and [b]BA can be distinct. One can easily check that
if B is normal, then [b]CA = [b]BA . Even without B being normal, we still get monoid analogs
of some standard homomorphism theorems for modules:

Proposition 5.7. Let A ⊆ B ⊆ C be submonoids of a monoid M . Then the map
ψ1: B/A → C/A given by ψ1([b]BA) = [b]CA is an injective monoid homomorphism. Thus
B/A embeds in C/A.

Proof. Consider the following diagram where σ1 and σ2 are the quotient homomorphisms
and ι is inclusion.

B
ι //

σ1

��

C

σ2

��
B/A

ψ1 // C/A

Since A ⊆ ker(σ2ι), there is a unique homomorphism, ψ1, making the diagram commute
(that is, ψ1([b]BA) = [b]CA for all b ∈ B). It is then a simple task to show that ψ1 is
injective. �

This proposition allows us to identify B/A with its image in C/A whenever appropriate.
In making this identification, we are ignoring the distinction between [b]BA ∈ B/A and
[b]CA ∈ C/A. With this abuse of notation we no longer need to put superscripts on these
elements, that is, we will write [b]A for both [b]BA and [b]CA.
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Since we can now consider B/A as a submonoid of C/A, we can discuss the relationship
between C/B and (C/A)/(B/A). The next proposition shows that these two monoids are
in fact isomorphic.

Proposition 5.8. Let A ⊆ B ⊆ C be submonoids of a monoid M . Then the map
ψ3: (C/A)/(B/A) → C/B given by ψ3([[c]A]B/A) = [c]B for all c ∈ C is an isomorphism.

Proof. Consider the following extension of the diagram from 5.7:

B
ι //

σ1

��

C
σ3 //

σ2

��

C/B

ψ4

		
B/A

ψ1 // C/A
σ4 //

ψ2

88qqqqqqqqqqq
(C/A)/(B/A)

ψ3

II

Here σ1, σ2, σ3, σ4 are all quotient homomorphisms, and ψ1 is as in 5.7. We have σ3ι = 0
and σ4ψ1 = 0.

Now A ⊆ B ⊆ ker(σ3) so there is a unique homomorphism ψ2: C/A → C/B such
that ψ2σ2 = σ3. B/A (as a submonoid of C/A) is in the kernel of ψ2 because ψ2ψ1σ1 =
ψ2σ2ι = σ3ι = 0. So there is a unique homomorphism ψ3: (C/A)/(B/A) → C/B such
that ψ2 = ψ3σ4. We note that, from the commutativity of the diagram, ψ3 is given by
ψ3([[c]A]B/A) = [c]B for all c ∈ C.

Also, B ⊆ ker(σ4σ2) since σ4σ2ι = σ4ψ1σ1 = 0, so there is a unique homomorphism
ψ4: C/B → (C/A)/(B/A) such that ψ4σ3 = σ4σ2.

Finally, we will show that ψ3 and ψ4 are inverses of each other. . .
We have ψ3ψ4σ3 = ψ3σ4σ2 = ψ2σ2 = σ3. But σ3 is surjective, so ψ3ψ4 is the identity on

C/B. Similarly, ψ4ψ3σ4σ2 = ψ4ψ2σ2 = ψ4σ3 = σ4σ2 and σ4σ2 is surjective so ψ4ψ3 is the
identity on (C/A)/(B/A). �

As an example of the preceding two propositions we have

Example 5.9. Let C = Z+, B = {0, 6, 8, 10, . . .} = {0} ∪ {6 + 2n | n ∈ Z+} ⊆ C and
A = {0, 6, 12, . . .} = {6n | n ∈ Z+} ⊆ B. One readily sees that A is a normal submonoid
of C and B is a submonoid of C which is not normal. We will temporarily readopt the
notation which includes superscripts. A calculation then shows

[0]CA = {0, 6, 12, . . .} [1]CA = {1, 7, 13, . . .} [2]CA = {2, 8, 14, . . .}
[3]CA = {3, 9, 15, . . .} [4]CA = {4, 10, 16, . . .} [5]CA = {5, 11, 17, . . .}

so C/A = {[0]CA, [1]CA, [2]CA, [3]CA, [4]CA, [5]CA} ∼= Z6. Also

[0]CB = {0, 2, 4, 6, . . .} [1]CB = {1, 3, 5, 7, . . .}

so C/B = {[0]CB , [1]CB} ∼= Z2,

[0]BA = {0, 6, 12, . . .} [8]BA = {8, 14, 20, . . .} [10]BA = {10, 16, 22, . . .}

so B/A = {[0]BA , [8]BA , [10]AB} ∼= Z3. Notice that [8]BA 6= [8]CA = [2]CA.
Let ψ1: B/A→ C/A be as in 5.7, then ψ1([0]BA) = [0]CA, ψ1([8]BA) = [2]CA and ψ1([10]BA) =

[4]CA, so ψ1 embeds B/A in C/A. Further, identifying B/A with its image in C/A, we get
(C/A)/(B/A) ∼= Z2

∼= C/B as expected.
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Proposition 5.10. Let A,B and C be submonoids of a monoid M with A,B ⊆ C, and
σ: C → C/A the quotient homomorphism. Then

σ(B) = (A+B)/A.

Proof. Since A ⊆ A+B ⊆ C, we get a commutative diagram as in 5.7:

A+B
ι //

σ1

��

C

σ

��
(A+B)/A

ψ // C/A

with σ1 and σ quotient homomorphisms, and ψ injective. Since σ1 is surjective, we have
ψ((A+ B)/A) = σι(A+ B) = σ(A+ B). But σ(A+ B) = σ(B), so with the identification
of (A+B)/A with ψ((A+B)/A), we get σ(B) = (A+B)/A. �

We next consider direct products of families of semigroups or monoids:
Given a family of semigroups {Mα | α ∈ I} for some index class I, we can form the

Cartesian product
∏
α∈IMα with projections πα:

∏
α∈IMα →Mα for each α ∈ I. We will

write elements of
∏
α∈IMα in the form (aα)α∈I with aα ∈Mα for each α ∈ I. We can then

define an operation + on
∏
α∈IMα by

(aα)α∈I + (bα)α∈I = (aα + bα)α∈I .

With this operation
∏
α∈IMα is a semigroup and the projections are homomorphisms.

Further,
∏
α∈IMα has the universal property one expects for a direct product of semigroups:

Proposition 5.11. Let {Mα | α ∈ I} be a family of semigroups and
∏
α∈IMα as above.

Suppose there are homomorphisms φα: N →Mα for some semigroup N and all α ∈ I. Then
there is a unique homomorphism φ: N →

∏
α∈IMα such that for each α ∈ I the following

diagram commutes:

N
φ //

φα

  B
BB

BB
BB

BB
B

∏
α∈I

Mα

πα

��
Mα

Proof. Since
∏
α∈IMα is the Cartesian product of {Mα | α ∈ I}, there is a unique function

φ: N →
∏
α∈IMα making the diagrams commute. It remains to check only that φ is a

homomorphism. �

If Mα is a monoid for each α ∈ I, then
∏
α∈IMα is a monoid with identity (0α)α∈I where

0α is the identity element of Mα. The proposition then remains true if N is a monoid and φα
is a monoid homomorphism for each α ∈ I, and provides a unique monoid homomorphism
φ which makes the diagrams above commute.
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Following the conventions of category theory, we will call
∏
α∈IMα, or any isomorphic

semigroup, “the” direct product of {Mα | α ∈ I} without specifying explicitly the projec-
tion homomorphisms. If I = {1, 2, . . . , n}, we will write M1 ×M2 × . . .×Mn for the direct
product.

Within the category of monoids and monoid homomorphisms, we can construct a direct
sum for any family of monoids. In defining this direct sum we follow the pattern used in
defining the direct sum for modules. . .

Let {Mα | α ∈ I} be a family of monoids. If a = (aα)α∈I ∈
∏
α∈IMα, then we will

say X ⊆ I supports a if, for all α ∈ I, aα 6= 0 implies α ∈ X. We will say a has finite
support if there is a finite set X which supports a. Define also the submonoid⊕

α∈I
Mα = {a ∈

∏
α∈I

Mα | a has finite support},

and monoid homomorphisms ια: Mα →
⊕

α∈IMα for each α ∈ I by ια(a) = (aβ)β∈I where

aβ =

{
0β β 6= α

a β = α

Note that πα◦ια is the identity homomorphism on Mα for all α ∈ I, and if a ∈
⊕

α∈IMα

with finite support X, then
a =

∑
α∈X

ια(πa(a)).

Proposition 5.12. Let {Mα | α ∈ I} be a family of monoids and
⊕

α∈IMα as above.
Suppose there are monoid homomorphisms φα: Mα → N for some monoid N and all α ∈ I.
Then there is a unique monoid homomorphism φ:

⊕
α∈IMα → N such that for each α ∈ I

the following diagram commutes: ⊕
α∈I

Mα
φ // N

Mα

ια

OO

φα

>>||||||||||

Proof. For a = (aα)α∈I ∈
⊕

α∈IMα with finite support X, define

φ(a) =
∑
α∈X

φα(πα(a)).

It is then easy to check that φ is a monoid homomorphism and the unique one which makes
the diagrams commute. �

Once again, following the conventions of category theory, we will call
⊕

α∈IMα, or any
isomorphic monoid, “the” direct sum of {Mα | α ∈ I} without specifying explicitly the
injective homomorphisms ια. If the index set I is finite, then the direct sum and direct
product coincide so we will use the finite direct product notation M1 ×M2 × . . .×Mn for
finite direct sums.
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If all Mα are the same, that is Mα = M for all α ∈ I, then we will write MI for the
direct product and M (I) for the direct sum.

Our next task is to show that, similar to the case of free Abelian groups, any free monoid
is of the form (Z+)(I) for some index class I:

Definition 5.13. A monoid F is free with basis B ⊆ F if any map from B to a monoid
M extends uniquely to a monoid homomorphism from F to M . Specifically, if Λ: B → M
is any map, then there is a unique monoid homomorphism φ which makes the following
diagram commute:

F
φ // M

B

ι

OO

Λ

>>}}}}}}}}

where ι is the inclusion map.

Consider the monoid (Z+)(I) for an index class I. As described above, this monoid comes
with homomorphisms ια: Z+ → (Z+)(I) and πα: (Z+)(I) → Z+ for all α ∈ I. We will write
bα = ια(1) ∈ (Z+)(I) for all α ∈ I, and B = {bα | α ∈ I}. Note that for any a ∈ (Z+)(I)

with finite support X, we have

a =
∑
α∈X

ια(πα(a)) =
∑
α∈X

πα(a)ια(1) =
∑
α∈X

πα(a)bα,

so B generates (Z+)(I).

Proposition 5.14. The monoid (Z+)(I) is free with basis B.

Proof. Let M be a monoid and Λ: B → M a function. Then for a ∈ (Z+)(I) with finite
support X we define

φ(a) =
∑
α∈X

πα(a)Λ(bα).

It is then easy to check that φ is a monoid homomorphism which makes the diagram commute
and the unique such homomorphism. �

Notice that I is in one-to-one correspondence with B. In fact, (Z+)(B) is the free monoid
with basis B in the sense of the next proposition:

Proposition 5.15. If F is a free monoid with basis B ⊆ F , then F ∼= (Z+)(B).

Proof. We have a bijection between the basis of F and the basis of (Z+)(B), so using the
freeness of these two monoids, there are monoid homomorphisms from F to (Z+)(B) and vice
versa. Using the uniqueness part of the definition of freeness one shows, in the standard way,
that the compositions of these two homomorphisms are identity maps on F and (Z+)(B). �

The existence of free monoids allows us to define monoids using generators and relations.
We consider as an example, the universal monoid M generated by two elements p and q such
that 3p = 2p, 3q = 2q and 2p+ q = 2q + p. (This monoid will appear again in 11.21.) The
monoid M is constructed from the free monoid F = (Z+)2 as follows: Set p′ = (1, 0) ∈ F
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and q′ = (0, 1) ∈ F , and let ∼ be the congruence on F generated by 3p′ ∼ 2p′, 3q′ ∼ 2q′

and 2p′ + q′ ∼ 2q′ + p′. Then set p = [p′], q = [q′] and M = F/∼. The monoid M we have
constructed is generated by the elements p and q which satisfy the required equations.

The monoid M is conventionally called “the monoid generated by two elements p and q
such that 3p = 2p, 3q = 2q and 2p+ q = 2q+ p”. That is, the word “universal” is dropped.
However without the universality condition, the monoid M is not uniquely determined (up
to isomorphism). Indeed a one element monoid satisfies the other conditions. The universal
property of M is that any monoid satisfying the other conditions is a homomorphic image
of M :

Let N be a monoid generated by two elements p̄ and q̄ satisfying the relations 3p̄ = 2p̄,
3q̄ = 2q̄ and 2p̄+ q̄ = 2q̄+ p̄. The monoid F is free with basis B = {p′, q′}, so the map from
B to N defined by p′ 7→ p̄ and q′ 7→ q̄, extends to a monoid homomorphism φ: F → N such
that φ(p′) = p̄ and φ(q′) = q̄.

Let ∼̄ be the congruence on F which corresponds to φ, namely, x ∼̄ y ⇐⇒ φ(x) = φ(y)
for x, y ∈ F . We have by hypothesis that 3p′ ∼̄ 2p′, 3q′ ∼̄ 2q′ and 2p′+ q′ ∼̄ 2q′+ p′, so ∼̄ is
one of those congruences on F whose infimum is the congruence ∼. In particular, ∼ ⊆ ∼̄,
so there is a surjective homomorphism from M = F/∼ to F/∼̄. Since p̄ and q̄ generate N ,
φ is surjective and (F/∼̄) ∼= N , so there is a surjective monoid homomorphism from M to
N .

Of course, a similar argument applies to any monoid defined using generators and relations
and provides a universal property for such monoids.



51

6 Order and Monoids

Vital to our application of monoid theory to module categories, is the order structure
that is built into the monoids we will construct from such categories. Thus in this section
we investigate the general properties of monoids with respect to their order.

Definition 6.1. Let M be a semigroup. We define a relation ≤ on M by

a ≤ b ⇐⇒ ∃c ∈M such that a+ c = b

for elements a, b ∈M .

Some simple properties of this relation are collected in this proposition:

Proposition 6.2. Let a, b, c be elements of a semigroup M , and φ: M →M ′ a semigroup
homomorphism. Then

1. a ≤ b ≤ c =⇒ a ≤ c

2. a ≤ b =⇒ a+ c ≤ b+ c

3. a ≤ b =⇒ φ(a) ≤ φ(b)
If M is a monoid, then, in addition, we have
4. 0 ≤ a

5. a ≤ a

Items 1 and 5 imply that ≤ is a preorder on monoids. Following Wehrung [31], we will call
this the minimum preorder. Some authors [5, Definition 2.1.1] use the name “algebraic
preorder”.

For semigroups, the relation ≤ may not be a preorder since there is no certainty that
a ≤ a. An example of this is the semigroup N in which the relation ≤, as defined above,
coincides with < with its usual meaning.

We will adopt the notation used in Section 2 for preordered classes. In particular, for
a ∈M we write

{≤ a} = {b ∈M | b ≤ a}.
Though, in general, monoids are preordered, many of the monoids we will work with are,

in fact, partially ordered by ≤. These we will call partially ordered monoids. Warning:
This name is used by many authors simply to mean a monoid with a partial order satisfying
6.2.2.

Examples of partially ordered monoids are Z+, {0,∞}. In Z+ the order ≤ coincides with
the usual one. In {0,∞} we have 0 ≤ ∞ but ∞ 6≤ 0. Any Abelian group, Z for example,
has a ≤ b for all elements a and b, so these monoids represent another extreme case.

An example of an intermediate case is the monoid (Z, ·), the integers with multiplication
as operation. Here we have a ≤ b if and only if a divides b, so ≤ is not the usual order on
Z. Since −a ≤ a ≤ −a for any a ∈ Z, this monoid is not partially ordered.

The order in a submonoid A of a monoid M may not be the same as in M : Though a ≤ b
in A implies a ≤ b in M , the converse is not true. For example, in Z we have 2 ≤ 3 ≤ 2;
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in the submonoid Z+ we have 2 ≤ 3 6≤ 2; and in the submonoid {0, 2, 3, 4, . . .} = Z+ \ {1}
we have 2 6≤ 3 6≤ 2. This complication does not occur for submonoids which are also order
ideals (soon to be defined).

It is easy to check that if M1 and M2 are monoids, then the minimum preorder of the
monoid M1×M2 coincides with the order of M1×M2 thought of as a product of preordered
classes as in Section 2.

From 2.2, any preordered class L has associated with it a universal poclass L. This same
construction applied to a monoid M with its minimum preorder, gives not just a poclass,
but a partially ordered monoid:

Definition 6.3. Let M be a semigroup. We will write ≡ for the relation on M defined by

a ≡ b ⇐⇒ a ≤ b ≤ a

for a, b ∈M .
If M is a monoid, then using 6.2.2 and 6.2.5, this relation is easily seen to be a congru-

ence. In this circumstance, we will use the notation

{≡ a} = {b ∈M | b ≤ a ≤ b},

for the ≡-congruence class containing a ∈M . We define M = M/≡.

The monoid M is partially ordered and is the largest partially ordered monoid which is
a homomorphic image of M :

Proposition 6.4. Let φ: M → N be a homomorphism between monoids. If N is partially
ordered, then there exists a unique monoid homomorphism φ̄ making the following diagram
commute.

M
φ //

{≡ }
��

N

M

φ̄

>>}}}}}}}

Proof. Straight forward. �

If φ: M → N is a monoid homomorphism, then by this proposition, there is a unique
induced monoid homomorphism φ̄: M → N making the following diagram commute:

M
φ //

{≡ }
��

N

{≡ }
��

M
φ̄

// N

We will need to define a second relation on semigroups which relates to the order structure:
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Definition 6.5. Let M be a semigroup. We define a relation � on M by

a� b ⇐⇒ a+ b ≤ b

for a, b ∈M . Of course, a� b ⇐⇒ a+ b ≡ b.

F. Wehrung [31] uses the same notation a � b for the stronger relation a + b = b. Of
course, for a partially ordered monoid these definitions are the same.

The relation � is not reflexive so is not a preorder. Also, � is not necessarily compatible
with the semigroup operation, that is, if a� b then it may not be true that a+ c� b+ c.

Proposition 6.6. Let a, b, c, a1, a2, b1, b2 be elements of a semigroup M , and φ: M →M ′

a semigroup homomorphism. Then
1. a� b =⇒ a ≤ b

2. a� b ≤ c =⇒ a� c

3. a ≤ b� c =⇒ a� c

4. a� b� c =⇒ a� c

5. a1, a2 � b =⇒ a1 + a2 � b

6. a1 � b1 and a2 � b2 =⇒ a1 + a2 � b1 + b2
7. a� b =⇒ φ(a) � φ(b)

Proof. Trivial. �

As mentioned already, � is not reflexive, so an element e of a semigroup such that e� e
is special:

Definition 6.7.
• An element e of a semigroup is regular if any of the following equivalent conditions

is true:
1. e� e

2. 2e ≤ e

3. 2e ≡ e
A regular semigroup is a semigroup whose elements are regular.

In a monoid, any element of {≤ 0} is regular. Regular elements which are not in
{≤ 0} we will call proper.

• An element e of a semigroup is an idempotent if 2e = e.
In a monoid, 0 is an idempotent, and, in fact, the only idempotent in {≤ 0}.

Nonzero idempotents we will call proper.

This definition comes from that of regular elements in rings: An element e of a ring is
(Von-Neumann) regular if there is some element x such that e = exe. When this condition
is converted to additive notation with a commutative operation we get e = 2e+ x, that is,
2e ≤ e.

One readily checks that if M is a semigroup with no regular elements, then M0 is a
monoid with no proper regular elements.
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Proposition 6.8. Let M be a monoid and M its associated partially ordered monoid. If
e ∈M , then

1. e is regular in M ⇐⇒ {≡ e} is regular in M

2. e is an idempotent in M =⇒ {≡ e} is an idempotent in M

Proof. Trivial. �

Regular elements and idempotents are closely related:

Proposition 6.9. If e is a regular element in a monoid, then there is a unique idempotent
in {≡ e}.

Proof. Since 2e ≤ e, there is some s ∈ M such that 2e + s = e. Set f = e + s. Then, in
addition, we have e = 2e+ s = f + s, so e ≤ f ≤ e. Also 2f = 2e+ 2s = e+ s = f .

To check the uniqueness of f , we suppose that 2f ′ = f ′ for some f ′ ∈ {≡ e} = {≡ f}.
Then there are u, v ∈M such that f = f ′ + u and f ′ = f + v, and hence

f = f ′ + u = 2f ′ + u = 2f + 2v + u = f + 2v + u = f ′ + u+ v = f + v = f ′.

�

This proposition can be thought of as a consequence of the similarly proved fact that
({≡ e},+) is a group with identity f . This is a subject we will explore in detail in Section 10.

Proposition 6.10. If e, e1, e2 are regular elements in a monoid M and a ∈M , then

1. e ≤ a =⇒ e� a

2. a ≤ e =⇒ a� e

3. e1, e2 � a =⇒ e1 + e2 is a regular element such that e1 + e2 ≤ a.

Proof. This follows directly from 6.6. �

We now consider certain submonoids which behave well with respect the partial order of
monoids:

Proposition 6.11. For a nonempty subclass I ⊆M of a monoid, the following are equiv-
alent:

1. (∀x, y ∈M) (x, y ∈ I ⇐⇒ x+ y ∈ I)
2. I is a submonoid of M and (∀x, y ∈M) (x ≤ y ∈ I =⇒ x ∈ I)
3. I is both a submonoid and a lower class of M .
4. I = kerφ for some homomorphism φ: M → {0,∞}.

Proof. Easy. �

Definition 6.12. A subclass I ∈ M of a monoid satisfying any of the conditions of this
proposition is called an order ideal [2] of M . We will write L(M) for the class of order
ideals of a monoid M , ordered by inclusion. Consistent with this definition, we will write
I ≤M if I is an order ideal of M .

A monoid is conical if {0} is an order ideal, that is, if x ≤ 0 implies x = 0 for all
x ∈M .
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An order ideal, I ⊆ M , is a subclass of a monoid which not only preserves the monoid
operation, but also the order. More precisely, if x, y ∈ I then x ≤ y in I if and only if x ≤ y
in M .

An order ideal is a union of ≡-congruence classes of M , so that I is an order ideal of M
if and only if I is an order ideal of M . In particular, L(M) ∼= L(M).

From 6.6, if a ∈M then {� a} is always an order ideal, whereas {≤ a} is an order ideal
if and only if a is regular. In particular, {≤ 0} is an order ideal and, since it is contained in
any other order ideal, {≤ 0} is the minimum element of L(M). The maximum element of
L(M) is M itself.

Note also that order ideals are normal submonoids. So that, for all a ∈ M and I ≤ M
we have

[a]I = 0 ⇐⇒ a ∈ I.
Also, if I ≤ J ≤M then, for all a ∈M , we have [a]MI = [a]JI .

The following gives some other easy properties of order ideals:

Proposition 6.13. Let M be a monoid.
1. If {Iα | α ∈ I} is a family of order ideals of M , then I = ∩α∈IIα is an order ideal

of M .
2. If {Iα | α ∈ I} is a family of order ideals of M which is totally ordered by inclusion,

then I = ∪α∈IIα is an order ideal of M .
3. If φ: M → N is a homomorphism and B ≤ N an order ideal, then I = φ−1(B) is an

order ideal in M .
4. If I is an order ideal of M then M/I is conical.
5. If J ⊆ I ≤M are monoids then J ≤ I if and only if J ≤M .

Proof. Easy. �

If Y is any nonempty subclass of a monoid M , then we can use 1 above to define the
order ideal generated by Y , namely

〈Y 〉 =
⋂
{I | Y ⊆ I ≤M}.

Of course, 〈Y 〉 is the smallest order ideal containing Y . The order ideal generated by Y will
contain the submonoid generated by Y and this inclusion is, in general, proper.

Proposition 6.14. If Y is a nonempty subclass of a monoid M , then y ∈ 〈Y 〉 if and only
if y ≤ y1 + y2 + · · ·+ yn for some y1, y2, . . . , yn ∈ Y .

Proof. Let

Z = {y ∈M | ∃y1, y2, . . . , yn ∈ Y such that y ≤ y1 + y2 + · · ·+ yn}.
This is easily seen to be an order ideal which contains Y , so 〈Y 〉 ⊆ Z. On the other hand,
all elements of form y1 + y2 + · · · + yn with y1, y2, . . . , yn ∈ Y are in 〈Y 〉 because 〈Y 〉 is a
submonoid, and then all other elements of Z are in 〈Y 〉 because 〈Y 〉 is a lower set. Thus
Z ⊆ 〈Y 〉. �

Item 1 of 6.13 can be also reinterpreted as saying that every nonempty subclass K ⊆ L(M)
has an infimum:

inf K =
⋂
I∈K

I.
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This, and the fact that M itself is an order ideal, means that every nonempty subclass
K ⊆ L(M) also has a supremum, namely:

supK = 〈
⋃
I∈K

I〉.

We have shown by the above discussion that for any monoid M , the class of order ideals,
L(M), is a complete lattice.

We will adopt the lattice theoretical notation for segments of lattices: if I ⊆ J are order
ideals of M then

[I, J ] = {K ∈ L(M) | I ⊆ K ⊆ J}.
This is, of course, a sublattice of L(M).

Let I be an order ideal in a monoid M and σ: M → M/I the quotient homomorphism.
From 6.13.3, we know already that σ−1 maps order ideals of M/I to order ideals of M which
necessarily contain I. Thus we can consider σ−1 to be map from L(M/I) to [I,M ]. This
map is actually a lattice isomorphism:

Proposition 6.15. Let I be an order ideal in a monoid M and σ: M →M/I, the quotient
homomorphism. Then σ−1: L(M/I) → [I,M ] ⊆ L(M) is a lattice isomorphism. The
inverse isomorphism is induced from σ.

Proof. We show first that if I ≤ J ≤M then σ(J) ≤M/I. . .
Since J is a submonoid of M , σ(J) is a submonoid of M/I, so we need only check that

σ(J) is a lower class. If x ∈M and y ∈ J such that σ(x) ≤ σ(y) ∈ σ(J), then there is some
u ∈ M such that σ(x) + σ(u) = σ(y), that is, [x + u]I = [y]I . Thus there are s, t ∈ I ≤ J
such that x+ u+ s = y + t, and, in particular, x ≤ y + t ∈ J . J is an order ideal so x ∈ J
and σ(x) ∈ σ(J). This shows that σ(J) is an order ideal in M/I.

Next we show J = σ−1(σ(J)) for order ideals J with I ≤ J ≤M . . .
The inclusion J ⊆ σ−1(σ(J)) is true for any subclass J , so we need check only the

reverse inclusion. Suppose y ∈ σ−1(σ(J)) then there is x ∈ J such that σ(y) = σ(x), that
is, [y]I = [x]I , Thus there are s, t ∈ I ≤ J such that y + s = x + t, and, in particular,
y ≤ x+ t ∈ J . J is an order ideal so y ∈ J .

Finally, since σ is surjective, we have K = σ(σ−1(K)) for any order ideal (indeed, for
any subclass) K of M/I. Since we know also that σ−1(K) is in [I,M ], this then completes
the proof. �

We will see in the next section that in decomposition and refinement monoids, there are
other stronger relationships between sublattices of L(M).

It will be useful to have a notation for the relationship of membership in an order ideal
generated by a single element:

Definition 6.16. Let M be a monoid. We define a relation ≺ on M by

a ≺ b ⇐⇒ a ∈ 〈{b}〉

for a, b ∈ M . This relation also gives us a new notation for the order ideal generated by a
single element: {≺ a} = 〈{a}〉.
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From 6.14 we have

a ≺ b ⇐⇒ (∃n ∈ N such that a ≤ nb).

We collect here some simple properties of this relation.

Proposition 6.17. Let a, b, c be elements of a monoid M . Then
1. 0 ≺ a

2. a ≺ a

3. a ≺ b ≺ c =⇒ a ≺ c

4. a ≺ b =⇒ a+ c ≺ b+ c

Proof.
1. Trivial.
2. Trivial.
3. Since b is in the order ideal {≺ c}, we get {≺ b} ⊆ {≺ c}, and so a ∈ {≺ b} ⊆ {≺ c}.

That is, a ≺ c.
4. Since a ≺ b, there is some n ∈ N such that a ≤ nb. But then a+c ≤ nb+c ≤ n(b+c).

Thus a+ c ≺ b+ c.
�

From 2 and 3 of this proposition we see that ≺ is a preorder on M .
It is easy to check that for a finite set, {a1, a2, . . . , an} ⊆M ,

〈{a1, a2, . . . , an}〉 = {≺ a1 + a2 + · · ·+ an},
so that any finitely generated order ideal is, in fact, generated by a single element.

Using the preorder≤ onM , we constructed a partially ordered monoidM with a universal
property. This same process can be applied to the preorder ≺ with similar consequences:

Definition 6.18. Let M be a monoid. We will write � for the relation on M defined by

a � b ⇐⇒ a ≺ b ≺ a

for a, b ∈ M . Using 6.17, this relation is easily seen to be a congruence. We will use the
notation

{� a} = {b ∈M | b ≺ a ≺ b},
for the �-congruence class containing a ∈ M . We define M̃ = M/�. The �-congruence
classes are called the Archimedean components [7, Chapter 4.3] of M .

Note that {� a} ≤ {� b} in M̃ if and only if a ≺ b in M .
To discuss the universal property of M̃ , we need to define a new type of monoid:

Definition 6.19. A poclass, L, is a (join)-semilattice [3, Page 9] if for each pair of
elements, a, b ∈ L, the supremum a ∨ b exists.

A semilattice L together with the operation ∨ is a semigroup in which a ∨ a = a for all
a ∈ L. In fact, this property characterizes semilattices among semigroups:

Proposition 6.20. If M is a semigroup such that a = 2a for all a ∈M , then

(∀a, b ∈M) (a ≤ b ⇐⇒ a+ b = b ⇐⇒ a� b),

and M with its minimum preorder is a semilattice in which + and ∨ coincide.
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Proof. [18, 1.3.2] If a ≤ b then there is some c ∈M such that a+c = b, so a+b = a+a+c =
a+ c = b. Thus a ≤ b =⇒ a+ b = b. The other implications above are trivial.

If a ∈ M , then a = a + a implies that a ≤ a. Thus ≤ is a preorder on M . If a ≤ b ≤ a
then b = a+ b = a, so M is partially ordered by ≤.

It remains to show that a+ b = a ∨ b for any a, b ∈M . . .
If a, b ≤ x then x + (a + b) = (x + a) + b = x + b = x, so a + b ≤ x. Thus a + b is the

supremum of a and b. �

If a semilattice L has a minimum element ⊥, then (L,∨) is a monoid with identity ⊥.
Conversely, a monoid M such that a = 2a for all a ∈ M is a semilattice with minimum
element 0. Thus we have two ways of thinking of the same mathematical object: Either as
a poclass with some special properties or as a semigroup with some special properties. We
will call both L and M as described above semilattice monoids.

Proposition 6.21. For any monoid M , M̃ is a semilattice monoid.

Proof. Let {� a} ∈ M̃ for some a ∈ M . Then 2{� a} = {� 2a}, but a and 2a are in the
same Archimedean component of M , so {� 2a} = {� a}. The claim then follows from the
previous proposition. �

The universal property of M̃ can now be specified:

Proposition 6.22. Let M and N be monoids and φ: M → N a monoid homomorphism.
If N is a semilattice monoid, then φ factors uniquely through M̃ .

Proof. Straight forward. �

Of course, since M̃ is partially ordered, the quotient map from M to M̃ factors through
M . So given the hypotheses of the proposition above, we get the following commutative
diagram:

M //

φ
''PPPPPPPPPPPPPPP M //
M̃

��
N

where an element a ∈M maps to φ(a) via a 7→ {≡ a} 7→ {� a} 7→ φ(a).
Finally we note that (L(M),∨) is a semilattice monoid with minimum element {≤ 0},

and that M̃ embeds in L(M):

Proposition 6.23. Let M be a monoid. Then the map from M̃ to (L(M),∨) defined by
{� a} 7→ {≺ a} for a ∈M is an injective monoid homomorphism.

Proof. Consider the map φ: M → L(M) given by φ(a) = {≺ a} for a ∈M . If a, b ∈M then
φ(a + b) = {≺ a + b} is an order ideal containing {≺ a} and {≺ b}. Since any order ideal
which contains {≺ a} and {≺ b} must also contain a + b, and hence {≺ a + b}, we must
have {≺ a+ b} = {≺ a} ∨ {≺ b}, that is, φ(a+ b) = φ(a) ∨ φ(b).

Since also φ(0) = {≺ 0} = {≤ 0}, φ is a monoid homomorphism from M to a semilattice
monoid.

Using the universal property of M̃ , there is an induced monoid homomorphism defined
by {� a} 7→ {≺ a}. It is easy to check that {≺ a} = {≺ b} implies that a and b are in the
same Archimedean component, and so this induced homomorphism is injective. �
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7 Refinement and Decomposition
Monoids

In the last section we discussed order in monoids. This is one important ingredient in
understanding the monoids which we will use to study module categories in 16.

The other main ingredient is the refinement property that is the subject of this section.
This monoid property has appeared in other contexts and so has been studied before. See
for example, Tarski [30], Wehrung [31], [32], Dobbertin [8], Ara, Goodearl, O’Meara and
Pardo [2], or Goodearl [10].

Definition 7.1. Let M be a semigroup. Then
1. M has refinement if for all a1, a2, b1, b2 ∈ M with a1 + a2 = b1 + b2, there exist
c11, c12, c21, c22 ∈M such that

a1 = c11 + c12 a2 = c21 + c22

b1 = c11 + c21 b2 = c12 + c22.

2. M has (Riesz) decomposition if for all a, b1, b2 ∈M with a ≤ b1 + b2, there exist
c1, c2 ∈M such that a1 = c1 + c2, c1 ≤ b1 and c2 ≤ b2.

The main theme in later sections will be monoids with these properties, that is decompo-
sition monoids and refinement monoids. In a few examples we will make use of refinement
semigroups, primarily as a means of defining interesting refinement monoids. One readily
checks that if M is a refinement semigroup, then adjoining an identity element to form M0

yields a refinement monoid.
It is convenient to record refinements and decompositions using matrices: The refinement

of a1 + a2 = b1 + b2 from the definition would be written

( b1 b2
a1 c11 c12
a2 c21 c22

)
This means that the sum of the entries in each row (column) equals the entry labeling the
row (column).

The decomposition from the definition would be written as

( a

b1 ≥ c1
b2 ≥ c2

)
or (≤ b1 ≤ b2

a c1 c2
)

meaning a1 = c1 + c2, c1 ≤ b1, and c2 ≤ b2.
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Suppose we have the equation a1 + a2 + a3 = b1 + b2 in a refinement semigroup. Using
the refinement property we get the refinement matrix

( b1 b2
a1 c11 c12
a2 + a3 c21 c22

)
The equation a2 + a3 = c21 + c22 can itself be refined:

( c21 c22
a2 d11 d12

a3 d21 d22

)
Thus we have a 3× 2 refinement matrix:


b1 b2

a1 c11 c12
a2 d11 d12

a3 d21 d22


Notice that this refinement matrix has the same entries in the top row, c11 and c12, as
the original one. We will say that this refinement matrix has been obtained by further
refinement from the original one.

Using further refinement and induction, the refinement and decomposition properties
can be extended to equations and inequalities with more than two terms. For example, in
a refinement semigroup, if a1 + a2 + · · ·+ am = b1 + b2 + · · ·+ bn, then there is a refinement
matrix of the following form:


b1 b2 . . . bn

a1 ∗ ∗ . . . ∗
a2 ∗ ∗ . . . ∗
...

...
...

. . .
...

am ∗ ∗ . . . ∗


Here, as in matrix theory, we use the symbol ∗ for entries in refinement matrices that do
not need to be explicitly named.

It is also worth noting that in a refinement semigroup, if a1+a2+· · ·+am ≤ b1+b2+· · ·+bn,
then there are refinement matrices of the following forms:


≤ b1 ≤ b2 . . . ≤ bn

a1 ∗ ∗ . . . ∗
a2 ∗ ∗ . . . ∗
...

...
...

. . .
...

am ∗ ∗ . . . ∗



b1 b2 . . . bn

a1 ≤ ∗ ∗ . . . ∗
a2 ≤ ∗ ∗ . . . ∗
...

...
...

. . .
...

am ≤ ∗ ∗ . . . ∗


(In fact, in the matrix on the right, all but one of the ≤ symbols could be replaced by
equalities.) This property is not true in general for decomposition semigroups. See Example
7.4.
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For a decomposition semigroup, we get the following: If a ≤ b1 + b2 + · · ·+ bn, then there
is a decomposition matrix of the form:

(≤ b1 ≤ b2 . . . ≤ bn
a ∗ ∗ . . . ∗

)
Proposition 7.2. If M is a monoid, then

M has refinement =⇒ M has decomposition

=⇒ M has decomposition

=⇒ M̃ has decomposition ⇐⇒ M̃ has refinement

Proof. We show first that if M has decomposition, then so does M̃ :
Suppose we have {� a} ≤ {� b1} + {� b2} for some a, b1, b2 ∈ M . This implies that

a ≺ b1 + b2, that is, there is some n ∈ N such that a ≤ n(b1 + b2) = nb1 + nb2. Since M has
decomposition, there are c1, c2 ∈ M such that c1 ≤ nb1, c2 ≤ nb2 and a = c1 + c2. Hence
{� c1} ≤ {� b1}, {� c2} ≤ {� b2} and {� a} = {� c1}+ {� c2}.

Since M̃ is a semilattice, the claim that M̃ has decomposition if and only if it has
refinement is a special case of the next proposition. The remaining claims are all trivial. �

It is an open and interesting question whether there is a refinement monoid M such that
M does not have refinement.

Proposition 7.3. Let M be a semilattice. Then M has decomposition if and only if it has
refinement.

Proof. We will write + for the operation in M , so that 2a = a for all a ∈M and

(∀a, b ∈M) (a ≤ b ⇐⇒ a+ b = b).

Suppose that M has decomposition and there are a1, a2, b1, b2 ∈ M such that a1 + a2 =
b1 + b2. Since a1, a2 ≤ b1 + b2, there are c11, c12, c21, c22 ∈ M such that a1 = c11 + c12,
a2 = c21 + c22, c11, c21 ≤ b1 and c12, c22 ≤ b2. Similarly, there are d11, d12, d21, d22 ∈M such
that b1 = d11 + d21, b2 = d12 + d22, d11, d12 ≤ a1 and d21, d22 ≤ a2. It is then easy to check
that

( b1 b2
a1 c11 + d11 c12 + d12

a2 c21 + d21 c22 + d22

)
is a refinement of the original equation.

We confirm this for a1: We have a1 ≤ a1 + d11 + d12 = c11 + d11 + c12 + d12 ≤ 4a1 = a1.
Since M is partially ordered, this implies c11 + d11 + c12 + d12 = a1.

The converse, as noted in the previous proposition, is trivial. �

Example 7.4. A decomposition monoid without refinement:
Let M = {0, 1,∞}, where 1 + 1 = ∞. It is a simple calculation to show that M is a

decomposition monoid, but that the equation 1 + 1 = ∞+∞ has no refinement.
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Also worth noting is that we have ∞+∞ ≤ 1+1, but there is no decomposition in either
of the forms

(≤ 1 ≤ 1
∞ ∗ ∗
∞ ∗ ∗

) ( 1 1
∞ ≤ ∗ ∗
∞ ≤ ∗ ∗

)
One checks easily that {0,∞} has refinement.

Example 7.5. Let M be an Abelian group written additively. Then if a1, a2, b1, b2 ∈ M
with a1 + a2 = b1 + b2, we get the refinement

( b1 b2
a1 0 a1

a2 b1 a2 − b1

)
Thus Abelian groups are refinement monoids.

This example shows that Z is a refinement monoid. We show the same for Z+: With
a1, a2, b1, b2 ∈ Z+ such that a1 + a2 = b1 + b2, we either have a2 − b1 ∈ Z+ or b1 − a2 ∈ Z+.
In the first case we can make a refinement as in the example above. In the second case we
have the refinement ( b1 b2

a1 b1 − a2 b2
a2 a2 0

)
with entries in Z+.

Even though Z and Z+ have refinement, N does not even have decomposition since there
is no decomposition of 1 ≤ 1 + 1 in N.

Similarly one shows that R and R+ are refinement monoids. Unlike N, the semigroup
R++ has refinement:

Example 7.6. Let a1, a2, b1, b2 ∈ R++ be such that a1 + a2 = b1 + b2. Without loss of
generality, we can assume that a1 ≤ a2, b1, b2 in the usual order in R. It is easily checked
that all entries in the refinement matrix

( b1 b2
a1

1
2a1

1
2a1

a2 b1 − 1
2a1 b2 − 1

2a1

)
are in R++.

Thus R++ is a refinement semigroup.

Example 7.7. Let L be a distributive lattice (see Section 2). Then (L,∨) is a refinement
semigroup: If a1, a2, b1, b2 ∈ L are such that a1 ∨ a2 = b1 ∨ b2, then

( b1 b2
a1 a1 ∧ b1 a1 ∧ b2
a2 a2 ∧ b1 a2 ∧ b2

)
is a refinement matrix.

Since distributivity is a self dual property, (L,∧) is also a refinement semigroup.
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As a special case of this, let X be a class and M a nonempty family of subclasses of X
which is closed under union and intersection. Then (M,∪) is a distributive lattice, and so
given A1, A2, B1, B2 ∈M with A1 ∪A2 = B1 ∪B2 we get the refinement

( B1 B2

A1 A1 ∩B1 A1 ∩B2

A2 A2 ∩B1 A2 ∩B2

)
The semigroup (M,∩) is also a refinement semigroup.

We have already seen in the case N ⊆ Z, that subsemigroups of a refinement semigroup
may not have refinement or decomposition. The same is true of submonoids of refinement
monoids. See, for example, 8.8. For order ideals we have a much better situation:

Proposition 7.8. Let I be an order ideal in a monoid M . Then
1. M has refinement =⇒ I and M/I have refinement.
2. M has decomposition =⇒ I and M/I have decomposition.

Proof.
1. I has refinement: Let a1, a2, b1, b2 ∈ I be such that a1 + a2 = b1 + b2. Refinement

in M implies there is a refinement of the form

( b1 b2
a1 c11 c12
a2 c21 c22

)
The elements cij are bounded above by elements of I, so, since I is an order ideal,
they are also in I. Thus I is a refinement monoid.
M/I has refinement: Let a1, a2, b1, b2 ∈M be such that [a1]I + [a2]I = [b1]I + [b2]I .
Then there are u1, u2 ∈ I such that a1 + a2 + u1 = b1 + b2 + u2. Since M is a
refinement monoid, there is a refinement matrix of the form


b1 b2 u2

a1 c11 c12 u3

a2 c21 c22 u4

u1 u5 u6 u7


The elements u3, u4, u5, u6, u7 are bounded above by either u1 or u2 which are in I.
Since I is an order ideal, we have ui ∈ I, and [ui]I = 0 for i = 3, 4, . . . , 7. The matrix

( [b1]I [b2]I
[a1]I [c11]I [c12]I
[a2]I [c21]I [c22]I

)
is then a refinement of [a1]I + [a2]I = [b1]I + [b2]I in M/I.

2. The proof for decomposition monoids is very similar to the proof for refinement
monoids.

�
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Let K ⊆ L(M) be a family of order ideals of M . In general, it may be possible that the
submonoid generated by K, namely

∑
K, maybe smaller than the order ideal generated by

K, namely supK. For a decomposition monoid, however, the submonoid and the order ideal
generated by K are the same:

Proposition 7.9. Let M be a decomposition monoid, and K ⊆ L(M), a family of order
ideals of M . Then

supK =
∑

K.

Proof. Since
∑
K is a submonoid of supK, it suffices to show that

∑
K is a lower class. . .

Suppose then that we have a ≤ b with b ∈
∑
K. Then b = b1 + b2 + · · · + bn for some

elements b1, b2, . . . bn ∈
⋃
K. Using the decomposition property, there are c1, c2, . . . , cn such

that a = c1 + c2 + · · ·+ cn and ci ≤ bi for i = 1, 2, . . . , n.
But then each ci is in the same order ideal of K that contains bi, in particular, ci ∈

⋃
K.

Thus a is a finite sum of elements of
⋃
K and a ∈

∑
K. �

The above proposition says that if A and B are order ideals then so is A+B, and in the
lattice L(M), A ∨B = A+B. We already know that A ∧B = A ∩B.

Proposition 7.10. For any decomposition monoid M , the lattice L(M) is distributive.

Proof. From the discussion in Section 2, it suffices to show thatA∩(B+C) ⊆ (A∩B)+(A∩C)
for all A,B,C ∈ L(M). . .

Suppose a ∈ A ∩ (B + C), then there are y ∈ B, z ∈ C such that y + z = a ∈ A. But A
is an order ideal, so y, z ∈ A. Thus y ∈ A ∩B, z ∈ A ∩ C and a ∈ (A ∩B) + (A ∩ C). �

Proposition 7.11. Let I be an order ideal in a decomposition monoid M . Then the quo-
tient homomorphism σ: M →M/I induces a lattice homomorphism from L(M) to L(M/I).
Specifically, if A,B ∈ L(M) then

1. σ(A) is an order ideal.
2. σ(A ∩B) = σ(A) ∩ σ(B)
3. σ(A+B) = σ(A) + σ(B).

In addition, σ−1(σ(A)) = A+ I.

Proof. Let A ∈ L(M). From 5.10, we have σ(A) = (A+I)/I and so σ(A) = σ(A+I). Since
A+ I is an order ideal in [I,M ], 6.15 implies that σ(A) = σ(A+ I) is an order ideal in M/I
and

σ−1(σ(A)) = σ−1(σ(A+ I)) = A+ I.

The map σ can be considered the composition of the maps, σ′: L(M) → [I,M ] and
σ: [I,M ] → L(M/I), the restriction of σ to [I,M ], so that

A
σ′7−→ A+ I

σ7−→ (A+ I)/I.

The map σ: [I,M ] → L(M/I) is a lattice isomorphism by 6.15, so it remains to show
that σ′ is a lattice homomorphism. . .

If A,B ≤M , then

σ′(A+B) = A+B + I = (A+ I) + (B + I) = σ′(A) + σ′(B)

σ′(A ∩B) = (A ∩B) + I = (A+ I) ∩ (B + I) = σ′(A) ∩ σ′(B)
The last result used that L(M) is distributive. Thus σ′ is a lattice homomorphism. �
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For a decomposition monoid M , L(M) is modular so we get immediately

Proposition 7.12. Let M be a decomposition monoid and A,B ∈ L(M). Then the map
φ: [A ∩ B,A] → [B,A + B] defined by φ(I) = I + B is a lattice isomorphism with inverse
given by φ−1(J) = J ∩A.

This result we can strengthen considerably, especially for refinement monoids, where we
have in fact a monoid isomorphism A/(A ∩B) ∼= (A+B)/B:

Proposition 7.13. Let A and B be two order ideals in a refinement monoid and let
ψ: A/(A ∩B) → (A+B)/B be the map defined by ψ([a]A∩B) = [a]B for all a ∈ A. Then ψ
is a monoid isomorphism of A/(A ∩B) and (A+B)/B.

Proof. Since A ∩ B ⊆ B, the map [a]A∩B 7→ [a]B is a well defined homomorphism from
M/(A∩B) to M/B. If a ∈ A then [a]B ∈ (A+B)/B, so ψ is just the restriction of this map
to A/(A ∩B), and is itself a homomorphism. It remains to check only that ψ is a bijection
from A/(A ∩B) to (A+B)/B. . .
ψ surjective: Let [a + b]B ∈ (A + B)/B with a ∈ A and b ∈ B. Then [a + b]B = [a]B =

ψ([a]A∩B) ∈ ψ(A/(A ∩B)).
ψ injective: Suppose ψ([a]A∩B) = ψ([a′]A∩B) for some a, a′ ∈ A. Then [a]B = [a′]B so

there are b, b′ ∈ B such that a + b = a′ + b′. Using the refinement property we get the
following refinement matrix:

( a b

a′ x x′

b′ y′ y

)
.

But y′ ≤ a, b′ so y′ ∈ A ∩ B. Similarly, x′ ∈ A ∩ B, and we get [a]A∩B = [x + y′]A∩B =
[x]A∩B = [x+ x′]A∩B = [a′]A∩B . �

For decomposition monoids we do not get quite as strong a result as for refinement
monoids:

Proposition 7.14. Let A and B be two order ideals in a decomposition monoid and
ψ: A/(A∩B) → (A+B)/B as in the previous proposition. Then ψ induces an isomorphism
of A/(A ∩B) and (A+B)/B.

Proof. As in the previous proposition, ψ is a surjective homomorphism from ψ: A/(A ∩B)
to (A + B)/B. Without refinement, ψ would not be injective. Instead we get that the
induced map ψ: A/(A ∩B) → (A+B)/B is injective:

Suppose ψ([a]A∩B) ≡ ψ([a′]A∩B) for some a, a′ ∈ A, then [a]B ≡ [a′]B . In particular,
[a]B ≤ [a′]B . So there is b′ ∈ B such that a ≤ a′ + b′. From the decomposition property,
there are x, y ∈ M such that x ≤ a′, y ≤ b′ and a = x + y. But then y ≤ a, b′, so
y ∈ A∩B and [a]A∩B = [x+y]A∩B = [x]A∩B ≤ [a′]A∩B . Similarly, [a′]A∩B ≤ [a]A∩B , and so
[a]A∩B ≡ [a′]A∩B , that is, [a]A∩B and [a′]A∩B represent the same element of A/(A ∩B). �

Among the easy consequences of this proposition is that for decomposition monoids, ψ
induces a lattice isomorphism between L(A/(A ∩ B)) and L((A + B)/B). From 6.15, we
have also isomorphisms σA∩B : [A∩B,A] → L(A/A∩B) and σB : [B,A+B] → L(A+B/B).
Combined with the isomorphism φ: [A∩B,A] → [B,A+B] from 7.12, we have the diagram
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[A ∩B,A]
φ //

σA∩B

��

[B,A+B]

σB

��
L(A/(A ∩B))

ψ // L((A+B)/B)

It is easy to check that this diagram commutes.
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8 Cancellation and Separativity

In this section we will investigate the relationship a + c = b + c for elements a, b, c of a
monoid.

We begin by gathering in the next few propositions some simple facts about the relation-
ship a+ c = b+ c that we will use repeatedly in this section:

Proposition 8.1. Let a, b, c, c′ be elements of a monoid such that a+ c = b+ c. Then
1. c ≤ c′ =⇒ a+ c′ = b+ c′

2. c ≤ a =⇒ 2a = a+ b

3. c ≤ a, b =⇒ 2a = a+ b = 2b

Proof. To prove 1, let x be such that c′ = c+x. Then a+ c′ = a+ c+x = b+ c+x = b+ c′.
Statements 2 and 3 are easy consequences of 1. �

Notice that the equation 2a = a+ b is a special case of a+ c = b+ c with c ≤ a. A similar
statement is not true in general about the two situations 2a = a+ b = 2b, and a+ c = b+ c
with c ≤ a, b, unless the monoid has decomposition.

In this and later sections, we will make frequent use of 8.1.1 without reference. For
example, we use it three times in the following proposition:

Proposition 8.2. Let a, b, c be elements of a monoid M such that a+ c = b+ c.
1. If there is an element d ∈M such that c� d ≤ a, b, then a = b.
2. If c� c ≤ a, then there is some idempotent e ≡ c such that a = b+ e.

Proof.
1. Let a′, b′ be such that a = d+ a′ and b = d+ b′. Then a′ + d+ c = b′ + d+ c. Since
c+ d ≤ d, we get a′ + d = b′ + d, that is a = b.

2. We have c � c, so from 6.9, there is some idempotent e ≡ c. Since c ≤ e and
a + c = b + c, we get a + e = b + e. And since e ≤ c ≤ a we get a + e = a. Thus
a = b+ e.

�

Note that, in particular, if c is a regular element such that c ≤ a, b, then a + c = b + c
implies a = b. Next we collect some simple consequences of having a refinement of the
equation a+ c = b+ c.

Proposition 8.3. Let a, b, c be elements of a monoid such that a+ c = b+ c and let

( b c

a d1 a1

c b1 c1

)
be a refinement of this equation. Then a+ b1 = b+ a1, a1 + c = b1 + c, and

1. c ≤ a =⇒ a+ a1 = b+ a1
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2. c ≤ a, b =⇒ a+ a1 = b+ a1 = a+ b1 = b+ b1

Proof. The only non-trivial statement is that c ≤ a implies a + a1 = b + a1: We have
c1 ≤ c ≤ a so by 8.1.1, a1 + c1 = b1 + c1 implies that a+ a1 = a+ b1. �

Notice that the existence of a refinement of the equation a + c = b + c gives rise to a
similar equation a1 + c1 = b1 + c1. In a refinement monoid this process can be repeated
to produce a decreasing chain of such equations, ai + ci = bi + ci with i = 1, 2, 3, . . ., such
that a ≥ a1 ≥ a2 ≥ . . ., b ≥ b1 ≥ b2 ≥ . . . and c ≥ c1 ≥ c2 ≥ . . .. This fact will inspire the
investigation of Artinian refinement monoids in Section 12.

In addition, we get the following proposition, which says, in effect, that if a0+c0 = b0+c0,
then a0 and b0 differ by elements which can be chosen “arbitrarily small” in comparison to
c0. The quotation marks reflect the fact that the inequality nan ≤ c0 which appears in the
proposition, does not even forbid that an ≥ c0 if c0 is regular.

Proposition 8.4. Let M be a refinement monoid, a0, b0, c0 ∈M such that a0+c0 = b0+c0
and n ∈ N. Then there are an, bn, cn, cn−1, dn ∈ M such that nan, nbn, cn ≤ c0, and the
following is a refinement matrix

( b0 cn−1

a0 dn an
cn−1 bn cn

)
In particular, a0 + cn = b0 + cn.

Proof. [31, 1.11] Define inductively ai, bi, ci, d′i ∈M for i = 1, 2, . . . , n by making refinements
of the form ( bi ci

ai d′i+1 ai+1

ci bi+1 ci+1

)
By an easy induction we get a0 = an +

∑n
i=1 d

′
i, b0 = bn +

∑n
i=1 d

′
i, c0 = cn +

∑n
i=1 ai =

cn +
∑n
i=1 bi. Setting dn =

∑n
i=1 d

′
i gives a0 = dn + an, and b0 = dn + bn. And since

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn, we have nan ≤ c0, nbn ≤ c0. Note also that since
an + cn = bn + cn, we get a0 + cn = b0 + cn. �

It is worth noting one easy consequence of this lemma: If c0 ∈ M and n ∈ N are such
that for any x ∈M , nx ≤ c0 implies x = 0, then c0 cancels from a0 + c0 = b0 + c0.

In the previous proposition, we started with the equation a0+c0 = b0+c0 in a refinement
monoid. If, in addition, we have c0 ≤ a0, we will get a similar but much stronger result,
(8.6). To prove this, we need the following lemma:

Lemma 8.5. Let M be a refinement monoid, a0, b0, c0 ∈M such that a0 + c0 = b0 + c0.
1. If c0 ≤ a0, then there is a refinement matrix

( b0 c0
a0 d1 a1

c0 b1 c1

)
such that c1 ≤ a1.

2. If c0 ≤ a0, b0, then there is a refinement matrix as above such that c1 ≤ a1, b1.

Proof.
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1. From a0 + c0 = b0 + c0 we get a refinement matrix of the form

( b0 c0
a0 d′ a′

c0 b′ c′

)
Since c′ ≤ c0 ≤ a0 = d′ + a′, we can write c′ = d′′ + c1 where d′′ ≤ d′ and c1 ≤ a′.
Since d′′ ≤ d′, we can write d′ = d′′ + d1, giving the following refinement:

( b0 c0
a0 d′′ + d1 a′

c0 b′ d′′ + c1

)
Moving the d′′ terms gives refinement matrix

( b0 c0
a0 d1 d′′ + a′

c0 d′′ + b′ c1

)
Setting a1 = d′′ + a′ and b1 = d′′ + b′ gives the required refinement matrix. Further,
we have c1 ≤ a′ ≤ a′ + d′′ = a1. For use in the proof of 2, we note that c1 ≤ c′ and
b1 ≥ b′.

2. Since c0 ≤ b0 we can use 1 (with the roles of a0 and b0 interchanged) to get the
refinement matrix ( b0 c0

a0 d′ a′

c0 b′ c′

)
with c′ ≤ b′.

Now a repetition of the argument of 1 using c0 ≤ a0 gives a new refinement matrix

( b0 c0
a0 d1 a1

c0 b1 c1

)
with c1 ≤ a1. In addition, we have c1 ≤ c′ ≤ b′ ≤ b1.

�

Proposition 8.6. Let M be a refinement monoid, a0, b0, c0 ∈M such that a0+c0 = b0+c0,
c0 ≤ a0 and n ∈ N . Then there are an, bn, cn, cn−1, dn ∈ M such that nan, nbn, ncn ≤ c0
and cn ≤ an, and the following is a refinement matrix

( b0 cn−1

a0 dn an
cn−1 bn cn

)
In particular, a0 + cn = b0 + cn with ncn ≤ c0.

Proof. The proof proceeds exactly as the proof of 8.4, except that at each induction step
we use 8.5.1 to give a refinement matrix such that ci+1 ≤ ai+1. Thus, in addition to the
conclusions given in 8.4, we have cn ≤ an, and also ncn ≤ nan ≤ c0. �
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We turn away now from the few cancellation rules that are true in any refinement monoid,
to cancellation properties that occur in the special classes of monoids (primely generated,
Artinian and semi-Artinian) we will study later. There are five such cancellation properties
we need: Three of these we will study in this section, the other two will be the subject of
the next section.

The following properties are usefully defined for subclasses of semigroups (rather than
only for monoids or order ideals):

Definition 8.7.
• A subclass X of a semigroup is cancellative if

(∀a, b, c ∈ X) (a+ c = b+ c =⇒ a = b).

• A subclass X of a semigroup is strongly separative [2, Section 5] if

(∀a, b ∈ X) (2a = a+ b =⇒ a = b).

• A subclass X of a semigroup is separative [7, Chapter 4.3] if

(∀a, b ∈ X) (2a = a+ b = 2b =⇒ a = b).

Clearly, for any subclass X we have the following implications:
X cancellative =⇒ X strongly separative =⇒ X separative.

Also, any subclass of a cancellative (strongly separative, separative) subclass is also can-
cellative (strongly separative, separative).

The monoid {0,∞} has refinement but is not cancellative. For the reversed situation we
have:

Example 8.8. A monoid which is cancellative but does not have decomposition or refine-
ment:

Let M = {0, 2, 3, 4, . . .} be the submonoid of Z+ obtained by deleting the number 1. Then,
since M is a subset of Z+, it is cancellative. On the other hand, the inequality 2 ≤ 3 + 3
can not be decomposed in M since 2 6≤ 3.

If {Mα | α ∈ I} is a family of monoids then it is straight forward to show that
∏
α∈IMα

and
⊕

α∈IMα are cancellative (strongly separative, separative) if and only if Mα is can-
cellative (strongly separative, separative) for each α ∈ I.

One can check that if M is a separative semigroup then M0 is a separative monoid. A
similar statement is not true about either cancellative or strongly separative semigroups.
For example, if M is the trivial one element semigroup, then M is trivially cancellative and
so strongly separative, but M0 ∼= {0,∞} is neither cancellative nor strongly separative.

In the next few lemmas, we give other properties equivalent to separativity and strong
separativity. First we will consider separative monoids:

Proposition 8.9. For a monoid M , the following are equivalent:
1. (∀a, b, c ∈M) (a+ c = b+ c and c ≤ a, b =⇒ a = b)
2. (∀a, b, c ∈M)(∀n ∈ N) (a+ nc = b+ nc =⇒ a+ c = b+ c)
3. (∀a, b, c, d ∈M) (a+ c = b+ c and c ≺ d ≤ a, b =⇒ a = b)
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Proof.
1 ⇒ 2 The n = 1 case is trivial, so assume n ≥ 2, then a+nc = b+nc =⇒ (a+(n−1)c)+c =

(b + (n − 1)c) + c, and, since c ≤ a + (n − 1)c and c ≤ b + (n − 1)c, this implies
a+ (n− 1)c = b+ (n− 1)c. A simple induction then shows that a = b.

2 ⇒ 3 Since c ≺ d, there is some n ∈ N such that c ≤ nd, and hence a+nd = b+nd. There
are also a′ and b′ such that a = d+ a′ and b = d+ b′, so a′+(n+1)d = b′+(n+1)d.
Using 2, we cancel nd from this equation to get a′ + d = b′ + d, that is, a = b.

3 ⇒ 1 1 is just the special case of 3 in which d = c.
�

Proposition 8.10. For a monoid M , the following are equivalent:
1. M is separative.
2. (∀a, b ∈M)(∀m,n ∈ N) (ma = mb and na = nb =⇒ ka = kb where k = gcd(m,n))
3. There are m,n ≥ 2 such that gcd(m,n) = 1, and

(∀a, b ∈M) (ma = mb and na = nb =⇒ a = b).

4. (∀a, b, c ∈M) (a+ c = b+ c and c ≺ a and c ≺ b =⇒ a = b)
5. Each Archimedean component of M is cancellative.

Further, any of these properties imply those of Proposition 8.9.

Proof. First we show that 1 implies property 1 of 8.9 . . .
If a+ c = b+ c with c ≤ a and c ≤ b, then from 8.1.3, 2a = a+ b = 2b. Thus a = b.

1 ⇒ 2 Without loss of generality, we can assume m ≥ n and m = hn + r for suitable
h, r ∈ Z+ with r < n. By the Euclidean algorithm for calculating the gcd of m and
n, it suffices to show that na = nb and ma = mb imply ra = rb. . .

If r = 0 there is nothing to prove, so we assume r ≥ 1, then ma = mb implies
hna + ra = hnb + rb and hna + ra = hna + rb. Now, using 2 of 8.9, this implies
a+ra = a+rb, and adding (r−1)a to each side we get 2ra = ra+rb. By symmetry,
2rb = rb+ ra, and so using the hypothesis, ra = rb.

2 ⇒ 3 Trivial.
3 ⇒ 1 If 2a = a + b = 2b, then by an easy induction, ka = kb for all k ≥ 2. In particular,

ma = mb and na = nb, so by 3, a = b.
We have now shown the equivalence of 1, 2, and 3, and that any of these imply the

properties of Proposition 8.9.
2 ⇒ 4 Suppose a + c = b + c and n ∈ N such that c ≤ na and c ≤ nb. Then there are

x, y ∈ M such that na = c + x and nb = c + y, and so n(a + c) = n(b + c) implies
c+ x+ nc = c+ y + nc. Using 8.9 we get c+ x = c+ y, that is, na = nb. This same
argument shows that (n+ 1)a = (n+ 1)b, and so, using the hypothesis, a = b.

4 ⇒ 5 Suppose a, b, c are in the same Archimedean component of M and a+c = b+c. Then
in particular, c ≺ a and c ≺ b, so by 4, a = b.

5 ⇒ 1 If 2a = a+ b = 2b then a ≤ 2b and b ≤ 2a, so a and b are in the same Archimedean
component of M . Cancellation in this Archimedean component then gives a = b.

�

In general, the properties of 8.9 are weaker than separativity, but when the monoid has
decomposition, they are equivalent:
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Proposition 8.11. If M is a decomposition monoid, then any of the properties of 8.9 is
equivalent to separativity.

Proof. From 8.10, we have already that separativity implies the properties of 8.9. For the
converse, suppose we have 2a = a + b = 2b for some a, b ∈ M . Since a ≤ 2b, there are
a1, a2 ∈ M such that a1, a2 ≤ b and a = a1 + a2. Now a+ a = a+ b implies a+ a1 + a2 =
b+ a1 + a2, and since a1, a2 ≤ a, b we can cancel a1 and a2 from this to get a = b. �

We now consider strong separativity. Here the situation is much simpler:

Proposition 8.12. For a monoid M , the following are equivalent:
1. M is strongly separative
2. (∀a, b, c ∈M) (a+ 2c = b+ c =⇒ a+ c = b)
3. (∀a, b, c ∈M)(∀n ∈ N) (a+ (n+ 1)c = b+ nc =⇒ a+ c = b)
4. (∀a, b ∈M)(∀n ∈ N) ((n+ 1)a = na+ b =⇒ a = b)
5. (∀a, b, c ∈M) (a+ c = b+ c and c ≤ a =⇒ a = b)
6. (∀a, b, c ∈M) (a+ c = b+ c and c ≺ a =⇒ a = b)

Proof. The equivalence of 1, 2, 3, 4 and 5 is easy to prove, and 5 is just a special case of 6,
so we prove here only that 4 implies 6 . . .

Suppose a+ c = b+ c with c ≤ na for some n ≤ N. Then a+ na = b+ na and using 4,
we get a = b. �

In a refinement monoid, the question of whether it is possible to cancel c from the relation
a + c = b + c often depends only on the properties of the subclass {≤ c}, rather than the
properties of the whole monoid. As a prototype of this situation we have

Proposition 8.13. Let a, b, c be elements of a refinement monoid such that a+ c = b+ c.
If {≤ c} is cancellative, then a = b.

Proof. From the equation a+ c = b+ c we get the refinement matrix

( b c

a d′ a′

c b′ c′

)
a′, b′, c′ are all in {≤ c}, so the equation a′ + c′ = b′ + c′ = c cancels to give a′ = b′. Hence
a = a′ + d′ = b′ + d′ = b. �

Using Lemma 8.5 we can derive theorems about separativity similar to 8.13:

Proposition 8.14. Let a, b and c be elements of a refinement monoid M such that
a+ c = b+ c.

1. If {≤ c} is strongly separative and c ≺ a, then a = b.
2. If {≤ c} is strongly separative and c ≺ a+ b, then a = b.
3. If {≤ c} is separative, c ≺ a and c ≺ b, then a = b.

Proof.
1. Since c ≺ a, there is some n ∈ N such that c ≤ na. We will do the n = 1 case first...
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n = 1 Since c ≤ a we can use 8.5.1 to get a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. Since a1 +c1 = b1 +c1, this implies 2a1 = a1 +b1. The elements
a1 and b1 are in the strongly separative subclass {≤ c}, and so a1 = b1. Thus
a = d1 + a1 = d1 + b1 = b.

n > 1 Since c ≤ na, we can write c =
∑n
i=1 ci where ci ≤ a for all i. Thus

a+
n∑
i=1

ci = b+
n∑
i=1

ci.

The subclasses {≤ ci} are contained in {≤ c} so they are strongly separative.
Using the n = 1 case, the ci can be canceled from the equation one by one to
leave a = b.

2. We have c ≺ a+ b, so there is some n ∈ N such that c ≤ na+ nb, and also c1 ≤ na
and c2 ≤ nb such that c = c1 + c2 and a + c1 + c2 = b + c1 + c2. The subclasses
{≤ c1} and {≤ c2} are contained in {≤ c} and so they are strongly separative. Since
also c1 ≺ a and c2 ≺ b, we can apply 1 to cancel c1 and c2 from the equation to give
a = b.

3. Since c ≺ a, b, there is some n ∈ N such that c ≤ na, nb. We will do the n = 1 case
first...
n = 1 Since c ≤ a, b we can use 8.5.2 to get a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1, b1. Since a1 + c1 = b1 + c1, this implies 2a1 = a1 + b1 = 2a1.
The elements a1 and b1 are in the separative subclass {≤ c}, and so a1 = b1.
Thus a = d1 + a1 = d1 + b1 = b.

n > 1 Since c ≤ na, we can write c =
∑n
i=1 ci where ci ≤ a for all i. For i =

1, 2, . . . , n, we have ci ≤ c ≤ nb, so we can write ci =
∑n
j=1 cij where now we

have cij ≤ a, b, c for all i and j. Thus c =
∑
ij cij and

a+
∑
ij

cij = b+
∑
ij

cij .

The subclasses {≤ cij} are contained in {≤ c} so they are separative. Using
the n = 1 case, the cij can be canceled from the equation one by one to leave
a = b.

�

We next consider how the cancellation properties of a monoid effect those of quotient
monoids, and vice versa.
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Proposition 8.15. Let I be a submonoid of monoid M . If M is cancellative (strongly
separative, separative), then so are I and M/I.

Proof. The claim that I has the same cancellation properties as M is clear, so we prove
only the claims about M/I:

1. Suppose M is cancellative and [a]I + [c]I = [b]I + [c]I . Then there are u, v ∈ I such
that a+ c+ u = b+ c+ v. Cancellation in M gives a+ u = b+ v, so [a]I = [b]I .

2. Suppose M is strongly separative and 2[a]I = [a]I + [b]I . Then there are u, v ∈ I
such that 2a + u = a + b + v. Thus 2(a + u) = (a + u) + (b + v), and using strong
separativity, a+ u = b+ v. Hence [a]I = [b]I .

3. Suppose M is separative and 2[a]I = [a]I + [b]I = 2[b]I . From the second equality,
we get the inequality [a]I ≤ 2[b]I , so there is w ∈ I such that a ≤ 2b + w. Thus
a ≤ 2(b+ w) and a ≺ b+ w.

From the equality, 2[a]I = [a]I+[b]I , there are u, v ∈ I such that 2a+u = a+b+v.
Thus (a+ u+w) + a = (b+ v+w) + a with a ≺ a+ u+w and a ≺ b+ v+w. Using
separativity and 8.10.4, we get a + u + w = b + v + w, and since u + w, v + w ∈ I,
[a]I = [b]I .

�

The converse of this proposition is true in the strongly separative and separative cases if
M has refinement and I is an order ideal:

Proposition 8.16. Let I be an order ideal in a refinement monoid M . If I and M/I are
(strongly separative) separative, then so is M .

Proof. [2, Theorem 4.5]
1. Suppose I and M/I are strongly separative and a, b, c ∈ M such that a + c = b + c

and c ≤ a. We will show that a = b . . .
From 8.5.1, there is a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. In M/I we get [a1]I + [c1]I = [b1]I + [c1]I with [c1]I ≤ [a1]I , so using
the strong separativity of M/I, [a1]I = [b1]I . Thus there are u1, v1 ∈ I such that
a1 + u1 = b1 + v1. From a refinement of this relationship,

( b1 v1
a1 d2 v2
u1 u2 e2

)
we get the equation a1 +u2 = b1 +v2 and hence, c+u2 = c1 +a1 +u2 = c1 +b1 +v2 =
c+ v2. Since c ≤ a, we have a+ u2 = a+ v2 and further

a+ v2 = a+ u2 = d1 + a1 + u2 = d1 + b1 + v2

= b+ v2.

Note that v2 ≤ v1 ∈ I so v2 ∈ I, and also v2 ≤ a1 ≤ a. Since {≤ v2} ⊆ I is
strongly separative, we can use 8.14.1 to get a = b.
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2. The proof in the separative case is similar to the strongly separative case. . .
Suppose I and M/I are separative and a, b, c ∈ M such that a + c = b + c and

c ≤ a, b. We will show that a = b . . .
From 8.5.2, there is a refinement matrix as above with c1 ≤ a1, b1. In M/I we

get [a1]I + [c1]I = [b1]I + [c1]I with [c1]I ≤ [a1]I , [b1]I , so using the separativity of
M/I, [a1]I = [b1]I . Thus there are u1, v1 ∈ I such that a1 +u1 = b1 + v1. Exactly as
above, we make a refinement of this equation and deduce that a+ v2 = b+ v2 with
{≤ v2} separative. Since v2 ≤ a1 ≤ c ≤ a, b we can use 8.14.3 to cancel the v2 and
get a = b.

�

If I and M/I are cancellative then it is not necessarily true that M is cancellative, even
if M has refinement. One example of this is 15.9.

Definition 8.17. An element a ∈M of a monoid is free if for all m,n ∈ N,

ma ≤ na =⇒ m ≤ n.

A free element is not regular and regular elements are not free, but, in general there are
elements which are neither. For example, in the monoid M = {0, 1,∞} such that 1+1 = ∞,
the element 1 is neither regular nor free.

In a separative monoid, however, every element is either regular or free:

Proposition 8.18. Let a be an element of a monoid M .
1. If M is separative then a is free or regular.
2. If M is strongly separative then a is free or a ≤ 0.

Proof.
1. If M is separative and a is not free, then there are m,n ∈ N such that m > n and
ma ≤ na. Since n ≥ 1, we can use 8.9 and 8.10 to cancel a from this inequality until
we get(m− n+ 1)a ≤ a. Since m− n+ 1 ≥ 2, this implies that a is regular.

2. If M is strongly separative, then it is separative and a is either free or regular. But
if 2a ≤ a, then 2a + x = a for some x ∈ M and using 8.12.2, we get a + x = 0. In
particular, a ≤ 0.

�

From this proposition, we have that if M is a strongly separative monoid then M is
separative and has no proper regular elements. The converse of this statement is not true
even for refinement monoids. For a counterexample, see 9.7.

Another consequence of this proposition is that every element of a finite separative monoid
is regular: Given an element a of such a monoid, the elements a, 2a, 3a, . . . can not all be
distinct, hence a is not free.



76

9 Weak Cancellation and
Midseparativity

In the previous section, we defined cancellation, separativity, and strong separativity. In
this section we will add to this list two other cancellation properties. Primely generated
refinement monoids, which we will study in Section 11, are examples of monoids with these
properties. The new cancellation properties are distinguished from the old ones because
they contain existential quantifiers in their definitions.

Definition 9.1.
• A semigroup M is weakly cancellative if a+ c = b+ c for some a, b, c ∈M implies

the existence of a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c ≤ c1. Note that this implies that c ≡ c1 and a1, b1 � c.

• A semigroup M is midseparative if

(∀a, b ∈M) (2a = a+ b =⇒ ∃ idempotent e ∈M such that a = b+ e).

Note that 2e = e and a = b+ e imply that a = a+ e.

A partially ordered weakly cancellative refinement monoid is called a strong refinement
monoid by F. Wehrung [31].

Among the simple consequences of the definitions are: If M is a weakly cancellative
(midseparative) monoid and I ≤ M is an order ideal, then I is also weakly cancellative
(midseparative). If {Mα | α ∈ I} is a family of monoids then

∏
α∈IMα and

⊕
α∈IMα are

weakly cancellative (midseparative) if and only if Mα is weakly cancellative (midseparative)
for each α ∈ I.

One can check that if M is a weakly cancellative (midseparative) semigroup then M0 is
a weakly cancellative (midseparative) monoid.

Similar to separativity and strong separativity, the midseparativity condition can be
expressed in several equivalent ways. Note that in this proposition, unlike in 8.10 and 8.12,
we assume that M has refinement.

Proposition 9.2. Let M be a refinement monoid. Then the following are equivalent:
1. M is midseparative.
2. (∀a, b, c ∈M) (a+ c = b+ c and c ≤ a =⇒ ∃ idempotent e ≤ c such that a = b+e)
3. (∀a, b, c ∈M) (a+ c = b+ c and c ≺ a =⇒ ∃ idempotent e ≤ c such that a = b+e)
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Proof.
1 ⇒ 2 If a+ c = b+ c and c ≤ a then by 8.5.1, there is a refinement

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. From a1+c1 = b1+c1, we get 2a1 = a1+b1, so there is some idempotent
e ∈M such that a1 = b1 + e. Thus e ≤ a1 ≤ c and a = d1 + a1 = d1 + b1 + e = b+ e.

2 ⇒ 3 Since c ≺ a, there is some n ∈ N such that c ≤ na. We will proceed by induction on
n. Since the n = 1 case is our hypothesis, we need show only the induction step. . .

Suppose the claim is true for some n ∈ N, and a+ c = b+ c with c ≤ (n+1)a. We
can write c = c1 +c2 with c1 ≤ a and c2 ≤ na, and so (a+c1)+c2 = (b+c1)+c2 with
c2 ≤ n(a+ c1). By induction, there is e2 = 2e2 ≤ c2 such that a+ c1 = (b+ e2) + c1.
Since c1 ≤ a, the hypothesis provides e1 = 2e1 ≤ c1 such that a = b+ (e1 + e2). We
have also 2(e1 + e2) = e1 + e2 ≤ c1 + c2 = c, so the induction is complete.

3 ⇒ 1 Set c = a in 3.
�

Proposition 9.3. For a monoid M we have the following implications:

cancellative +3

��

weakly cancellative

��
strongly separative +3 midseparative +3 separative

Proof. All of the implications are easy except the following:
• Suppose M is weakly cancellative, and a+c = b+c with c ≤ a, b for some a, b, c ∈M .

Then from the definition, there is a refinement

( b c

a d1 a1

c b1 c1

)
with a1 � c ≤ a, b. From 8.3.1, a+ a1 = b+ a1, and so using 8.2.1, we get a = b.

• Suppose M is midseparative, and 2a = a + b = 2b for some a, b ∈ M . From the
definition, there are idempotents e, f ∈ M such that a = b+ e and b = a+ f . Thus
a = a+ e and, since a ≤ b, we have b+ e = b. Thus a = b+ e = b

�

Note that we need M to be a monoid, rather than just a semigroup, in this proposition so
that strong separativity implies midseparativity, and cancellation implies weak cancellation.

Proposition 9.4. Let M be a monoid such that

(∀a, b ∈M) (a ≤ b or b ≤ a).

Then the following are equivalent:
1. M is separative.
2. M has refinement.
3. M is weakly cancellative.
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Proof.
1 ⇒ 2 Suppose a1 + a2 = b1 + b2 in M . Without loss of generality, we can assume that a1

is minimal in the set {a1, a2, b1, b2}. Our hypothesis then implies that a1 ≤ a2, b1, b2.
In particular, b1 = a1 + x1 for some x1 ∈ M . Thus we have the equation a1 + a2 =
a1+(x1+b2) with a1 ≤ a2, b2+x1. From 8.1.3, this implies that 2a2 = a2+(b2+x1) =
2(b2 + x1). Since M is separative, we have a2 = b2 + x1 and then

( b1 b2
a1 a1 0
a2 x1 b2

)
is a refinement of the original equation.

2 ⇒ 3 Suppose a+ c = b+ c in M . We make a refinement of this equation:

( b c

a d1 a1

c b1 c1

)
Without loss of generality, we can assume a1 ≤ b1. Thus there is some x1 ∈M such
that b1 = a1 + x1. This gives a new refinement

( b c

a d1 + a1 0
c x1 c1 + a1

)
Thus M has weak cancellation.

3 ⇒ 1 This we have shown in 9.3.
�

There is another separativity property which serves as a “greatest common denominator”
of weak cancellation and midseparativity, in the sense that it is implied by both, and it in
turn implies separativity:

Proposition 9.5. Let M be a refinement monoid. Then the following are equivalent:
1. (∀a, b ∈M) (2a = a+ b =⇒ b ≤ a)
2. (∀a, b, c ∈M) (a+ c = b+ c and c ≤ a =⇒ ∃x such that c = c+ x and a = b+ x)
3. (∀a, b, c ∈M) (a+ c = b+ c and c ≤ a =⇒ b ≤ a)

If M is either weakly cancellative or midseparative then M has these properties. Further,
any of these properties implies that M is separative.

Proof.
1 ⇒ 2 If a+ c = b+ c and c ≤ a, then by 8.5.1, there is a refinement

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. Since a1+c1 = b1+c1, we have 2a1 = a1+b1. By hypothesis this implies
b1 ≤ a1, thus a1 = b1 + x for some x ∈M . Hence c+ x = c1 + b1 + x = c1 + a1 = c
and b+ x = d1 + b1 + x = d1 + a1 = a.

2 ⇒ 3 Trivial.
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3 ⇒ 1 Set c = a in 3.
We have shown therefore the equivalence of 1, 2 and 3. We show next that weak cancel-

lation implies 3. . .
Suppose M is weakly cancellative and a+c = b+c with c ≤ a. Then there is a refinement

( b c

a d1 a1

c b1 c1

)
with a1 � c. Since c ≤ a we get a1 � a and, using 8.3.2, a+a1 = b+a1. Thus b ≤ a+a1 ≤ a.

If M is midseparative, then 1 follows immediately.
Finally, we show that 2 implies separativity. . .
Suppose a + c = b + c with c ≤ a, b. From 2, there is x ∈ M such that c = c + x and

a = b+ x. Since c ≤ b we have b = b+ x, and hence a = b+ x = b. �

Unlike separative monoids, midseparative monoids are strongly separative if they have
no proper regular elements:

Proposition 9.6. A midseparative monoid is strongly separative if and only if it has no
proper regular elements.

Proof. Let M be a midseparative monoid with no proper regular elements, and a, b ∈ M
such that 2a = a + b. Then there is some idempotent e ∈ M such that a = b + e = a + e.
Since e is regular, we have e ≤ 0, so by 8.2.1, a = b. Thus M is strongly separative.

The converse follows directly from 8.18.2. �

We will show by example that the implications in 9.3 are the strongest possible. In
particular, not all weakly cancellative monoids are midseparative or vice versa – even for re-
finement monoids. For a midseparative refinement monoid which is not weakly cancellative,
see 15.9.

To construct a weakly cancellative refinement monoid which is not midseparative, we
proceed via the following example which has interesting properties of its own:

Example 9.7. A separative refinement monoid with no proper regular elements which is
not weakly cancellative, strongly separative or midseparative:

Let M be the semigroup direct product {0,∞}×R++. Since {0,∞} and R++ are separative
refinement semigroups, so is M , and since R++ has no regular elements, neither does M .

Let M0 be the monoid obtained from M by adding a zero element. M0 is a separative
refinement monoid with no proper regular elements. It is easy to see that M0 can be con-
sidered to be the monoid ({0,∞}×R+) \ {(∞, 0)} though it is clumsier to prove refinement
in this form.

If we set a = (∞, 1) and b = (0, 1), then 2a = a+ b, but a 6= b and, even stronger, there
is no x such that a = b+ x, that is b 6≤ a. Thus M0 does not have the property of 9.5.1 and
so, by that proposition, M0 is not midseparative or weakly cancellative.

For future reference we will note the following properties of this monoid:
Let I = {≺ (0, 1)}. This order ideal is isomorphic to R+ so is cancellative. The quotient

M0/I is easily seen to be isomorphic to the monoid {0,∞}. So M0/I has a proper regular
element even though M0 does not.

Also I and M0/I are midseparative, but M0 itself is not.
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If R++ was weakly cancellative, then the example we have just constructed would be
a weakly cancellative non-midseparative refinement monoid. Thus, to produce our desired
example, we will first construct a semigroup which is like R++ but has, in addition, weak
cancellation.

Example 9.8. A weakly cancellative refinement semigroup with no regular elements:
Let N = (R++)2 as a set, with addition defined by

(a1, a2) + (b1, b2) =


(a1, a2) a1 > b1

(b1, b2) a1 < b1

(a1, a2 + b2) a1 = b1

for all (a1, a2), (b1, b2) ∈ N .
It is easily seen that N is a semigroup with no regular elements. In the following discus-

sion the symbol ∗ as an entry in a refinement matrix denotes an element of N which adds
nothing to either the column sum or row sum in which it appears. Such elements are always
available since, for any elements (a1, a2), (b1, b2) ∈ N , there is another element (c1, c2) such
that (a1, a2) + (c1, c2) = (a1, a2) and (b1, b2) + (c1, c2) = (b1, b2): For example, set c2 = 1
and for c1, pick any real number such that 0 < c1 < a1, b1.

• Claim N has refinement.
Suppose (a1, a2) + (b1, b2) = (c1, c2) + (d1, d2) in N . From the addition rule, we

have max{a1, b1} = max{c1, d1}. Without loss of generality we will assume a1 = c1
is this maximum, that is, b1, d1 ≤ a1 = c1. We consider the following cases:

• If b1 < a1 = c1, then (a1, a2) = (a1, a2) + (b1, b2) = (c1, c2) + (d1, d2) and
(c1, c2) + (b1, b2) = (c1, c2), so we can make the refinement

( (c1, c2) (d1, d2)
(a1, a2) (c1, c2) (d1, d2)
(b1, b2) (b1, b2) ∗

)
• If d1 < c1, then we can construct a refinement by symmetry with the previous

case.
• If a1 = b1 = c1 = d1, then we have a2 + b2 = c2 + d2 in R++. Since R++

has refinement, we can use a refinement of this equation to provide the second
components of entries in a refinement of (a1, a2)+(b1, b2) = (c1, c2)+(d1, d2).

• Claim N is weakly cancellative.
Suppose (a1, a2) + (c1, c2) = (b1, b2) + (c1, c2) in N . We consider the following

cases:
• If a1 < c1, then (c1, c2) = (a1, a2) + (c1, c2) = (b1, b2) + (c1, c2) so we can

make the refinement

( (b1, b2) (c1, c2)
(a1, a2) ∗ (a1, a2)
(c1, c2) (b1, b2) (c1, c2)

)
• If a1 > c1, then, since max{a1, c1} = max{b1, c1}, we must have b1 = a1.

Thus (a1, a2) = (a1, a2) + (c1, c2) = (b1, b2) + (c1, c2) = (b1, b2), and we can
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make the refinement

( (b1, b2) (c1, c2)
(a1, a2) (a1, a2) ∗
(c1, c2) ∗ (c1, c2)

)
• If a1 = c1, then since max{a1, c1} = max{b1, c1}, we have b1 ≤ a1. In fact

we must have b1 = a1, since if b1 < a1 = c1, then a2 + c2 = c2 which is not
possible in R++. Thus b1 = a1 and a2 + c2 = b2 + c2. This implies a2 = b2
and hence (a1, a2) = (b1, b2). We can make a refinement as in the previous
case.

In each of these refinement matrices, the lower right entry is (c1, c2), so we have
shown that N is weakly cancellative.

From the semigroup N , we can now construct a weakly cancellative non-midseparative
refinement monoid:

Example 9.9. A weakly cancellative refinement monoid which is not midseparative:
Let N be as in the previous example, and define the semigroup M = {0,∞} ×N . Since

{0,∞} and N are weakly cancellative refinement semigroups, so is M . Since N has no
regular elements, neither does M .

Let M0 be the monoid made by addition of a zero element to M . Then M0 is a weakly
cancellative monoid with no proper regular elements. But M is not strongly separative since,
for example, if a = (∞, (1, 1)) and b = (0, (1, 1)), then 2a = a + b = (∞, (1, 2)), but a 6= b.
In particular, by 9.6, M0 is not midseparative.

Note that, by 9.5, given a and b as above, there should be some x such that a = a+ x =
b+ x. It is easily checked that x = (∞, (1/2, 1)), for example, has the required property.

As we saw in 8.13 and 8.14, for the equation a+ c = b+ c in a refinement monoid, it is
actually the cancellation properties of {≺ c} that matter:

Proposition 9.10. Let a, b, c be elements of a refinement monoid such that a+ c = b+ c.

1. If {≺ c} is weakly cancellative, then there exists a refinement matrix

( b c

a ∗ ∗
c ∗ c′

)
with c ≤ c′.

2. If {≺ c} is midseparative and c ≺ a, then there exists an idempotent e ≤ c such that
a = b+ e.

Proof.
1. From the equation a+ c = b+ c we make a refinement

( b c

a d1 a1

c b1 c1

)
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This gives us the equation a1 + c1 = b1 + c1 in the weakly cancellative monoid {≺ c}.
So there is a refinement ( b1 c1

a1 d2 a2

c1 b2 c2

)
with c1 ≤ c2. It is then easy to check that

( b c

a d1 + d2 a2

c b2 a1 + c2

)
is a refinement of the original equation. Further, setting c′ = a1 + c2 we have
c = a1 + c1 ≤ a1 + c2 = c′.

2. Since c ≺ a, there is some n ∈ N such that c ≤ na. We do an induction on n. . .
n = 1 Since c ≤ a we can use 8.5.1 to get a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. Since a1, b1, c1 ∈ {≺ c}, the equation a1 + c1 = b1 + c1 implies
there is some idempotent e ≤ c1 such that a1 = b1 + e. Thus a = d1 + a1 =
d1 + b1 + e = b+ e.

n > 1 Suppose the claim is true for some n ∈ N, and a+ c = b+ c with c ≤ (n+1)a.
We can write c = c1+c2 with c1 ≤ a and c2 ≤ na. Since c1, c2 ≤ c, the monoids
{≺ c1} and {≺ c1} are midseparative. We have (a + c1) + c2 = (b + c1) + c2
with c2 ≤ n(a + c1), so by induction, there is 2e2 = e2 ≤ c2 such that
a + c1 = (b + e2) + c1. Since c1 ≤ a, the n = 1 case provides 2e1 = e1 ≤ c1
such that a = b+ (e1 + e2). We have also 2(e1 + e2) = e1 + e2 ≤ c1 + c2 = c,
so the induction is complete.

�

We next consider the extension question for weak cancellation and midseparativity: If
I is an order ideal of M such that I and M/I are weakly cancellative (midseparative), is
M weakly cancellative (midseparative)? Unlike separative and strongly separative monoids
(8.16), we will see that weakly cancellative and midseparative monoids do not have this
extension property. The refinement monoid of example 15.9 is not weakly cancellative, even
though there is an order ideal I ≤ M such that I and M/I are both weakly cancellative.
Example 9.7 is a counterexample in the midseparative case.

Later we will see that we get extension for midseparativity if I is not just midseparative,
but either Artinian or semi-Artinian. See 13.6 and 15.5.

We consider next the converse question: If I ≤M , and M is weakly cancellative (midsep-
arative), are I and M/I also weakly cancellative (midseparative)? Here weak cancellation
and midseparativity behave like cancellation, separativity and strong separativity as seen
in 8.15. Curiously, the proofs below that M/I is weakly cancellative (midseparative) do not
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require that I be an order ideal– it suffices that I be a submonoid. In contrast, to be certain
that I has the same separativity properties as M , I must be an order ideal.

Proposition 9.11. Let I be a order ideal in monoid M . If M is weakly cancellative
(midseparative), then so are I and M/I.

Proof. The claim that I has the same cancellation properties as M is clear, so we prove
only the claims about M/I:

• Suppose M is weakly cancellative and [a]I +[c]I = [b]I +[c]I . Then there are u, v ∈ I
such that a+ c+ u = b+ c+ v. Since M is weakly cancellative, there is a refinement
matrix

( b+ v c

a+ u d1 a1

c b1 c1

)
with c ≤ c1. In M/I, this refinement maps to

( [b]I [c]I
[a]I [d1]I [a1]I
[c]I [b1]I [c1]I

)
with [c]I ≤ [c1]I .

• Suppose M is midseparative and 2[a]I = [a]I+[b]I . Then there are u, v ∈ I such that
2a+ u = a+ b+ v. Thus 2(a+ u) = (a+ u) + (b+ v), and since M is midseparative,
there is some idempotent e ∈ M such that a+ u = b+ v + e. In M/I we then have
[a]I = [b]I + [e]I and 2[e]I = [e]I .

�

For the remainder of this section we will prove some important properties of weakly
cancellative refinement monoids:

Lemma 9.12. Let M be a weakly cancellative refinement monoid and a, b, c1, c2 ∈M such
that a+ c1 + c2 = b+ c1 + c2. Then there is a refinement matrix


b c1 c2

a ∗ ∗ ∗
c1 ∗ c′1 ∗
c2 ∗ ∗ c′2


such that c1 ≤ c′1 and c2 ≤ c′2.

Proof. Applying weak cancellation to the equation (a + c2) + c1 = (b + c2) + c1 we get a
refinement of the form

( b+ c2 c1
a+ c2 d1 a1

c1 b1 c3

)
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with c1 ≤ c3. Since (a+ b1) + c2 = d1 + a1 + b1 = (b+ a1) + c2, there is a refinement

( b+ a1 c2
a+ b1 ∗ ∗
c2 ∗ c′2

)
with c2 ≤ c′2. Refining further we get


b a1 c2

a d2 a2 a3

b1 b2 c5 b4
c2 b3 a4 c′2


It is then easy to check that the refinement matrix


b c1 c2

a d2 a2 a3

c1 b2 c5 + c3 b4
c2 b3 a4 c′2


has the required properties. �

Lemma 9.13. Let a, b, c, c1, c2 be elements of a weakly cancellative refinement monoid M .
Then

1. a+ c ≤ b+ c =⇒ (∃a1 � c such that a ≤ b+ a1)
2. a� c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 � c1 and a2 � c2)
3. {� c1 + c2} = {� c1}+ {� c2}
4. a ≡ c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 ≡ c1 and a2 ≡ c2)

Proof.
1. There is some x ∈M such that a+ x+ c = b+ c, and hence a refinement matrix

( b c

a+ x d1 a1

c b1 c1

)
with c ≤ c1. This implies a ≤ a+ x = d1 + a1 ≤ b+ a1 with a1 � c.

2. We have a+c1+c2 ≤ c1+c2. Using 1, there is some a′1 � c1 such that a+c2 ≤ a′1+c2.
Using 1 again, there is some a′2 � c2 such that a ≤ a′1 + a′2. Decomposing this last
inequality, there are a1 ≤ a′1 � c1 and a2 ≤ a′2 � c2 such that a = a1 + a2.

3. This follows directly from 2 and 6.6.7.
4. We have c1 + c2 ≤ a so there is some u such that c1 + c2 + u = a ≤ c1 + c2. Since
u � c1 + c2, by 1, there are u1, u2 with u = u1 + u2, u1 � c1 and u2 � c2. Set
a1 = c1 + u1 ≡ c1 and a2 = c2 + u2 ≡ c2, then a = a1 + a2.

�
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Proposition 9.14. If M is a weakly cancellative refinement monoid then so is M .

Proof. We show first that M has refinement. . .
Suppose [x1] + [x2] = [y1] + [y2] in M , then x1 + x2 ≡ y1 + y2. From 9.13.4, there are

x′1, x
′
2 such that, x1 ≡ x′1, x2 ≡ x′2 and x′1 + x′2 = y1 + y2. We make a refinement of this

equation: ( y1 y2
x′1 z11 z12
x′2 z21 z22

)
Since [x1] = [x′1] and [x2] = [x′2],

( [y1] [y2]
[x1] [z11] [z12]
[x2] [z21] [z22]

)
is a refinement of the original equation.

We show that M is weakly cancellative. . .
Suppose [a] + [c] = [b] + [c] in M , then a + c ≡ b + c. From 9.13.4, there are a′, c′ such

that, a ≡ a′, c ≡ c′ and a′+c′ = b+c. Let u� c such that c′ = c+u, then a′+c+u = b+c
and there is a refinement matrix

( b c

a′ + u d1 a1

c b1 c1

)
with c ≡ c1. If we make a refinement of the equation a′ + u = d1 + a1,

( d1 a1

a′ d′1 a′1
u u1 u2

)
we can rewrite the first refinement as

( b c

a′ d′1 a′1
c′ b1 + u1 c1 + u2

)
Since u2 ≤ u� c, we have c ≡ c′ ≡ c1 + u2, and in M ,

( [b] [c]
[a] [d′1] [a′1]
[c] [b1 + u1] [c]

)
Thus M is weakly cancellative. �

Monoids with weak cancellation have a property called Riesz interpolation [10]: If there
are elements a0, a1, b0, b1 ∈ M with a0 ≤ b0, a0 ≤ b1, a1 ≤ b0 and a1 ≤ b1 (which we write
as a0, a1 ≤ b0, b1), then there is an element c that fits between, that is, a0, a1 ≤ c ≤ b0, b1.
The proof which follows is a variation of the proof found in Tarski [30] which was applied
to partially ordered monoids only.
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Proposition 9.15. Let M be a weakly cancellative refinement monoid. Then
1. (∀a, b, c ∈M) (c ≤ b ≤ c+ a =⇒ ∃d ≤ a such that b ≡ c+ d)
2. (∀a0, a1, b0, b1 ∈M) (a0, a1 ≤ b0, b1 =⇒ ∃c such that a0, a1 ≤ c ≤ b0, b1)

Proof.
1. Let x, y ∈M be such that b = c+x and c+ a = b+ y. Then c+ a = c+x+ y. Since
M is weakly cancellative, there is a refinement matrix

(x+ y c

a d1 a1

c b1 c1

)
with b1 � c. Since x ≤ d1 + b1 there are d, x′ ∈M such that x = d+ x′, d ≤ d1 ≤ a
and x′ ≤ b1 � c. In particular, c ≡ c + x′, and adding d to this equation we get
c+ d ≡ c+ d+ x′ = c+ x = b.

2. Let d0, d1, f0, f1 ∈M be such that a0 +d0 = a1 +d1 = b0 and a0 +f0 = a1 +f1 = b1.
From the first of these equations we get a refinement matrix

( a0 d0

a1 r1 r3
d1 r2 r4

)
Thus r1 ≤ a1 ≤ b1 = a0 + f0 = r1 + (r2 + f0). Applying 1 to the inequality
r1 ≤ a1 ≤ r1 + (r2 + f0), we get some s such that a1 ≡ r1 + s and s ≤ r2 + f0.
Decompose this last inequality to get s = s0 + s1 with s0 ≤ f0 and s1 ≤ r2. Finally,
we set c = a0 + s0 and check that c has the required properties:

c ≥ a0

c = a0 + s0 = r1 + r2 + s0 ≥ r1 + s0 + s1 = r1 + s ≡ a1

c = a0 + s0 ≤ a0 + f0 = b1

c = a0 + s0 = r1 + r2 + s0 ≤ r1 + r2 + s ≡ a1 + r2 ≤ a1 + d1 = b0

�
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10 Groups and Monoids

In Section 6 we investigated the order structure of monoids and found, among other
things, that a monoid M such that a ≤ b for all elements, is an Abelian group. In this
circumstance, M has one element. Thus, the information about M lost in going from M to
M is contained in an Abelian group. This is a quite general phenomenon: For an arbitrary
monoid M every element of M corresponds in a natural way to an Abelian group which
represents algebraic information lost in mapping the elements of a ≡-congruence class to
their image in M .

These groups are all trivial if and only if M is partially ordered, that is, M = M . At
the other extreme, M is trivial (contains one element) if and only if M is itself a group. So
these groups and M contain complementary information about the monoid M . Nonetheless,
knowing these groups and M is not, in general, sufficient to reconstruct M .

In our application to module categories, we will see in 19 that the ideal class group of a
Dedekind domain is a group of the type to be discussed in this section.

For each element r of M , we will construct an Abelian group Gr(M) whose elements are
in bijection with the elements of the congruence class {≡ r} = {x ∈ M | x ≤ r ≤ x} ⊆ M .
Thus {≡ r} can itself be considered to be the group Gr(M) if the addition is suitably
redefined. In the discussion of this fact we will sometimes think of {≡ r} as a subclass of
M , and sometimes as an element of M . To distinguish these two situations, we will write
{≡ r} ⊆M or {≡ r} ∈M as appropriate.

We start by defining G0(M). . .

Definition 10.1. For a monoid M , define G0(M) = {≤ 0} ⊆M .

An element a ∈ M is in G0(M) if and only if there is some b ∈ M such that a + b = 0,
that is, if and only if a has an inverse. Thus G0(M) is an Abelian group with the same
operation and identity as in M . In fact, it is also the largest such group contained in M .

Now we can define Gr(M) for any r ∈M . . .

Definition 10.2. Let r be an element of a monoid M .
1. Define a relation ∼r on M by

a ∼r b ⇐⇒ r + a = r + b

for a, b ∈ M . An easy calculation shows that ∼r is a congruence on M . We will
write [a]r for the ∼r-congruence class containing a ∈M .

2. Define
Gr(M) = G0(M/∼r).

This definition is consistent with definition 10.1 since ∼0 is the trivial congruence.
We will often write G0 and Gr instead of G0(M) and Gr(M) if the monoid is clear
from context.
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3. We will also find it useful to define the monoid

Hr = {≺ r}/∼r .

We collect in the next proposition some simple facts about Hr and Gr:

Proposition 10.3. Let M be a monoid and r ∈M .
1. For all a ∈M , [a]r ∈ Gr if and only if a� r. Thus, Gr = {� r}/∼r.
2. Gr = G0(Hr)
3. G0 = H0

4. If r ≤ s in M , then the map φsr: M/∼r→ M/∼s given by [a]r 7→ [a]s, is a monoid
homomorphism. Further, when restricted to Hr, φsr is a monoid homomorphism
into Hs, and when restricted to Gr, φsr is a group homomorphism into Gs.

5. If r ≤ s ≤ t in M , then φts ◦ φsr = φsr.
6. If s ∈ {≡ r} ⊆M , then Gr = Gs and Hr = Hs.

Proof. Easy. �

From this proposition we note that Gr and Hr depend only on the congruence class
{≡ r} ∈M , and so we could have more correctly used the notation G{≡r} and H{≡r}.

We next want to show that there is a bijection from Gr to {≡ r} ⊆ M , so that we can
think of {≡ r} itself as a group.

Proposition 10.4. Let M be a monoid and r ∈ M . Then the map ρ : Gr → {≡ r} given
by ρ([a]r) = r + a for a� r, is a bijection.

Proof. For two elements a1, a2 � r we have

[a1]r = [a2]r ⇐⇒ r + a1 = r + a2,

so the map ρ is well defined and injective.
To show surjectivity, suppose r1 ∈ {≡ r}. Then there is some a� r such that r1 = r+a.

Thus we get [a]r ∈ Gr and r1 = ρ([a]r). �

Using the map ρ, we can construct a new operation +r on {≡ r} ⊆ M which makes it
into a group: If r1 = r+a1 and r2 = r+a2 are in {≡ r} with a1, a2 � r, then we can define

r1 +r r2 = ρ(ρ−1(r1) + ρ−1(r2)) = ρ([a1]r + [a2]r) = ρ([a1 + a2]r) = r + a1 + a2.

Clearly, r is the identity element of the group ({≡ r},+r).
Notice that if r1 +r r2 = r3, then r+ r3 = r1 + r2. In a separative monoid, this suffices to

define the operation +r: If we had two elements r3, r′3 ∈ {≡ r} such that r + r3 = r + r′3 =
r1 + r2, then, since r ≤ r3, r

′
3, we can cancel r to get r3 = r′3.

Notice also that the map ρ depends on the element of {≡ r} used in its definition, so
the group structure and operation +r on {≡ r} are not unique. Nonetheless, however ρ is
constructed, the resulting group is always isomorphic to Gr.

We note the special case when r is regular. . .
Recall from 6.9 that if r is regular there is a unique idempotent e in {≡ r}. It is simple

task to show that with the existing monoid operation, {≡ r} ⊆M is a group with identity
e. We will confirm this fact by showing that in this situation the monoid operations + and
+e coincide on {≡ r} = {≡ e} ⊆M .
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Suppose r1, r2 ∈ {≡ r} = {≡ e}. Since e ≤ r1, r2 and 2e = e, we get r1 = e + r1 and
r2 = e+ r2. From the above definition of +e we get r1 +e r2 = e+ r1 + r2 = r1 + r2.

We have therefore shown the following:

Proposition 10.5. If r is a regular element of a monoid, then

Gr ∼= ({≡ r},+)

as groups.

In general, we have from 10.3.6 that Gr = Gs if r ≡ s. If M is cancellative, then it is
easy to see that Gr = Gs for any r, s ∈ M . If M is separative then we get an intermediate
result, namely, all elements of an Archimedean component of M are associated to the same
group:

Proposition 10.6. Let r, s be elements of a separative monoid M such that s ≺ r ≺ s. Then
the relations ∼r and ∼s coincide and, in particular, Gr = Gs, Hr = Hs and {� r} = {� s}.

Proof. Let n ∈ N such that r ≤ ns. If a ∼r b for elements a, b ∈M , then a+ r = b+ r, and
so a+ ns = b+ ns. Separativity then implies that a+ s = b+ s, that is, a ∼s b.

By symmetry, a ∼s b implies a ∼r b for all a, b ∈ M . From 10.2 we get Gr = Gs,
Hr = Hs, and, by 10.3.1, {� r} = {� s}. �

Thus for separative monoids, the groups Gr could be indexed by the Archimedean com-
ponents of M , that is, by the elements of M̃ .

In separative monoids the significance of Hr becomes clearer:

Proposition 10.7. Let r be an element of a separative monoid M . Then
1. The Archimedean component {� r} is embedded in Hr via the monoid homomorphism
a 7→ [a]r.

2. Hr is cancellative.

Proof.
1. We show that the homomorphism is injective when restricted to {� r}. . .

Suppose a, b ∈ {� r} such that [a]r = [b]r. Then a+ r = b+ r, so we can use the
fact that Archimedean components are cancellative (8.10.5) to get a = b.

2. Suppose a, b, c ∈ {≺ r} such that [a]r + [c]r = [b]r + [c]r. Then a+ c+ r = b+ c+ r.
Since c ≺ r, we can use 8.10.4 to cancel c from this equation to get a + r = b + r,
that is, [a]r = [b]r.

�

Every monoid has associated with it an Abelian group which is universal for homomor-
phisms from the monoid into groups.

Definition 10.8. Let M be a monoid. Then the Grothendieck group of M , [4, Sec-
tion 1.3], [33, Appendix G], written G(M), is constructed as a factor monoid of M ×M as
follows:
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1. Define a relation ≈ on M ×M by

(a1, a2) ≈ (b1, b2) ⇐⇒ ∃x ∈M such that a1 + b2 + x = a2 + b1 + x,

for (a1, a2), (b1, b2) ∈ M ×M . Notice that (a, a) ≈ (0, 0) for any a ∈ M . It is not
hard to check that ≈ is a congruence on M ×M .

2. Define
G(M) = (M ×M)/≈ .

Since (a1, a2)+(a2, a1) ≈ 0 for all a1, a2 ∈M , every element of G(M) has an inverse,
and so G(M) is an Abelian group.

3. We will write 〈a〉M for the image of (a, 0) ∈ M ×M in G(M). The image of (0, a)
is −〈a〉M , so every element of G(M) can be written in the form 〈a1〉M − 〈a2〉M for
some a1, a2 ∈M .

Note also that for a, b ∈M ,

〈a〉M = 〈b〉M ⇐⇒ ∃x ∈M such that a+ x = b+ x.

The map 〈 〉M : M → G(M) is easily seen to be a monoid homomorphism. It is injective
if and only if M is cancellative, and an isomorphism if and only if M is itself a group.

The main importance of G(M) is its universal property:

Proposition 10.9. Let M be a monoid, H an Abelian group, and ψ: M → H, a monoid
homomorphism. Then there is a unique group homomorphism ψ̂ : G(M) → H such that the
following diagram commutes:

M
〈 〉M //

ψ ""F
FF

FF
FF

FF
G(M)

ψ̂

��
H

Proof. We define the map ψ̂ by ψ̂(〈a1〉M − 〈a2〉M ) = ψ(a1) − ψ(a2) for a1, a2 ∈ M . It is
easy to check that this map is well defined and makes the diagram commute. �

Suppose A is a submonoid of M . Then the inclusion map of A in M followed by
〈 〉M : M → G(M) is a homomorphism of A into a group. So there is an induced group
homomorphism from G(A) to G(M) such that 〈a〉A 7→ 〈a〉M for all a ∈ A. In general, this
homomorphism is neither injective nor surjective.

Proposition 10.10. Let A and B be order ideals of a refinement monoid. Then there is
an exact sequence of Abelian groups

G(A ∩B) α−→ G(A)×G(B)
β−→ G(A+B) −→ 0

where α and β are group homomorphisms such that

α(〈x〉A∩B) = (〈x〉A,−〈x〉B)

β(〈a〉A, 〈b〉B) = 〈a〉A+B + 〈b〉A+B

for all x ∈ A ∩B, a ∈ A and b ∈ B.
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Proof. Since A ∩ B ⊆ A,B ⊆ A + B, the maps α and β are well defined group homomor-
phisms. That β is surjective and β ◦ α = 0 is easy to show, so we need to check only that
kerβ ⊆ imα. . .

Suppose β(〈a1〉A − 〈a2〉A, 〈b1〉B − 〈b2〉B) = 0 for some a1, a2 ∈ A and b1, b2 ∈ B, that is,
〈a1 + b1〉A+B = 〈a2 + b2〉A+B . Then there is some a′ + b′ ∈ A+B with a′ ∈ A and b′ ∈ B,
such that (a′+ b′)+ (a1 + b1) = (a′+ b′)+ (a2 + b2). We make a refinement of this equation:


a′ b′ a1 b1

a′ a3 x3 a4 x4

b′ y3 b3 y4 b4
a2 a5 x5 a6 x6

b2 y5 b5 y6 b6


Since A and B are order ideals, we have ai ∈ A, bi ∈ B and xi, yi ∈ A ∩B for i = 3, 4, 5, 6.

From the equation a′ = a3 +y3 +a5 +y5 = a3 +x3 +a4 +x4 in A, we get 〈a4〉A−〈a5〉A =
〈y3 + y5〉A − 〈x3 + x4〉A. Thus

〈a1〉A − 〈a2〉A = 〈a4〉A + 〈y4 + y6〉A − 〈a5〉A − 〈x5 + x6〉A
= 〈y3 + y4 + y5 + y6〉A − 〈x3 + x4 + x5 + x6〉A
= 〈y〉A − 〈x〉A

where x = x3 + x4 + x5 + x6 ∈ A ∩B and y = y3 + y4 + y5 + y6 ∈ A ∩B.
Similarly, 〈b1〉B − 〈b2〉B = 〈x〉B − 〈y〉B . Hence

(〈a1〉A − 〈a2〉A, 〈b1〉B − 〈b2〉B) = α(〈y〉A∩B − 〈x〉A∩B),

that is, (〈a1〉A − 〈a2〉A, 〈b1〉B − 〈b2〉B) ∈ imα. �

We now consider the relationship between G(M) and Gr(M). . .
From the above discussion we have

a ∼r b =⇒ a+ r = b+ r =⇒ 〈a〉M = 〈b〉M
for any a, b ∈ M . Thus there is always a monoid homomorphism ψr from M/∼r to G(M)
given by [a]r 7→ 〈a〉M . This monoid homomorphism when restricted to Gr is a group
homomorphism. One circumstance in which this homomorphism is injective is given by the
following:

Proposition 10.11. Let M be a separative monoid and r ∈ M such that M = {≺ r}.
Then for all a, b ∈M

a ∼r b ⇐⇒ 〈a〉M = 〈b〉M .
Thus the monoid homomorphism ψr: Hr → G(M) given by [a]r 7→ 〈a〉M is injective. In
particular, Gr and Hr embed in G(M). Further G(Hr) ∼= G(M).

Proof. We need to check that 〈a〉M = 〈b〉M =⇒ a ∼r b for all a, b ∈M . . .
If 〈a〉M = 〈b〉M , then there is some x ∈M such that a+x = b+x. Since x ∈ {≺ r} there

is some number n such that x ≤ nr. Thus a+ nr = b+ nr. Separativity of M allows us to
cancel (n− 1)r from this equation to get a+ r = b+ r, that is, a ∼r b.

Thus we have shown that ψr is injective, and that Gr and Hr embed in G(M).
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We prove the last claim: Since ψr is a monoid homomorphism from Hr to a group G(M),
there is an induced group homomorphism ψ̂r: G(Hr) → G(M) given by ψ̂r(〈[a]r〉Hr

) = 〈a〉M
for all a ∈ M . This homomorphism is easily seen to be surjective. To show injectivity we
calculate ker ψ̂r: Suppose ψ̂r(〈[a]r〉Hr − 〈[b]r〉Hr ) = 0. Then 〈a〉M = 〈b〉M , and since ψr is
injective, [a]r = [b]r. Thus 〈[a]r〉Hr − 〈[b]r〉Hr = 0. �

With this proposition and 10.7, we see that the Archimedean component {� r} is em-
bedded in G(M).

We again consider the special (and simpler) case when r is regular. Here we get similar
results without needing separativity:

Proposition 10.12. Let M be a monoid, r ∈M a regular element such that {≺ r} = M .
Then Hr = Gr ∼= G(M), via the homomorphism ψr.

Proof. Since r is regular, we have {� r} = {≤ r} = {≺ r}, so

Hr = {≺ r}/∼r = {� r}/∼r = Gr.

To show that ψr is injective, consider a, b ∈M such ψr([a]r) = ψr([a]r). Then 〈a〉M = 〈b〉M ,
so there is some x ∈M with a+ x = b+ x. But x ≤ r, so a+ r = b+ r, that is, [a]r = [b]r.

Any element of G(M) is in the form 〈a〉M −〈b〉M for suitable a, b ∈M . We have a, b� r,
so [a]r and [b]r are in Gr, and [b]r has an inverse −[b]r. Thus ψr([a]r − [b]r) = 〈a〉M −〈b〉M ,
and ψr is surjective. �

As well as the injection ψr: Gr → G(M), there is always a surjective group homomor-
phism νr: G({� r}) → Gr defined by 〈a〉{�r} 7→ [a]r for all a � r. These properties
follow from the universal property of G({� r}) and 10.3.1. Our final goal in this section
is to use this group homomorphism to show a relationship between Ga, Gb and Ga+b for
elements a and b of a weakly cancellative monoid. In this situation there are epimorphisms
νa: G({� a}) → Ga, νb: G({� b}) → Gb, and νa+b: G({� a + b}) → Ga+b. From 10.10,
there is an exact sequence

G({� a} ∩ {� b}) → G({� a})×G({� b}) → G({� a}+ {� b}) → 0.

If it happened that {� a}+ {� b} = {� a+ b}, then one might expect that, using the
maps νa, νb and νa+b, it would be possible to construct a similar exact sequence relating
the groups Ga, Gb and Ga+b. This is indeed the case for weakly cancellative monoids:

Proposition 10.13. Let a, b be elements of a weakly cancellative refinement monoid M .
Set A = {� a} and B = {� b}. Then there is an exact sequence of Abelian groups

G(A ∩B) δ−→ Ga ×Gb
γ−→ Ga+b −→ 0

where γ and δ are given by
γ([u]a, [v]b) = [u+ v]a+b

δ(〈x〉A∩B) = ([x]a,−[x]b)

for all u� a, v � b, and x ∈ A ∩B.
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Proof. Since the monoid has weak cancellation, we have from 9.13 that

{� a}+ {� b} = {� a+ b},
that is, A+B = {� a+ b}. Consider the diagram

G(A ∩B) α //

δ

''OOOOOOOOOOOO
G(A)×G(B)

β //

νa×νb

��

G(A+B) //

νa+b

��

0

Ga ×Gb
γ // Ga+b // 0

The homomorphisms α and β are defined in 10.10 and make the top row exact. One
easily confirms that the diagram commutes, so we get immediately that γ is surjective and
γ(δ(G(A ∩B))) = 0. Thus it remains to prove that ker γ ⊆ im δ. . .

Suppose that γ([u]a, [v]b) = [u+v]a+b = 0 for some u� a and v � b. Then a+b+u+v =
a+ b and so, using 9.12, there is a refinement matrix

( a b u v

a a′ x u′ z
b w b′ y v′

)
with a ≤ a′ and b ≤ b′, say a′ = a+c and b′ = b+d. From the equation a = (a+c)+x+u′+z
we get −[x+z]a = [u′+c]a. Similarly, −[w+y]b = [v′+d]b. From the equation a = a′+w =
a+ c+ w we get [c+ w]a = 0. Similarly [d+ x]b = 0. Note also that w, x, y, z ∈ A ∩ B, so
that w + y, x+ z ∈ A ∩B. Finally we calculate

δ(〈w + y〉A∩B − 〈x+ z〉A∩B) = ([w + y]a − [x+ z]a,−[w + y]b + [x+ z]b)

= ([w + y + c+ u′]a, [v′ + d+ x+ z]b)

= ([c+ w]a + [u′ + y]a, [d+ x]b + [v′ + z]b)

= ([u]a, [v]b).

Thus ker γ ⊆ im δ. �
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11 Primely Generated Refinement
Monoids

As for many other algebraic structures, rings, modules, lattices, etc., much can be learned
by focusing on those elements which are essential to any generating set for the structure. If
one studies numbers then prime numbers are important because any number is a product of
primes and because primes can not themselves be expressed as a product except in a trivial
way. If one studies finitely generated modules over Artinian rings, then indecomposable
modules are important because any such module is a direct sum of indecomposables.

Within a monoid, there are two properties that an element can have which are analogs
of the properties of prime numbers and indecomposable modules:

Definition 11.1. Let M be a monoid and p ∈M . Then
• p is prime if for all a1, a2 ∈M

p ≤ a1 + a2 =⇒ p ≤ a1 or p ≤ a2,

• p is indecomposable if for all a1, a2 ∈M
p ≡ a1 + a2 =⇒ p ≡ a1 or p ≡ a2.

Note that 0 is a prime, indecomposable element in any monoid. A simple induction shows
that these properties extend to arbitrary finite sums:

• If p is prime and p ≤ a1 + a2 + . . .+ an then there is some i ∈ {1, 2, . . . , n} such that
p ≤ ai.

• If p is indecomposable and p ≡ a1 + a2 + . . .+ an then there is some i ∈ {1, 2, . . . , n}
such that p ≡ ai.

Proposition 11.2. Let M be a monoid and p ∈M . Then
p prime =⇒ p indecomposable.

Proof. If p ≡ a1 + a2, then a1 + a2 ≤ p and p ≤ a1 + a2. The first inequality implies
a1, a2 ≤ p. The second and the primeness of p imply that either p ≤ a1 or p ≤ a2. Thus we
have either p ≡ a1 or p ≡ a2. �

Proposition 11.3. Let M be a monoid and p ∈M . Then
1. p is prime in M ⇐⇒ {≡ p} is prime in M =⇒ {� p} is prime in M̃

2. p is indecomposable in M ⇐⇒ {≡ p} is indecomposable in M

Proof. The claims involving M are easy consequences of the fact that {≡ a} ≤ {≡ b} in M
if and only if a ≤ b in M .

For the remaining claim, we have the rule {� a} ≤ {� b} in M̃ if and only if a ≺ b in
M . Thus, if {� p} ≤ {� a1}+ {� a2} then p ≺ a1 + a2 and there is some n ∈ N such that



Section 11: Primely Generated Refinement Monoids 95

p ≤ n(a1 +a2). Since p is prime, we have either p ≤ a1 or p ≤ a2. So either {� p} ≤ {� a1}
or {� p} ≤ {� a2}. �

Proposition 11.4. Let p be an indecomposable element of a monoid M . Then for any
a ∈M ,

a ≤ p =⇒ a ≡ p or a� p.

Proof. Let b ∈ M be such that a + b = p. Then either a ≡ p or b ≡ p. In the second case,
we get a+ p ≡ a+ b = p so a� p. �

Proposition 11.5. Let I be an order ideal in M and p ∈M . Then
1. p prime =⇒ [p]I prime in M/I

2. If p ∈ I, then p is indecomposable in I if and only if p is indecomposable in M .

Proof.
1. Suppose [p]I ≤ [a1]I+[a2]I inM/I. Then there is some u ∈ I such that p ≤ a1+a2+u.

Since p is prime, we have either p ≤ a1, p ≤ a2 or p ≤ u. In the first two cases we
get either [p]I ≤ [a1]I or [p]I ≤ [a2]I . In the last case, p ≤ u ∈ I so p ∈ I and
[p]I = 0 ≤ [a1]I , [a2]I . Therefore [p]I is a prime in M/I.

2. Suppose p is indecomposable in I, and p ≡ a1 + a2 for some a1, a2 ∈ M . Since
a1, a2 ≤ p ∈ I, we get a1, a2 ∈ I, and so by the indecomposability of p in I, p ≡ a1

or p ≡ a2. This makes p indecomposable in M .
�

In a decomposition monoid we have the simpler situation that primes and indecompos-
ables are the same:

Proposition 11.6. Let M be a decomposition monoid, I ≤M an order ideal and p ∈M .
Then

1. p is prime ⇐⇒ p is indecomposable.
2. p is indecomposable =⇒ [p]I is indecomposable in M/I.
3. If p ∈ I, then p is a prime element of I if and only if it is a prime element of M

Proof.
1. We already know that p prime implies p indecomposable. For the converse, suppose
p is indecomposable and p ≤ a + b for some a1, a2 ∈ M . Then there are p1, p2 such
that p1 ≤ a1, p2 ≤ a2,and p = p1 + p2. But then p ≤ p1 ≤ a1 or p ≤ p2 ≤ a2. Thus
p is prime.

2. This follows from 1 and 11.5.
3. This follows from 1 and 11.5.

�

Since we will be working almost entirely with decomposition and refinement monoids,
the distinction between primes and indecomposables will seldom appear.

Definition 11.7. An element of a monoid is primely generated if it is a sum of prime
elements. A monoid is primely generated if all its elements are primely generated.
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One of the main themes of this section is that, in refinement monoids, the existence
of primely generated elements leads to cancellation properties of the types discussed in
Section 9, namely, weak cancellation and midseparativity. We begin with weak cancellation:

Proposition 11.8. Let M be a refinement monoid, a, b, c ∈ M with c primely generated.
If a+ c = b+ c, then there is a refinement matrix

( b c

a ∗ ∗
c ∗ c1

)
with c ≤ c1.

Proof. Let C be the class of all elements c ∈M such that a+ c = b+ c implies the existence
of a refinement as above. Clearly 0 ∈ C. We will show that if c ∈ C and p ∈ M is prime,
then c+ p ∈ C. . .

Suppose we have a+ c+ p = b+ c+ p for some c ∈ C and prime p. Since c ∈ C, there is
a refinement ( b+ p c

a+ p ∗ ∗
c ∗ c1

)
with c ≤ c1. Refining further we can get a new refinement matrix, still with c1 as an entry:


b p c

a d2 a2 a3

p b2 p1 p2

c b3 p3 c1


Note that p = b2 + p1 + p2 = a2 + p1 + p3. Now we consider two cases:
• If p ≤ p1 or p ≤ p2 or p ≤ p3, then c+ p ≤ c1 + p1 + p2 + p3 and

( b c+ p

a d2 a2 + a3

c+ p b2 + b3 c1 + p1 + p2 + p3

)
is a refinement of the form we seek.

• If p 6≤ p1 and p 6≤ p2 and p 6≤ p3, then since p is prime we must have p ≤ a2 and
p ≤ b2. Hence a2 = p+ a4 and b2 = p+ b4 for some a4, b4 ∈M , and

( b c+ p

a d2 + p a3 + a4

c+ p b3 + b4 p+ c1 + p1 + p2 + p3

)
is a refinement of the form we seek.

We have shown therefore that c + p ∈ C, and by induction, that any primely generated
element is in C. �

Corollary 11.9.
1. Any primely generated refinement monoid is weakly cancellative.
2. If M is a primely generated refinement monoid, then so is M .
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Proof.
1. This is immediate from 11.8 and the definition of weak cancellation, 9.1.
2. Since primes in M map to primes in M (11.3.1), it is easy to see that M is primely

generated. Proposition 9.14 and 1 then show that M has refinement.
�

There are versions of the weak cancellation properties discussed in Section 9 that apply
to refinement monoids containing primely generated elements:

Corollary 11.10. Let M be a refinement monoid and a, b, c, c1, c2 ∈ M . Suppose c, c1, c2
are primely generated.

1. If a+ c1 + c2 = b+ c1 + c2, then there is a refinement matrix


b c1 c2

a ∗ ∗ ∗
c1 ∗ c′1 ∗
c2 ∗ ∗ c′2


such that c1 ≤ c′1 and c2 ≤ c′2.

2. a+ c ≤ b+ c =⇒ (∃a1 � c such that a ≤ b+ a1)
3. a� c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 � c1 and a2 � c2)
4. {� c1 + c2} = {� c1}+ {� c2}
5. a ≡ c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 ≡ c1 and a2 ≡ c2)

Proof. The proofs are exactly the same as for 9.12 and 9.13, except for the use of 11.8 in
place of the weak cancellation hypothesis. �

Corollary 11.11. Let a and b be elements of a refinement monoid such that a ≡ b. Then
a is primely generated if and only if b is primely generated.

Proof. Suppose a = p1 + p2 + . . .+ pK for some primes p1, p2, . . . , pK ∈M . Then a simple
induction from 11.10.5 shows that there are p′1, p

′
2, . . . , p

′
K such that b = p′1 + p′2 + . . .+ p′K

and pi ≡ p′i for i = 1, 2, . . . ,K. This last condition says that p′i is prime for all i and so b is
primely generated. �

In 11.33, we will extend this result to elements such that a � b.

Lemma 11.12. Let M be a refinement monoid and a, b, c ∈ M . Suppose c is primely
generated.

1. If a+ c = b+ c and c ≤ a, b, then a = b.
2. If a+ nc = b+ nc for some n ∈ N, then a+ c = b+ c.
3. If a+ c = b+ c and c ≺ a, b, then a = b.

Proof.
1. From 11.8, there is a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c ≤ c1. In particular, a1 + c ≤ a1 + c1 = c so that a1 � c. From 8.3, we get
a+ a1 = b+ a1. So, with a1 � c ≤ a, b, 8.2.1 implies that a = b.
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2. Follows by induction from 1.
3. Suppose c = p1 + p2 + . . . + pK for some primes p1, p2, . . . , pK . Since c ≺ a, b there

is some n ∈ N such that c ≤ na, nb. For each i ≤ K, we have pi ≤ c ≤ na, nb, so
pi ≤ a, b. Using 1, we can cancel the elements p1, p2, . . . , pK one at a time from the
equation a+ p1 + p2 + . . .+ pK = b+ p1 + p2 + . . .+ pK to get a = b.

�

Proposition 11.13. Let M be a refinement monoid and a, b, c, d ∈ M . Suppose d is
primely generated.

1. (a+ c = b+ c and c ≺ d ≺ a, b) =⇒ a = b.
2. The Archimedean component {� d} is cancellative.
3. If a, b or c is in {� d}, then

(a+ c = b+ c and c ≺ a, b) =⇒ a = b.

4. If a or b is in {� d}, then

(2a = a+ b = 2b) =⇒ a = b.

5. If c ∈ {� d}, then c is either free or regular.
6. If a, b ∈ {� d}, then the congruences ∼a and ∼b coincide. In particular, Ga = Gb,
Ha = Hb and {� a} = {� b}.

Proof.
1. Let n ∈ N be such that c ≤ nd. Then a+ nd = b+ nd, and nd ≺ d ≺ a, b. Since nd

is primely generated, 11.12.3 implies that a = b.
2. If a+ c = b+ c with a, b, c ∈ {� d}, then c ≺ d ≺ a, b, and from 1, a = b.
3. We have two cases to prove:

• Suppose c ∈ {� d}. Then, in particular, we have c ≺ d ≺ c ≺ a, b. So
applying 1, we get a = b.

• Suppose a ∈ {� d}. Let n ∈ N be such that c ≤ na, nb. Since c ≤ nb, we get
a+nb = b+nb = (n+1)b, so a ≺ b. Since c ≤ na, we also get a+na = b+na.
Using 1 with the relation na ≺ a ≺ d ≺ a ≺ a, b, we can cancel na from this
equation to get a = b.

4. The equation 2a = 2b implies that a and b are in the same Archimedean component,
namely, {� d}. Using 2, we can cancel a from a+ a = a+ b, to get a = b.

5. If c is not free, then there are m,n ∈ N such that m > n and mc ≤ nc. If n = 1 then
c is regular and we are done.

Otherwise we write the inequality as (m − n + 1)c + x + (n − 1)c = c + (n − 1)c
for some x ∈M . We have (n− 1)c ≺ c ≺ d ≺ c, (m− n+ 1)c+ x, so we can use 1 to
cancel (n− 1)c from this equation to get (m− n+ 1)c+ x = c. Since m− n+ 1 ≥ 2,
this implies that c is regular.

6. Let n ∈ N be such that a ≤ nb. If x ∼a y, then x+a = y+a, and so x+nb = y+nb.
Since (n − 1)b ≺ b ≺ d ≺ b ≺ b + x, b + y, we can use 1 to get b + x = b + y, that
is, x ∼b y. By symmetry, x ∼b y implies x ∼a y. The rest of the claim then follows
from 10.2 and 10.3.1.

�
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Many of the statements of this proposition will seem more natural when we prove in 11.33
that if d is primely generated then all elements of {� d} are also primely generated.

Next we show that the existence of a primely generated element in a refinement monoid
gives rise to a cancellation property similar to midseparativity:

Proposition 11.14. Let M be a refinement monoid, a, b, c ∈M with c primely generated.
If a + c = b + c and c ≤ a, then there is a primely generated idempotent e ≤ c such that
a = b+ e.

Proof. Let C be the class of all elements c ∈ M such that a + c = b + c and c ≤ a implies
the existence of a primely generated idempotent e ≤ c with a = b + e. Clearly 0 ∈ C. We
will show that if c ∈ C and p ∈M is prime, then c+ p ∈ C. . .

Suppose we have a+ c+ p = b+ c+ p with c+ p ≤ a for some c ∈ C and prime p. Since
c ∈ C and c ≤ a ≤ a+p, there is a primely generated idempotent e ≤ c with a+p = b+p+e.
We have p ≤ a so, using 8.5.1, we can make a refinement

( b+ e p

a d1 a1

p b1 p1

)
with p1 ≤ a1.

Since p is prime we get two cases:
• If p 6≤ p1, then we must have p ≤ a1, b1 and hence p ≤ a, b+ e. Using 11.12.1, we can

then cancel p from the equation a + p = b + p + e to give a = b + e. We also have
e ≤ c ≤ c+ p.

• If p ≤ p1, then we have 2p ≤ 2p1 ≤ a1 + p1 = p, so p� p. Since we also have p ≤ a,
we can use 8.2.2 to get f ≡ p such that 2f = f and a = b+ e+ f . The element f is
prime and so e+ f is a primely generated element such that 2(e+ f) = (e+ f). We
also have f ≤ p, so e+ f ≤ c+ p.

We have shown therefore that c + p ∈ C, and by induction, that any primely generated
element is in C. �

Corollary 11.15.
1. Any primely generated refinement monoid is midseparative.
2. A primely generated refinement monoid is strongly separative if and only if it has no

proper regular elements.

Proof. Directly from 11.14 and 9.6. �

We now consider another kind of cancellation that has appeared only briefly in our
discussion so far:

Definition 11.16. A monoid M has ≤-multiplicative cancellation if

(∀n ∈ N)(∀a, b ∈M) (na ≤ nb =⇒ a ≤ b).
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Before proving that primely generated monoids have≤-multiplicative cancellation, we will
show that (ordinary) cancellation and ≤-multiplicative cancellation are distinct properties
for refinement monoids. . .

The refinement monoid M = {0,∞} is not cancellative but has ≤-multiplicative cancel-
lation simply because na = a for all a ∈ M and n ∈ N. For an example of a refinement
monoid which is cancellative but does not have ≤-multiplicative cancellation we have to
work a bit harder:

Example 11.17. Let M = R++ × Z2. Since R++ and Z2 are refinement semigroups (see
7.6), so is M . Let M0 be the refinement monoid obtained by adjoining a zero element to
M .

That M0 is cancellative can be checked directly or by recognizing that M0 is isomorphic to
the submonoid obtained by deleting the element (0, 1) from the cancellative monoid R+×Z2.

Also easily checked is that for (r1, x1), (r2, x2) ∈M with the minimum preorder of M0,

(r1, x1) ≤ (r2, x2) ⇐⇒ (r1 = r2 and x1 = x2) or r1 < r2.

Set a = (1, 0) and b = (1, 1). Then we have 2a = 2b but a 6≤ b, thus M0 does not have
≤-multiplicative cancellation.

The above monoid has (n = 3) ≤-multiplicative cancellation, that is

(∀a, b ∈M0) (3a ≤ 3b =⇒ a ≤ b).

By replacing the group Z2 by other Abelian groups in the above construction, monoids
which fail ≤-multiplicative cancellation in other ways can be constructed. Another monoid
of this type can be constructed as a submonoid of (C, ·), the set of complex numbers with
multiplication as operation. Set

M = {z ∈ C | |z| > 1} ∪ {1} ⊆ C.
Then M is a cancellative refinement monoid which fails ≤-multiplicative cancellation for all
n > 1.

We next establish a ≤-multiplicative cancellation property for primely generated elements
of refinement monoids:

Proposition 11.18. Let a be a primely generated element of a refinement monoid M .
Then for all b ∈M and n ∈ N,

na ≤ nb =⇒ a ≤ b.

Proof. Let A be the class of all primely generated elements a ∈ M such that for all b ∈ M
and n ∈ N, na ≤ nb implies a ≤ b. Clearly 0 ∈ A. We will show that if a ∈ A and p ∈M is
prime, then a+ p ∈ A. . .

Suppose we have n(a + p) ≤ nb for some a ∈ A and prime p. Since na ≤ nb we have
a ≤ b, so a + x = b for some x ∈ M . Thus na + np ≤ na + nx and there is some u ∈ M
such that na + np + u = na + nx. The element na is primely generated, so using 11.8, we
can make a refinement of this equation,

(nx na

np+ u d1 a1

na b1 c1

)
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such that na ≤ c1. From the inequality p ≤ np+ u = d1 + a1 we get two cases:
• If p ≤ d1, then p ≤ nx and thus p ≤ x. Consequently, a+ p ≤ a+ x = b.
• If p ≤ a1, then na+ p ≤ c1 + a1 = na. From 11.12.2, this implies a+ p ≤ a ≤ b.

We have shown therefore that a+ p ∈ A, and by induction, that any primely generated
element is in A. �

As an immediate corollary we get

Corollary 11.19. Any primely generated refinement monoid has ≤-multiplicative cancel-
lation.

If a is a primely generated element of a monoid, there will in general be many ways
of expressing a as a sum of primes. Thus we consider the question of whether there is
a canonical form for such elements. Among all such expressions for a there are certainly
expressions which have the least possible number of terms. These we will call minimum
prime expressions for a.

Proposition 11.20. Let a be a primely generated element of a monoid, and a =
∑K
i=1 pi

a minimum prime expression for a. Then for any i, j ≤ K,

pi ≤ pj =⇒ pi ≡ pj .

Any two such expressions contain the same primes up to ≡, that is, if

a =
K∑
i=1

pi =
K∑
i=1

qi

are minimum prime expressions for a, then for any i ≤ K there is some j ≤ K such that
pi ≡ qj.

Proof. Suppose a =
∑K
i=1 pi has minimum length and pi ≤ pj with i 6= j. By 11.2 and 11.4,

pi ≡ pj or pi � pj . In the second case, pi + pj ≡ pj , so pi + pj would be a prime and we
could shorten the expression for a. This contradicts the minimality of the expression, so we
must have pi ≡ pj .

Further, if there are two minimum prime expressions for a as above, and i ≤ K, then,
since pi ≤

∑K
j=1 qj , there is some j ≤ K such that pi ≤ qj . Similarly, there is some k ≤ K

such that qj ≤ pk. Thus pi ≤ qj ≤ pk, and pi ≡ qj ≡ pk. �

This proposition does not rule out the possibility that an element could have two minimal
prime expressions in which the multiplicities of the primes which appear are different. The
following gives just such a monoid:

Example 11.21. Let M be the monoid generated by two elements p and q such that 3p = 2p,
3q = 2q and 2p+ q = 2q+ p. Then M has seven elements: {0, p, 2p, q, 2q, p+ q, 2p+ q} and
is partially ordered. 0, p and q are the prime elements, and 0, 2p, 2q and 2p + q are the
regular elements of M . Thus 2p+ q and 2q+ p are two minimum prime expressions for the
same element of M .
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The complication shown by this example disappears in refinement monoids. To prove
this, we will define functions np, one for each prime p, which will enable us to get a handle
on the primes which appear in expressions for primely generated elements.

Definition 11.22. For any element p of a monoid M , define a function np: M → (Z+)∞

by
np(a) = sup{n ∈ Z+ | np ≤ a}

for all a ∈M .

As easy consequences of the definition we get

Proposition 11.23. Let a, a′, p, p′ be elements of a monoid.
1. np(a) = 0 if and only if p 6≤ a

2. If p ≤ 0 then np(a) = ∞
3. If p� p then np(a) ∈ {0,∞}
4. If p′ ≡ p and a′ ≡ a then np(a) = np′(a′)

Proposition 11.24. If M is a refinement monoid and p ∈ M is prime such that p 6≤ 0,
then np is a monoid homomorphism.

Proof. Since p 6≤ 0 we have np(0) = 0, so we need to show only that np(a1 + a2) =
np(a1) + np(a2) for all a1, a2 ∈M . . .

Suppose n1p ≤ a1 and n2p ≤ a2 for some n1, n2 ∈ Z+. Then (n1 + n2)p ≤ a1 + a2,
and hence n1 + n2 ≤ np(a1 + a2). Taking the supremum over all such n1 and n2 gives the
inequality np(a1) + np(a2) ≤ np(a1 + a2).

To show the opposite inequality, suppose np ≤ a1 + a2 for some n ∈ Z+. Then we get
the refinement matrix ( p p . . . p

a1 ≥ x1 x2 . . . xn
a2 ≥ y1 y2 . . . yn

)
Since p is prime, for each i, we have either p ≤ xi or p ≤ yi. So there are some n1, n2 ∈ Z+

such that n = n1 + n2, n1p ≤ a1 and n2p ≤ a2. Thus n ≤ np(a1) + np(a2), and taking the
supremum over all such n we get np(a1 + a2) ≤ np(a1) + np(a2). �

Proposition 11.25. If p and q are primes in a refinement monoid, then np(q) ∈ {0, 1,∞}
and

1. np(q) = 0 ⇐⇒ p 6≤ q

2. np(q) = 1 ⇐⇒ (p ≡ q and p is free).
3. np(q) = ∞ ⇐⇒ p� q.

Proof. If p ≤ 0 then np(q) = ∞ and the claim is trivially true. So it remains to consider
the case where p 6≤ 0 and hence np is a homomorphism:

1. This we have already noted in 11.23.
2. If np(q) = 1 then p ≤ q, so by 11.3, either p � q or p ≡ q. The first case implies
np(q) = ∞, so we must be in the second case. To show freeness, suppose mp ≤ np
for some m,n ∈ N, then mq ≤ np ≤ nq, and so m = np(mq) ≤ np(nq) = n.

Conversely, if q ≡ p and p is free, then for any n ∈ N, np ≤ q ⇐⇒ np ≤ p ⇐⇒
n ≤ 1. Thus np(q) = 1.
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3. Notice that if np(q) ≥ 2 then 2p ≤ q and, by 11.3, p ≡ q or p � q. But in the first
case, q + p ≡ 2p ≤ q. So in either case, p � q. Conversely, if p � q, then a simple
induction shows that np+ q ≤ q for all n ∈ N, so np(q) = ∞.

Finally we note that the argument of 3 shows that np(q) ∈ {0, 1,∞}. �

Corollary 11.26. If p is a prime in a refinement monoid, then np(p) ∈ {1,∞}, and
1. np(p) = 1 ⇐⇒ p is free.
2. np(p) = ∞ ⇐⇒ p is regular.

With the homomorphisms np in hand, we return to the question of uniqueness of minimal
prime expressions–this time for refinement monoids. . .

Proposition 11.27. Let a be a primely generated element in a refinement monoid. Then
any minimum prime expression for a is unique up to ≡-equivalence. Specifically, if

a =
K∑
i=1

pi =
K∑
i=1

qi

are minimum prime expressions for a, then after suitable renumbering, we get pi ≡ qi for
all i ≤ K.

Proof. Fix a pI . From 11.2, there is some qJ such that qJ ≡ pI . Now we consider the
following two cases:

• pI free: For any i ≤ K, we have either pI 6≤ pi and npI
(pi) = 0, or pI ≤ pi, which

implies pi ≡ pI and npI
(pi) = npI

(pI) = 1. Thus npI
(a) =

∑
i npI

(pi) is just equal
to the number of terms in

∑
i pi which are ≡-equivalent to pI . Similarly, nqJ

(a)
is the number of terms in

∑
j qj which are ≡-equivalent to qJ . But pI ≡ qJ , so

npI
(a) = nqJ

(a) and
∑
i pi and

∑
j qj have the same number of terms ≡-equivalent

to pI . Thus free primes, and their multiplicities, match up in the two minimum prime
expressions for a.

• pI regular: In this case, there is no other pi such that pi ≡ pI , or qj such that
qj ≡ qJ , since otherwise, we could shorten the minimum prime expressions. Thus
the sums

∑
i pi and

∑
j qj each have exactly one term ≡-equivalent to pI .

�

One might hope that it would be possible to collect ≡-equivalent primes together so that
any primely generated element could be written in the form a = n1p1 + n2p2 + . . .+ nKpK
where ni ∈ N and p1, p2, . . . , pK are primes such that pi ≤ pj implies pi = pj . This is not
always possible: Let M = Z \ {0} with multiplication as its monoid operation. Then one
easily checks that 2 and −2 are ≡-equivalent primes and so −4 is primely generated (as is
any element), but there is no element p ∈M such that −4 = p2.

To state the best possible result of this type we will call a set X of prime elements of a
monoid incomparable if for all p, p′ ∈ X, p ≤ p′ implies p = p′.

Proposition 11.28. Let a be a primely generated element in a refinement monoid. Then

a ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL

where {p1, p2, . . . , pK , q1, q2, . . . , qL} is a set of incomparable primes with pi free, qi regu-
lar and ni = npi

(a) ∈ N for all i. In any expression for a of this form, the numbers
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K,L, n1, n2, . . . , nK are uniquely determined by a and the primes are determined up to ≡-
equivalence.

Proof. From 11.27 we have that there is a minimum prime expression for a in the form
a =

∑
i pi. From this sum we will construct the required expression. . .

We first relabel the regular primes as q1, q2, . . . , qL. Note that qi ≡ qj implies i = j, since
otherwise qi + qj is prime and we could shorten the minimum prime expression for a.

Among the remaining primes we pick a representative of each ≡-equivalence class and
label these primes p1, p2, . . . , pK . Thus any prime appearing in the original minimum prime
expression for a is ≡-equivalent to a unique element of X = {p1, p2, . . . , pK , q1, q2, . . . , qL}.

It is easy to see that X is a set of incomparable primes. As in 11.27, for each free prime
pi, ni = npi

(a) is the number of primes ≡-equivalent to pi in the minimal prime expression.
Thus

a ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL.

We now consider the uniqueness of such expressions. . .
Suppose we have, in addition, the expression

a ≡ n′1p
′
1 + n′2p

′
2 + . . .+ n′K′p′K′ + q′1 + q′2 + . . .+ q′L′

where X ′ = {p′1, p′2, . . . , p′K′ , q′1, q
′
2, . . . , q

′
L′} is a set of incomparable primes with p′i free, q′i

regular and ni ∈ N for all i. The argument used in 11.20 shows that there is a bijection
between the primes of X and the primes of X ′, and so, after suitable relabeling, we can
assume that K ′ = K, L′ = L, pi ≡ p′i and qi ≡ q′i for all i. A simple calculation then shows
that

ni = npi(a) = np′i(a) = n′i.

�

An expression of the form given in this proposition will be called a canonical form for
a. We will see in 11.37 that the number of free primes, that is, the number K, in a canonical
form for a plays a crucial role in determining the structure of {� a}. Regular primes in the
canonical form will take the sidelines. In the extreme case, the Archimedean component of
a primely generated regular element is trivial in the sense of the following proposition:

Proposition 11.29. Let a be a primely generated regular element in a refinement monoid.
Then

{� a} = {≡ a} ∼= Ga = Ha
∼= G({≺ a}).

Proof. We will show first that {� a} ⊆ {≡ a}. The opposite inclusion is trivially true.
Suppose b ≺ a ≺ b. Then b ≤ na for some n ∈ N. Since a is regular, we have na ≤ a and

so b ≤ a.
Also there is some m ∈ N such that a ≤ mb. This gives ma ≤ mb, and using 11.18 we

get a ≤ b.
The remaining claims of this proposition follow directly from 10.5 and 10.12. �

The structure of primely generated regular (6.7) refinement monoids has been studied by
H. Dobbertin [8].

We remark that if a = q1 + q2 + . . .+ qL for a set {q1, q2, . . . , qL} of incomparable regular
primes, then {� a} = {≡ a}, even without refinement. Without the refinement hypothesis,
however, not every primely generated regular element is a sum of regular primes. Consider,
for example, the monoid M = {0, 1,∞} with 1 + 1 = 1 +∞ = ∞ +∞ = ∞. The element
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1 is a prime in M but is neither free nor regular. The element ∞ is a primely generated
regular element of M which is not a sum of regular primes. Further, {� ∞} = {1,∞} and
{≡ ∞} = {∞}.

We turn next to the structure of {� a} when a is a free primely generated element of a
refinement monoid M . From 11.28, we have

a ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL

where {p1, p2, . . . , pK , q1, q2, . . . , qL} is a set of incomparable primes with pi free, qi regular
and ni ∈ N for all i. Since a is free we must have K ≥ 1. We will write q = q1 +q2 + . . .+qL
and f = n1p1 + n2p2 + . . .+ nKpK , so a ≡ f + q and a+ q ≤ a.

For each prime pi there is a monoid homomorphism npi
: M → (Z+)∞ defined in 11.22.

We note again that npi
(pj) = δij , npi

(qj) = 0 and npi
(a) = ni for all i, j. We can combine

these to make a homomorphism Na: M → ((Z+)∞)K by defining

Na(x) = (np1(x), np2(x), . . . , npK
(x))

for all x ∈M .
We will henceforth restrict our attention to the order ideal {≺ a}. . .
If x ≺ a, then x ≤ ma for some m ∈ N, so npi(x) ≤ npi(ma) = mni < ∞. Thus the

homomorphism Na maps {≺ a} into (Z+)K . In particular, Na({≺ a}) is cancellative.
It will be useful to define a right inverse for Na, ν: (Z+)K → {≺ a} by

ν(m) = m1p1 +m2p2 + . . .+mKpK ,

where m = (m1,m2, . . . ,mK) ∈ (Z+)K . One readily confirms that Na ◦ ν is the identity on
(Z+)K , so that Na({≺ a}) = (Z+)K , and also ν(Na(a)) = f . Notice also that ν depends on
the particular primes used in its definition, whereas Na depends only on a and the order of
the primes p1, p2, . . . , pK .

Proposition 11.30. Let a be a free primely generated element in a refinement monoid M .
Let a ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL, q, f , Na and ν be as above. Then
for all x ≺ a,

1. ν(Na(x)) ≤ x

2. Na(x) = 0 ⇐⇒ x� a

3. x = ν(Na(x)) + u for some u� a.

Proof.
1. We want to show that np1(x)p1 + np2(x)p2 + . . .+ npK

(x)pK ≤ x.
By the definition of np1 , we have np1(x)p1 ≤ x, so there is some x1 ∈ M such

that np1(x)p1 + x1 = x. Applying the homomorphism np2 to this equation gives
np2(x1) = np2(x). Thus there is some x2 ∈M such that x1 = np2(x)p2 + x2, that is,
np1(x)p1 + np2(x)p2 + x2 = x. Repeating this process in the obvious way gives the
required inequality.

2. If x � a, then x + a ≤ a. Applying Na we get Na(a) + Na(x) ≤ Na(a). Thus
Na(x) = 0.

Conversely, suppose Na(x) = 0. Since x ≺ a, there are y ≺ a and m ∈ N such that
x+y = ma. Applying the homomorphismNa to this equation givesNa(y) = mNa(a),
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so with 1, we have y ≥ ν(Na(y)) = mν(Na(a)) = mf . Thus x+mf ≤ x+ y = ma.
Adding mq to this yields x +ma ≤ x +mf +mq ≤ ma +mq ≤ ma. Finally, using
11.12.2, we can cancel (n− 1)a from this inequality to get x+ a ≤ a.

3. From 1, we know that x = ν(Na(x)) + u for some u ∈ M . We need to check only
that u� a. . .

Applying Na to this equation yields Na(x) = Na(x) +Na(u). So Na(u) = 0, and
from 2, u� a.

�

We specialize 11.30 further to the case of x ∈ {� a}. . .

Proposition 11.31. Let a be a free primely generated element in a refinement monoid M .
Let a ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL, q, Na and ν be as above. Then for
all x ∈ {� a},

1. Na(x) ∈ NK

2. x ≡ ν(Na(x)) + q

Proof.
1. Since x is in the Archimedean component containing a, Na(x) is in the Archimedean

component containing Na(a) = (n1, n2, . . . , nK), which is easily seen to be NK .
2. Let n ∈ N be such that a ≤ nx, then nq ≤ q ≤ a ≤ nx, so, from 11.18, we get q ≤ x.

Thus x = y + q for some y ∈ M . Since Na(q) = 0, we have Na(y) = Na(x). From
11.30.3, y = ν(Na(x)) + u for some u� a, and so x = ν(Na(x)) + q + u.

From 1, we have Na(x) ≥ (1, 1, . . . , 1), so ν(Na(x)) + q ≥ p1 + p2 + . . .+ pK + q.
This implies that a ≺ ν(Na(x))+ q ≺ a. From 11.13.6 we get u� ν(Na(x))+ q, and
so x = ν(Na(x)) + q + u ≡ ν(Na(x)) + q

�

It is worth recording the special case of these last two propositions when a is itself a
prime:

Proposition 11.32. Let a be a free prime element in a refinement monoid M . Then for
all x ≺ a,

1. na(x) <∞
2. na(x) = 0 ⇐⇒ x� a

3. (∀n ∈ N) (na(x) = n ∈ N ⇐⇒ x ≡ na)

Proof. Since x ≺ a, there is some n ∈ N such that x ≤ na. Using 11.26, this implies that
na(x) ≤ na(na) = n <∞.

Since a is prime, Na and na coincide, and so 2 is immediate from 11.30. If na(x) = n ∈ N,
then na ≤ x. Since a is prime, this implies a ≤ x and so x � a. Thus, from 11.31.2,
x ≡ ν(Na(x)) = na. The converse is immediate since na is a homomorphism. �

Proposition 11.33. Let a be a primely generated element in a refinement monoid M .
Then all elements of {� a} are primely generated.

Proof. Let x � a. By 11.13.5, we consider two cases:
• If a is regular, then from 11.29, x ≡ a, and so by 11.11, x is primely generated.
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• If a is free, then from 11.31.2, x ≡ ν(Na(x)) + q. Since ν(Na(x)) + q is primely
generated, the claim follows from 11.11.

�

Monoids with the property that nx ≤ a for all n ∈ N implies x � a, are called
Archimedean by F. Wehrung [31], [32]. Example 14.2 is a cancellative refinement monoid
which does not have this property, so it is quite independent of any of the other cancellation
properties we have been studying.

Proposition 11.34. Let a be a primely generated element in a refinement monoid M .
Then for all x ∈M ,

(x� a) ⇐⇒ (∀n ∈ N) (nx ≤ a).

Proof. If x� a, then it true, in general, that nx ≤ a for any n ∈ N.
For the converse, by 11.13.5, we consider two cases:
• Suppose a is regular. Then x ≤ a suffices to imply that x� a.
• Suppose a is free. Then x ≤ a implies nx ≺ a, and we can apply the homomorphism
Na to the inequality nx ≤ a to get nNa(x) ≤ Na(a) ∈ (Z+)K . Since this is true for
all n ∈ N we get Na(x) = 0, and so, by 11.30.2, x� a.

�

Before going further with the structure of Archimedean components, we need to establish
analogs of 10.7 and 10.11 that apply to order ideals generated by primely generated elements.

Proposition 11.35. Let r be a primely generated element of a refinement monoid M .
1. The Archimedean component {� r} is embedded in Hr by the monoid homomorphism
a 7→ [a]r.

2. Hr is cancellative.

Proof. The proofs are essentially the same as for 10.7:
1. We show that the homomorphism is injective when restricted to {� r}. . .

Suppose a, b ∈ {� r} such that [a]r = [b]r. Then a+ r = b+ r, so we can use the
fact the Archimedean component containing r is cancellative (11.13.2) to get a = b.

2. Suppose a, b, c ∈ {≺ r} such that [a]r + [c]r = [b]r + [c]r. Then a+ c+ r = b+ c+ r.
Since c ≺ r, there is some n ∈ N such that c ≤ nr, and so a + r + nr = b + r + nr.
Canceling using 11.12.2, we get a+ r = b+ r, that is, [a]r = [b]r.

�

Proposition 11.36. Let r be a primely generated element of a refinement monoid M such
that M = {≺ r}. Then for all a, b ∈M

a ∼r b ⇐⇒ 〈a〉M = 〈b〉M .
Thus the monoid homomorphism ψr: Hr → G(M) given by [a]r 7→ 〈a〉M is injective. In
particular, Gr and Hr embed in G(M). Further G(Hr) ∼= G(M).

Proof. The proof of this proposition is the same as for 10.11 except for the obvious replace-
ment of the separativity hypothesis by 11.12.2 �
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Now we can prove the main structure theorem for {� a}:

Theorem 11.37. Let a be a free primely generated element in a refinement monoid M ,
and K the number of free primes in a canonical form for a. Then

1. Ha
∼= (Z+)K ×Ga (monoid isomorphism)

2. {� a} ∼= NK ×Ga (semigroup isomorphism)
3. G({≺ a}) ∼= ZK ×Ga (group isomorphism)

Proof. We will continue to use the notation established for Proposition 11.30.
1. Let µ: (Z+)K ×Ga → Ha be the homomorphism defined by

µ(m, [u]a) = [ν(m)]a + [u]a,

for all m ∈ (Z+)K and u� a.
To show that µ is injective, we suppose that µ(m, [u]a) = µ(m′, [u′]a) for some

m,m′ ∈ (Z+)K and u, u′ � a. Then [ν(m) + u]a = [ν(m′) + u′]a, that is,

ν(m) + u+ a = ν(m′) + u′ + a.

Since Na(ν(m)) = m, Na(ν(m′)) = m′ and Na(u) = Na(u′) = 0, we have from this
equation that

m +Na(a) = m′ +Na(a).
Thus m = m′, ν(m) = ν(m′) and ν(m) + u+ a = ν(m) + u′ + a.

Now ν(m) ≺ a so there is some n ∈M such that ν(m) ≤ na. From the equation
ν(m) + u+ a = ν(m) + u′ + a we then get na+ u+ a = na+ u′ + a. Using 11.12.2,
we can cancel na from this to get a+u = a+u′, that is [u]a = [u′]a. We have shown
therefore that µ is injective.

To show that µ is surjective, we suppose that [x]a ∈ Ha with x ≺ a. From 11.30.3,
x = ν(Na(x)) + u for some u� a. Hence [u]a ∈ Ga and

[x]a = [ν(Na(x))]a + [u]a = µ(Na(x), [u]a).

2. We have from 11.35.1 that {� a} is embedded in Ha, so by 1, it is embedded in
(Z+)K × Ga. Using 11.31, it is then easy to show that {� a} ∼= NK × Ga via this
embedding.

3. From 11.36,

G({≺ a}) ∼= G(Ha) ∼= G((Z+)K ×Ga) ∼= ZK ×Ga.

�
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12 Artinian Decomposition Monoids

We have seen in 8.4 that the relation a0 + c0 = b0 + c0 in a refinement monoid gives rise
to a descending sequence of such relationships, an + cn = bn + cn, for a0 ≥ a1 ≥ a2 ≥ . . .,
b0 ≥ b1 ≥ b2 ≥ . . . and c0 ≥ c1 ≥ c2 ≥ . . .. It is then natural to expect that a refinement
monoid with a descending chain condition would have some strong cancellation properties.

In Section 11, we saw that certain cancellation properties occur in refinement monoids
containing primely generated elements.

The goal of this section is to show that these two sources of cancellation are closely
related: Every Artinian decomposition monoid is primely generated, and conversely, every
primely generated decomposition monoid such that the primes form an Artinian class, is
Artinian (12.13).

We begin by applying the definitions from Section 2 to monoids: Every monoid is a
preordered class when given its minimum order, so lower classes, exact maps and strictly
increasing maps are defined and we get

Proposition 12.1. Let σ: M → N be a monoid homomorphism, and I ⊆ M a sub-
class.

1. I is an order ideal if and only if I is both a submonoid and a lower class of M .
2. An exact homomorphism maps order ideals to order ideals.
3. M has decomposition if and only if the addition homomorphism +: M ×M →M is

exact.
4. If M has decomposition and I is an order ideal, then the quotient homomorphism
σI : M →M/I is exact.

5. The homomorphism σ is strictly increasing if and only if

(∀a, b ∈M) (σ(a) � σ(b) =⇒ a� b).

Proof.

1. This is just a restatement of 6.11.2 and the definition of order ideals.
2. Use 1 and the facts that a homomorphism maps submonoids to submonoids, and an

exact function maps lower classes to lower classes.
3. We temporarily write b1+b2 = +(b1, b2) so that + appears as a function from M×M

to M .
Suppose M has decomposition. If a ≤ +(b1, b2) = b1 + b2 in M , then there are

a1, a2 such that a = +(a1, a2) = a1 +a2, a1 ≤ b1 and a2 ≤ b2. In M ×M this implies
(a1, a2) ≤ (b1, b2). Thus +: M ×M →M is exact. The converse is just as easy.

4. We need to show that {≤ σI(b)} ⊆ σI({≤ b}) for all b ∈M .
Suppose then that [a]I ≤ σI(b) = [b]I . Then there is some u ∈ I such that

a ≤ b + u. By decomposition, there are a′, u′ with a′ ≤ b , u′ ≤ u and a = a′ + u′.
Since I is an order ideal, u′ ∈ I and [a]I = [a′]I ∈ σI({≤ b}).
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5. Suppose σ is strictly increasing and there are a, b ∈M such that σ(a) � σ(b). Then
σ(a+b) = σ(a)+σ(b) ≤ σ(b) and a+b ≥ b. Since σ is strictly increasing, this implies
a+ b ≤ b, that is, a� b.

For the converse, we know already that σ is increasing, so it remains to show that

(a ≤ b and σ(a) ≥ σ(b)) =⇒ a ≥ b

for all a, b ∈M .
If a ≤ b then b = a+ c for some c ∈M . Thus σ(a) + σ(c) = σ(b) ≤ σ(a), that is,

σ(c) � σ(a). By hypothesis, this implies c� a, and so, a ≥ a+ c = b.
�

We will also need the following monoid version of 2.12:

Proposition 12.2. Consider the following commutative diagram of monoids and monoid
homomorphisms:

K
σ //

ψ   B
BB

BB
BB

B L

τ

��
M

1. If σ is surjective and ψ is exact, then τ is exact.
2. If τ is injective and ψ is exact, then σ is exact.

Proof. This follows from 2.12 and the fact that any monoid homomorphism is an increasing
function on the underlying preordered class. �

As a simple example of the use of these propositions, consider the following situation:
Suppose A ≤ B are order ideals in a decomposition monoid M . Let σ and ψ be quotient
homomorphisms as in the diagram:

M
σ //

ψ !!D
DDDDDDD M/A

τ

��
M/B

Since A ≤ B, there is an induced homomorphism τ from M/A to M/B making the
diagram commute. The homomorphism σ is surjective and, from 12.1.4, ψ is exact. So
using 12.2.1, we get that τ is exact.

We now introduce the the main subject of this section:

Definition 12.3. A monoid M is an Artinian monoid if M is an Artinian preordered
class. The Artinian radical of a monoid M is AradM as defined for preordered classes.
See 2.14 and 2.16.

Thus, by definition, M is Artinian if and only if M is Artinian. For example, if M1 and
M2 are monoids, then M1 ×M2 is Artinian if and only if M1 and M2 are Artinian.

Continuing the pattern established in Section 2 for preordered classes, if X is a subclass
of a monoid M , then a minimal element of X is an element a ∈ X such that for any
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b ∈ X, b ≤ a implies a ≤ b. Hence, a monoid M is Artinian if and only if either of the
following are true:

1. Every nonempty subclass of M has a minimal element.
2. For every decreasing sequence x1 ≥ x2 ≥ x3 ≥ . . . there is an N ∈ N such that
xn ≥ xN for all n ≥ N .

If I is a submonoid of M then, as we have seen before, the order of I as a subclass of M
may be different than its minimum preorder as an independent monoid. Thus a submonoid
of an Artinian monoid may not be Artinian with its own minimum preorder. For an example
of this see 14.2. Conversely, a submonoid I which is Artinian with its minimum preorder
may not be an Artinian subclass of M .

Example 12.4. The minimum order on M = (R+,+) is the same as the usual order on
real numbers, so R+ is not Artinian. Let I = {0} ∪ [1,∞) ⊆ R+. Then I is a submonoid
which is not an Artinian subclass of R+. Nonetheless, with its own minimum order I is an
Artinian monoid.

The complications described above do not occur for order ideals, and so we can use the
expression “Artinian order ideal” without ambiguity.

Note that {≤ 0} is an Artinian lower class of M , so for any monoid, {≤ 0} ⊆ AradM .
Also, any order ideal of M is a lower class, so every Artinian order ideal is contained in
AradM . On the other hand, AradM may not be a submonoid or order ideal of M . Of
course, M is Artinian if and only if M = AradM .

From 2.17 and 2.18 we get

Proposition 12.5. Let σ: M → N be a monoid homomorphism, and I ⊆M , J ⊆ N .
1. If σ is strictly increasing and J is an Artinian order ideal, then σ−1(J) is an Artinian

order ideal in M , so σ−1(J) ⊆ AradM .
2. If σ is exact and I is an Artinian order ideal, then σ(I) is an Artinian order ideal

in N , so σ(I) ⊆ AradN .
3. If σ is strictly increasing then σ−1(AradN) ⊆ AradM .
4. If σ is exact then σ(AradM) ⊆ AradN .
5. If σ is exact, strictly increasing and injective, then AradM = ψ−1(AradN).
6. If σ is exact, strictly increasing and surjective, then AradN = ψ(AradM).
7. If I is an order ideal in M , then Arad I = AradM ∩ I.

Proof. These results follow directly from the above-mentioned propositions, 12.1.2, 6.13.3
and the fact that any monoid homomorphism is an increasing function. �

As we have already seen, if M is a decomposition monoid then the addition homomor-
phism +: M × M → M , and division by an order ideal are exact homomorphisms, so
applying the previous proposition we get
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Proposition 12.6. Let A,B ≤ M be two order ideals of a decomposition monoid and
σA: M →M/A the quotient homomorphism.

1. AradM is an order ideal.
2. Arad(A+B) = AradA+ AradB
3. Arad(A ∩B) = AradA ∩AradB
4. A and B are Artinian if and only if A+B is Artinian.
5. For all a ∈M , {≤ a} is Artinian if and only if {≺ a} is Artinian.
6. σA(AradB) ⊆ Arad(M/A). In particular, if B is Artinian then σA(B) = (A+B)/A

is an Artinian order ideal in M/A, and if M is Artinian then so is M/A.
7. If A = {≤ 0}, then σA(AradM) = Arad(M/A) and σ−1

A (Arad(M/A)) = AradM .
In particular, M is Artinian if and only if M/A is Artinian.

Proof.
1. By definition, AradM is a lower class, so we need to show that it is a submonoid. . .

We have already noted that 0 ∈ AradM so it remains to show that AradM
is closed under addition: If x1, x2 ∈ AradM then the lower classes {≤ x1} and
{≤ x2} in M are Artinian, as is {≤ x1} × {≤ x2} ⊆ M ×M . The addition map
+: {≤ x1} × {≤ x2} → {≤ (x1 + x2)} is exact and surjective, so from 12.5.2, the
lower class {≤ (x1 + x2)} is Artinian. That is, x1 + x2 ∈ AradM .

2. Arad(A+B) = (A+B)∩AradM = (A∩AradM)+(B∩AradM) = AradA+AradB.
Here we have used the distributivity of L(M) (7.10).

3. Easy using 12.5.7, and, in fact, does not require that M have decomposition.
4. This follows easily from 2.
5. If {≤ a} is Artinian, then {≤ a} ⊆ AradM . But AradM is an order ideal, so it also

contains the order ideal generated by a. Thus {≺ a} is Artinian.
6. Since σA is exact, this follows from 12.5.2 .
7. This follows easily from the fact that M ∼= M/A.

�

Clearly any finite monoid is Artinian, as is any monoid M such that M is finite. Any
Abelian group, for example, is trivially an Artinian monoid. Any free monoid is Artinian
since for any element x, {≤ x} is a finite set (Reminder: Any element of a free monoid is a
finite sum of the generators. See 5.13).

A finitely generated free monoid is isomorphic to (Z+)n for some n ∈ N, and the minimal
order of this monoid coincides with the ordering of this same set as a direct product of
posets. Thus we get the following important result:

Proposition 12.7. Any finitely generated submonoid of a monoid is an Artinian subclass.

Proof. Let I be a finitely generated submonoid of M . Then I is the image of the monoid
(Z+)n for some n ∈ N under a monoid homomorphism σ. Since σ is increasing, we can
apply 2.26, to get that I is an Artinian subclass of M . �

This proposition has the consequence that any finitely generated monoid is Artinian.
But this fact alone does not suffice to prove the proposition, since, as mentioned before, a
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submonoid may be Artinian when given its minimum preorder, but nonetheless fail to be
an Artinian subclass of the monoid that it is embedded in.

In the remainder of this section we investigate the relationship between the Artinian
condition and the existence of primes, indecomposables and regular elements in monoids.

Proposition 12.8. Every element in an Artinian partially ordered monoid is a sum of
indecomposables.

Proof. Let M be an Artinian monoid and let B be the subclass of elements of M which are
not sums of indecomposables. If B is not empty it has a minimal element p. We will show
that p is indecomposable, contradicting p ∈ B.

Suppose p = a+ b for some a, b ∈M , then either a or b must be in B otherwise p would
be a sum of indecomposables. But the minimality of p in B then implies that either a = p
or b = p, thus p is indecomposable. �

In an Artinian monoid M that is not partially ordered it is possible that elements are
not sums of indecomposables, even though every element of M is a sum of indecomposables
of M . The complication is that two elements a, b ∈M may satisfy a ≡ b with a, but not b,
a sum of indecomposables. This happens in the following example:

Example 12.9. Let M be the monoid generated by two elements a and b such that 3a = a
and 2a = 2b. M has six elements, {0, a, 2a, b, a + b, 2a + b}, and these form the three
≡-equivalence classes: {0}, {b}, {a, 2a, a+ b, 2a+ b}. Thus M ∼= {0, 1,∞} with 1 + 1 = ∞.
Since 0 and 1 are all the indecomposables in {0, 1,∞}, the elements 0 and b are all the
indecomposables of M . Both M and {0, 1,∞} are, of course, Artinian. Every element of
{0, 1,∞} is a sum of indecomposables, but only 0, b, 2a, and 2a + b are sums of indecom-
posables in M .

Note that the elements of M which are not sums of indecomposables, namely, a and a+b,
are regular.

Proposition 12.10. Every element in an Artinian monoid is a sum of indecomposables
and regular elements.

Proof. Let M be an Artinian monoid and let B be the subclass of elements of M which
are not sums of indecomposables and regular elements. If B is not empty it has a minimal
element p. We will show that p is indecomposable or regular, contradicting p ∈ B.

First we note that if p is not regular, then any c � p is not in B, since otherwise the
minimality of p would give p ≤ c and then 2p ≤ p+ c ≤ p.

Suppose then that p is not regular and p ≡ a + b for some a, b ∈ M , then p = a + b + c
for some c� p. Since c is not in B, either a or b must be in B, otherwise p would be a sum
of indecomposables and regular elements. But the minimality of p in B then implies that
either p ≤ a or p ≤ b, thus p is indecomposable. �

If the monoid M has decomposition we get a much stronger result:

Proposition 12.11. Any Artinian decomposition monoid is primely generated.

Proof. Let M be an Artinian decomposition monoid and let B be the subclass of elements
of M which are not sums of primes. If B is not empty it has a minimal element p. We will
show that p is prime, contradicting p ∈ B.
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Suppose p ≤ a1 + a2 for some a1, a2 ∈ M , then there are p1, p2 ∈ M such that p1 ≤ a1,
p2 ≤ a2 and p = p1 +p2. Either p1 or p2 must be in B otherwise p would be a sum of primes.
But the minimality of p in B then implies that either p ≤ p1 ≤ a1 or p ≤ p2 ≤ a2, thus p is
prime. �

Next we consider a condition on the primes of a monoid that ensures that the monoid is
Artinian:

Proposition 12.12. Let M be a primely generated monoid such that the prime elements
of M form an Artinian subclass of M . Then M is an Artinian monoid.

Proof. Note that if M satisfies the hypothesis, then the same is true of M , and also, by
definition, M is Artinian if and only if M is Artinian. Thus without loss of generality, we
can assume that M is partially ordered.

Let L be the class of prime elements ofM with order induced fromM , then by hypothesis,
L is an Artinian poclass.

Let a1 ≥ a2 ≥ . . . be a decreasing sequence in M . For each an let An ⊆ L be the primes
which appear in a minimal prime expression for an. By 11.20, An is a finite antichain in
L. Since an ≥ an+1, every prime in An+1 is less than or equal to some prime in An. Thus
this sequence of antichains satisfies the hypothesis of 2.28, and by that proposition, the set
A =

⋃
n∈NAn is finite.

The sequence a1 ≥ a2 ≥ . . . is then contained in the submonoid generated by A. By 12.7,
this submonoid is an Artinian subclass of M . Thus there is some N ∈ N such that an ≥ aN
for all n ≥ N . �

Finally, putting the last two propositions together we get:

Theorem 12.13. A decomposition monoid M is Artinian if and only if
• M is primely generated, and
• The prime elements of M form an Artinian subclass of M .

Proof. Combine the previous proposition, 12.12 and the fact that, if M is Artinian, then so
is the subclass of prime elements of M . �

One might wonder at this point whether an Artinian monoid whose elements are all
primely generated is necessarily a decomposition monoid. This is not true in general, and
one counterexample is the monoid M of Example 11.21 which is generated by two elements
p and q subject to the relations 3p = 2p, 3q = 2q and 2p+ q = 2q + p. p and q are primes,
so every element in the monoid is primely generated, but the inequality (2p) ≤ (2q) + (p)
can not be decomposed, that is, 2p can not be written as 2p = p1 + p2 with p1 ≤ 2q and
p2 ≤ p. So M is not a decomposition monoid.
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13 Artinian Refinement Monoids

In this section we will consider Artinian refinement monoids and their properties. From
Theorem 12.13, Artinian refinement monoids are primely generated, so the results of Sec-
tion 11 apply to such monoids:

Proposition 13.1. Let M be an Artinian refinement monoid. Then

1. M is an Artinian refinement monoid.
2. M and M are weakly cancellative, midseparative and separative.
3. M has no proper regular elements ⇐⇒ M has no proper regular elements
⇐⇒ M is strongly separative ⇐⇒ M is strongly separative.

4. M and M have ≤-multiplicative cancellation.

Proof. Since Artinian refinement monoids are primely generated, these results follow from
11.9, 11.15 and 11.19. �

One interesting consequence of weak cancellation for Artinian monoids is

Proposition 13.2. Let M be a partially ordered Artinian refinement monoid. Then M is
a join-semilattice (6.19).

Proof. We need to show that a ∨ b exists for any a, b ∈M . . .
Suppose a, b ∈M and set

A = {c ∈M | a ≤ c and b ≤ c}.

The element a+b is in A, so this subclass is not empty and must have some minimal element.
Suppose c1 and c2 are two minimal elements of A.

The monoid M is weakly cancellative, and we have a, b ≤ c1, c2, so from the Riesz
interpolation property (9.15), there is some c ∈ M such that a, b ≤ c ≤ c1, c2. c is in A, so
the minimality of c1 and c2 then implies c1 = c = c2.

Thus A has a unique minimum which is then the supremum of a and b. �

Unlike the situation for M̃ (6.21), in this proposition, the operations + and ∨ do not
coincide.

Combining this result with 13.1, we have that for any Artinian refinement monoid M ,
M is a semilattice.

Even though we know already that Artinian refinement monoids are weakly cancellative,
it is worthwhile giving a direct proof since it serves as a prototype for the more complicated
proofs to come:
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Proposition 13.3. Let a, b, c be elements of a refinement monoid such that a+ c = b+ c.
If {≺ c} is Artinian, then there exists a refinement matrix

( b c

a ∗ ∗
c ∗ c1

)
with c ≤ c1.

Proof. Define
C = {c′ ≤ c | a+ c′ = b+ c′}.

Since C ⊆ {≺ c} and c ∈ C, the subclass C is Artinian and nonempty. Let c0 be a minimal
element of C. Then a+ c0 = b+ c0 and we can make a refinement of this equation:

( b c0

a d1 a1

c0 b1 c′1

)
Now c′1 ≤ c0 ≤ c and a+ c′1 = d1 + c0 = b+ c′1, so c′1 ∈ C. By the minimality of c0 in C,

we get c0 ≤ c′1. Since c0 ≤ c there is some x0 such that c = c0 + x0. Set c1 = c′1 + x0. Then
c ≤ c1 and we have c = c0 + x0 = c′1 + a1 + x0 = c1 + a1 and, similarly, c = c1 + b1. �

A similar direct proof that Artinian refinement monoids are midseparative could be given,
but, in fact, we have a stronger result:

Proposition 13.4. Let a and b be elements of a refinement monoid M such that 2a = a+b.
If {≺ b} is Artinian, then there exists an idempotent e such that a = b+ e.

Proof. Define

B = {b′ ∈M | ∃a′, d′ such that a = d′ + a′, b = d′ + b′, 2a′ = a′ + b′}.
Since B ⊆ {≺ b} and b ∈ B, the subclass B is Artinian and nonempty. Let b0 be a minimal
element of B and a0, d0 such that a = d0 + a0, b = d0 + b0, and 2a0 = a0 + b0.

From 8.6 (with n = 2, c0 = a0), there is a refinement matrix

( b0 a1

a0 d2 a2

a1 b2 c2

)
with c2 ≤ a2 and 2b2 ≤ a0. We also have a = (d0 + d2) + a2, b = (d0 + d2) + b2, and, by
8.1.2, 2a2 = a2 + b2, so b2 ∈ B. Since b2 ≤ b0, the minimality of b0 implies b0 ≤ b2. In
particular, 2b0 ≤ 2b2 ≤ a0.

Since 2b0 ≤ a0, there is some x0 such that a0 = 2b0 + x0. From 2a0 = a0 + b0 we then
get 4b0 + 2x0 = 3b0 + x0.

By 13.1, {≺ b} is separative. Since b0 ∈ {≺ b}, we can use 8.14, to cancel 2b0 from the
above equation to get 2b0 + 2x0 = b0 + x0. Set e = b0 + x0. Then e is an idempotent such
that b+ e = (d0 + b0) + (b0 + x0) = d0 + a0 = a. �

Note that we have actually shown that 0 ∈ B, since if we set d′ = b, a′ = e and b′ = 0,
then a = d′ + a′, b = d′ + b′ and 2a′ = a′ + b′.

The significance of this proposition is that it is not true with the weaker hypothesis that
{≺ b} is midseparative (instead of Artinian). A counterexample is the monoid of Example
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9.7. Putting a = (∞, 1) and b = (0, 1) in this monoid, we have 2a = a + b. Notice that
{≺ b} ∼= R+ so is cancellative and midseparative, but since the only idempotent is 0, there
is no idempotent e such that a = b + e. Thus 13.4 implies, but is not implied by, the fact
that Artinian refinement monoids have midseparativity.

This situation is to be contrasted with proposition 13.3, which remains true (by 9.10.1)
if the hypothesis that {≺ c} is Artinian is replaced by {≺ c} is weakly cancellative.

This difference will allow us to prove an extension theorem (13.6) for midseparativity,
which is not true for weak cancellation, and will eventually be used to show in Section 15
that semi-Artinian refinement monoids are midseparative but not weakly cancellative.

To prove the extension theorem we make use of the following lemma:

Lemma 13.5. Let I be an Artinian order ideal in a refinement monoid M .
1. If a, b, c ∈ M with a+ c = b+ c, c ≤ a and b ∈ I, then there is an idempotent e ≤ c

such that a = b+ e.
2. If 2[e]I = [e]I for some e ∈ M , then there is an idempotent e′ ≤ e such that

[e′]I = [e]I .
3. If 2[e]I = [e]I ≤ [a]I for some e, a ∈M , then there is an idempotent e′ ≤ a such that

[e′]I = [e]I .

Proof.
1. If a+ c = b+ c and c ≤ a then, by 8.5.1, there is a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c1 ≤ a1. From 8.1.2 we get 2a1 = a1 + b1. We have b1 ≤ b ∈ I so {≺ b1} ⊆ I
and {≺ b1} is Artinian. Using 13.4, there is some idempotent e ∈ M such that
a1 = b1 + e. Thus e ≤ a1 ≤ c and a = d1 + a1 = d1 + b1 + e = b+ e.

2. Since 2[e]I = [e]I , there are elements u, b ∈ I such that 2e + u = e + b. Hence
(e + u) + e = b + e with e ≤ e + u and {≺ b} Artinian. From 1, there is some
idempotent e′ ≤ e such that e+ u = b+ e′. Since u, b ∈ I, we have [e′]I = [e]I .

3. From [e]I ≤ [a]I , there is some u ∈ I such that e ≤ a+ u. Decomposing this we can
write e = e′′ + u′′ with e′′ ≤ a and u′′ ≤ u. Since u′′ ∈ I, we have [e′′]I = [e]I and
so, 2[e′′]I = [e′′]I . Using 2, there is some idempotent e′ such that e′ ≤ e′′ ≤ a and
[e′]I = [e′′]I = [e]I .

�

Proposition 13.6. Let I be an Artinian order ideal in a refinement monoid M . Then if
M/I is midseparative, so is M .

The proof of this proposition is a variation of the proof of 8.16:

Proof. Suppose there are a, b ∈ M such that 2a = a + b. From 8.5.1, there is a refinement
matrix ( b a

a d1 a1

a b1 c1

)
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with c1 ≤ a1. In M/I we get 2[a1]I = [a1]I + [b1]I , so using the midseparativity of M/I,
there is some idempotent [e1]I such that [a1]I = [b1]I +[e1]I . We have [e1]I ≤ [a1]I , so using
13.5.3, we can assume that 2e1 = e1 ≤ a. In particular, a+ e1 = a.

Since [a1]I = [b1]I + [e1]I , there are u1, v1 ∈ I such that a1 + u1 = b1 + e1 + v1. From a
refinement of this relationship, ( b1 + e1 v1

a1 d2 v2
u1 u2 e2

)
we get the equation a1 + u2 = b1 + e1 + v2, and hence,

a+ v2 = a+ e1 + v2 = c1 + b1 + e1 + v2 = c1 + a1 + u2

= a+ u2 = d1 + a1 + u2 = d1 + b1 + e1 + v2

= (b+ e1) + v2.

Note that v2 ≤ v1 so v2 ∈ I, and also v2 ≤ a1 ≤ a. Since {≺ v2} is contained in I, it is
Artinian, and, from 13.1, midseparative. Using 9.10.2, there exists some idempotent e2 ≤ v2
such that a = (b+ e1) + e2. Set e = e1 + e2, then 2e = e and a = b+ e. �

Artinian refinement monoids are primely generated so, by 11.34, they have the property
that na ≤ b for all n ∈ N implies a� b. We give next a direct proof of this fact:

Proposition 13.7. Let M be an Artinian refinement monoid. Then

(∀a, b ∈M) (a� b ⇐⇒ (∀n ∈ N) (na ≤ b)).

Proof. The implication ⇒ is easy to prove and true in any monoid. We prove here the
converse. . .

Since na ≤ b for all n ∈ N, there are c1, c2, . . . such that na+ cn = b. Let N ∈ N be such
that a+ cN is minimal in the set {a+ cn | n ∈ N}.

Now Na+ cN = b = (N + 1)a+ cN+1, so, since M is separative, a+ cN = 2a+ cN+1. In
particular, a+ cN ≥ a+ cN+1. The minimality of a+ cN , then implies a+ cN ≤ a+ cN+1,
and so a+ b = a+Na+ cN ≤ a+Na+ cN+1 = b, that is, a� b. �
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14 Semi-Artinian Decomposition
Monoids

We will see in Section 19 that the monoid M(R-Noeth), for a commutative Noetherian
(or FBN) ring R, is an Artinian refinement monoid. So for these rings, M(R-Noeth) has all
the cancellation properties described in the previous two sections. For other rings, however,
M(R-Noeth) may not be Artinian. See Example 17.1.

Nonetheless, for any ring, the monoid M(R-Noeth) is semi-Artinian. In the next sec-
tion we will see that semi-Artinian refinement monoids have midseparativity but not weak
cancellation or ≤-multiplicative cancellation. In this section we consider the semi-Artinian
chain condition in decomposition monoids.

Definition 14.1. A monoid is semi-Artinian if there is a well ordered chain of order
ideals I0 ≤ I1 ≤ · · · ≤ Iα ≤ · · · ≤M with indices α ∈ Ord, such that

1. I0 = {≤ 0}
2. Iα+1/Iα is an Artinian monoid for all α ∈ Ord.
3. Iα =

⋃
β<α Iβ for all limit ordinals α ∈ Ord.

4. M =
⋃
α∈Ord Iα.

A chain of order ideals as above which satisfies 1, 2 and 3, we will call a semi-Artinian
series.

Obviously, any Artinian monoid is semi-Artinian. The following example is probably the
simplest semi-Artinian/non-Artinian monoid:

Example 14.2. A cancellative semi-Artinian refinement monoid which is not Artinian:
We will construct this example as a submonoid of the cancellative partially-ordered Ar-

tinian refinement monoid Z+ × Z. . .
Let L = {(0, n) | n ∈ N} = (0,N) ⊆ Z+ × Z and M = (Z+ × Z) \ L. It is easily checked

that M is a submonoid of Z+ ×Z. M is a subset of a cancellative partially ordered monoid
so is itself cancellative and partially ordered.

We prove that M has refinement:
Suppose we have (w1, w2), (x1, x2), (y1, y2), (z1, z2) ∈ M such that (w1, w2) + (x1, x2) =

(y1, y2) + (z1, z2). Since these elements are in the refinement monoid Z+ × Z, there is a
refinement matrix

( (w1, w2) (x1, x2)
(y1, y2) (s1, s2) (t1, t2)
(z1, z2) (u1, u2) (v1, v2)

)
with entries in Z+ × Z. We will show that this refinement matrix can be modified so that
all entries are in M

If all the entries happen to be in M then we are done. So suppose (without loss of
generality) that (s1, s2) ∈ L, that is, (s1, s2) = (0, n) for some n ∈ N. We can rewrite the
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refinement matrix as ( (w1, w2) (x1, x2)
(y1, y2) (0, 0) (t1, t2 + n)
(z1, z2) (u1, u2 + n) (v1, v2 − n)

)
We have (0, 0) ∈ M , (t1, t2 + n) = (y1, y2) ∈ M and (u1, u2 + n) = (w1, w2) ∈ M so the

only possible remaining problem is if (v1, v2 − n) ∈ L, that is if (v1, v2 − n) = (0,m) for
some m ∈ N. If this happens then we can rewrite the refinement matrix as

( (w1, w2) (x1, x2)
(y1, y2) (0,−m) (t1, t2 + n+m)
(z1, z2) (u1, u2 + n+m) (0, 0)

)
Now (0, 0), (0,−m) ∈M , (t1, t2+n+m) = (x1, x2) ∈M and (u1, u2+n+m) = (z1, z2) ∈M
so we are finished.

Thus we have shown that M has refinement.
M is not finitely generated. A convenient generating subset is {c, a0, a1, a2, . . .} where

c = (0,−1) and an = (1, n) for n ∈ Z+. These generators satisfy the relations an = an+1 +c
for all n ∈ Z+.

The order in M is not the same as in Z+ × Z. In particular, an ≤ am ⇐⇒ n ≥ m,
so the sequence a0 ≥ a1 ≥ a2 ≥ . . . is strictly decreasing. Thus M is not Artinian and no
an is in AradM . On the other hand, the order ideal I = {≺ c} = {(0,−n) | n ∈ Z+} is
isomorphic to Z+ so is Artinian. Thus we have shown that AradM = I. In the quotient
monoid M/I, we have [an]I = [am]I for any m,n ∈ Z+ so M/I has one generator and is
isomorphic to Z+. In particular, M/I is Artinian and hence M is semi-Artinian.

Notice that M is not Artinian even though it is a submonoid of an Artinian monoid, and
that since 0 and c are the only primes, M is not primely generated.

Notice also that nc + an = a0 for all n ∈ N. So nc ≤ a0 for all n ∈ N does not imply
that c � a0, even though M has the strongest possible cancellation property. See 13.7 and
11.34.

The above example happens to be cancellative and so weakly cancellative, but example
15.9 shows that, in general, semi-Artinian refinement monoids do not have to be either.

Recall that in a decomposition monoid, the Artinian radical is the largest Artinian order
ideal. This suggests the following definition:

Definition 14.3. Let M be a decomposition monoid. Define inductively an increasing
sequence of order ideals, Arad0M ≤ Arad1M ≤ · · · ≤ AradαM ≤ . . . for α ∈ Ord, as
follows:

1. Arad0M = {≤ 0}
2. Aradα+1M = σ−1

α (Arad(M/AradαM)) where σα is the quotient homomorphism
from M to M/AradαM .

3. If α is a limit ordinal, define AradαM =
⋃
β<α AradβM

In addition, we define the semi-Artinian radical of M by

sradM =
⋃

α∈Ord

AradαM.
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Notice that, by 5.10, we have

(Aradα+1M)/(AradαM) = Arad(M/AradαM).

So (Aradα+1M)/(AradαM) is Artinian for all α and Arad0M ≤ Arad1M ≤ . . . is a semi-
Artinian series in M .

From 12.6.7, we get directly that AradM = Arad1M . A simple induction argument
shows that if there is some α ∈ Ord such that Aradα+1M = AradαM , then AradβM =
AradαM for all β ≥ α, so that sradM = AradαM . In particular, if Arad1M = Arad0M ,
that is, if AradM = {≤ 0}, then sradM = {≤ 0}.

Proposition 14.4. Let M be a decomposition monoid, and I0 ≤ I1 ≤ · · · ≤ M a semi-
Artinian series. Then Iα ⊆ AradαM for all α ∈ Ord.

Proof. Proof by induction on α. . .

• α = 0 Trivial.
• α is a successor ordinal Suppose α = β + 1 and Iβ ⊆ AradβM . Let τ and σβ be

quotient homomorphisms as in the diagram.

M

σβ %%KKKKKKKKKKK
τ // M/Iβ

ρ

��
M/AradβM

Then since Iβ ⊆ AradβM , there is a homomorphism ρ making the diagram com-
mute. σβ is exact and τ is surjective, so from 12.2, ρ is exact. τ(Iα) = Iα/Iβ is
Artinian so, using 12.5.2, ρ(τ(Iα)) = σβ(Iα) ⊆ Arad(M/AradβM). Thus

Iα ⊆ σ−1
β (σβ(Iα)) ⊆ σ−1

β (Arad(M/AradβM)) = AradαM,

and the claim is true for successor ordinals.
• α is a limit ordinal We have Iβ ⊆ AradβM for all β < α. Thus

Iα =
⋃
β<α

Iβ ⊆
⋃
β<α

AradβM = AradαM,

so the claim is true for limit ordinals.

�

Corollary 14.5. A decomposition monoid M is semi-Artinian if and only if M = sradM .

Proof. If M = sradM then the chain of order ideals Arad0M ≤ Arad1M ≤ . . . satisfies the
requirements of the definition of semi-Artinian monoids.

Conversely, if I0 ≤ I1 ≤ · · · ≤ M is a chain of order ideals as required by the definition,
then from the previous proposition,

M =
⋃

α∈Ord

Iα ⊆
⋃

α∈Ord

AradαM = sradM ⊆M.

�
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Proposition 14.6. If I is an order ideal in a decomposition monoid M , then for all
α ∈ Ord

Aradα I = (AradαM) ∩ I
and

srad I = (sradM) ∩ I.

Proof. We prove the first claim by induction on α. . .
• α = 0 Since {≤ 0} ⊆ I, we get Arad0 I = {≤ 0} = Arad0M = (Arad0M) ∩ I.
• α is a successor ordinal Suppose α = β + 1 and Aradβ I = (AradβM) ∩ I. Let σI

and σM be quotient homomorphisms and ι the inclusion homomorphism as in the
diagram:

I
σI //

ι

��

I/Aradβ I

ψ

��
M

σM // M/AradβM

Since Aradβ I ⊆ AradβM , there is a unique homomorphism ψ which makes the
diagram commute. Since Aradβ I = (AradβM)∩I, from 7.14 we have that ψ induces
a monoid isomorphism from I/Aradβ I to (I + AradβM)/AradβM . In particular,

Arad(I/Aradβ I) = ψ−1(Arad((I + AradβM)/AradβM)).

Using 12.5.7, 5.10 and 7.11.2 we calculate

Arad((I + AradβM)/AradβM) = Arad(M/AradβM) ∩ (I + AradβM)/AradβM

= σM (AradαM) ∩ σM (I)

= σM ((AradαM) ∩ I)
Finally, using 7.11 and the distributivity of L(M) 7.10, we get

Aradα I = σ−1
I (Arad(I/Aradβ I))

= σ−1
I (ψ−1(Arad((I + AradβM)/AradβM)))

= σ−1
I (ψ−1(σM ((AradαM) ∩ I))))

= ι−1(σ−1
M (σM ((AradαM) ∩ I))))

= ι−1((AradαM) ∩ I + AradβM)

= I ∩ ((AradαM) ∩ I + AradβM)

= (AradαM) ∩ I + (AradβM) ∩ I
= (AradαM) ∩ I

• α is a limit ordinal We have Aradβ I = (AradβM) ∩ I for all β < α. Thus

Aradα I =
⋃
β<α

Aradβ I =
⋃
β<α

((AradβM) ∩ I) = (
⋃
β<α

AradβM) ∩ I = (AradαM) ∩ I.

The second claim is immediate from the first claim. �
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Corollary 14.7. Let I be an order ideal in a decomposition monoid M and x ∈M .
1. I is semi-Artinian if and only if I ⊆ sradM .
2. {≺ x} is semi-Artinian if and only if x ∈ sradM
3. M is semi-Artinian if and only if {≺ x} is semi-Artinian for all x ∈M
4. sradM is the union of all semi-Artinian order ideals of M

Proof. Immediate from 14.6. �

Corollary 14.8. Let A,B be two order ideals in a decomposition monoid M . Then for all
α ∈ Ord

1. Aradα(A+B) = AradαA+ AradαB
2. Aradα(A ∩B) = (AradαA) ∩ (AradαB)
3. srad(A+B) = sradA+ sradB
4. srad(A ∩B) = (sradA) ∩ (sradB)
5. A+B is semi-Artinian if and only if A and B are semi-Artinian.

Proof. Similar to proof of 12.6. �

Lemma 14.9. Let I0 ≤ I1 ≤ · · · ≤ M be a semi-Artinian series in M and σ: M → N
an exact monoid homomorphism with N a decomposition monoid. Set Jα = σ(Iα) for each
α ∈ Ord. Then J0 ≤ J1 ≤ · · · ≤ N is a semi-Artinian series in N .

Proof. Since σ is exact, each Jα is an order ideal. We have three requirements to check. . .
1. Since I0 = {≤ 0}, we have J0 = σ(I0) ⊆ {≤ 0}. Conversely, J0 = σ(I0) is an order

ideal which contains σ(0) = 0, so J0 ⊇ {≺ 0} = {≤ 0}.
2. Let α ∈ Ord, and τ, ρ the quotient homomorphisms as in the diagram.

Iα+1
σ //

τ

��

Jα+1

ρ

��
Iα+1/Iα

ψ // Jα+1/Jα

Since Iα ⊆ ker(ρ ◦ σ), there is a homomorphism ψ making the diagram commute.
Since N has decomposition, ρ and, hence ρ◦σ are exact. τ is surjective so, by 12.2,

ψ is exact. Iα+1/Iα is Artinian, so by 12.5.2, ψ(Iα+1/Iα) = Jα+1/Jα is Artinian.
3. If α ∈ Ord is a limit ordinal, then

Jα = σ(Iα) = σ(
⋃
β<α

Iβ) =
⋃
β<α

σ(Iβ) =
⋃
β<α

Jβ .

�

Proposition 14.10. Let σ: M → N be an exact monoid homomorphism with N and M
decomposition monoids. Then for all α ∈ Ord

σ(AradαM) ⊆ AradαN,

and
σ(sradM) ⊆ sradN.

In particular, if M is semi-Artinian, then so is σ(M).
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Proof. The sequence Arad0M ≤ Arad1M ≤ . . . ≤ M is a semi-Artinian series in M , and
σ is exact, so by the previous proposition, σ(Arad0M) ≤ σ(Arad1M) ≤ . . . ≤ N is a semi-
Artinian series in N . From 14.4 we therefore get σ(AradαM) ⊆ AradαN . The rest of the
claim then follows directly. �

If I is an order ideal in a decomposition monoid M then from 12.1.4, the quotient homo-
morphism is exact, so we get immediately

Corollary 14.11. Let M be a decomposition monoid and I ≤ M an order ideal, with
σ: M →M/I the quotient homomorphism. Then for all α ∈ Ord

σ(AradαM) ⊆ Aradα(M/I),

and
σ(sradM) ⊆ srad(M/I).

In particular, if M is semi-Artinian, then so is M/I.

So far we have been constructing a semi-Artinian series using the Artinian radical. Since
the Artinian radical is the largest Artinian order ideal (for decomposition monoids), the
resulting series takes the largest possible jumps between successive order ideals.

We consider next the opposite extreme, namely, taking at each step a minimal non-trivial
Artinian order ideal. If such an order ideal exists it will be generated by an atom:

Definition 14.12. Let M be a monoid. An element a ∈ M is an atom of M if it is
minimal in the subclass M \ {≤ 0}.

The following are easily checked consequences of the definition:

Proposition 14.13. Let M be a monoid, I ≤ M an order ideal, and a ∈ I. Then the
following are equivalent

1. a is an atom of M
2. a 6≤ 0 and for all b ≤ a, either b ≤ 0 or b ≡ a.
3. a is an atom of I.
4. [a] is an atom of M .
5. [a] 6= [0] and {≤ a} = {[0], [a]} ⊆M .

In addition, atoms are indecomposable.
Also worth noting is that in a conical monoid, an element a is an atom if and only if

a 6= 0 and (b ≤ a =⇒ b = 0 or b = a).

Proposition 14.14. If a is an atom of a decomposition monoid M , then {≺ a} is Artinian.

Proof. Since {≤ a} = {[0], [a]} is a finite set, {≤ a} is Artinian. From 12.6.5, this implies
that {≺ a} is Artinian. �

Corollary 14.15. For a decomposition monoid M , AradM ⊃ {≤ 0} if and only if M has
an atom.

Proof. IfM has an atom, then {≺ a} is Artinian, so AradM contains a 6∈ {≤ 0}. Conversely,
if AradM ⊃ {≤ 0} then the Artinian subclass AradM \{≤ 0} has a minimal element, which
will be an atom of AradM and hence an atom of M . �
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Since AradM = {≤ 0} if and only if sradM = {≤ 0} we get immediately

Corollary 14.16. For a decomposition monoid M , sradM ⊃ {≤ 0} if and only if M has
an atom.

In particular, if M is a semi-Artinian decomposition monoid such that M ⊃ {≤ 0} then
M has an atom. More generally

Corollary 14.17. If I ⊂ J are order ideals in a semi-Artinian decomposition monoid M ,
then J/I has an atom.

Proof. From 14.11 and 14.7, J/I is semi-Artinian. By hypothesis J/I ⊃ {0} = {≤ 0}, and
so, from the previous proposition, J/I has an atom. �

The significance of this proposition is that, except for set theoretical considerations, the
existence of atoms in subquotients characterizes semi-Artinian decomposition monoids. To
show this, we will need to consider the difference between sets and proper classes:

Proposition 14.18. If M is a decomposition monoid whose elements form a set, then
there is some α ∈ Ord such that sradM = AradαM .

Proof. We prove the contrapositive. . .
Suppose sradM 6= AradαM for any α ∈ Ord. Consider the increasing map from Ord to

L(M) given by α 7→ AradαM . We claim that this map is injective. Indeed if Aradα+1M =
AradαM for some α, then, as we have already noted, sradM = AradαM . This contradicts
our assumption.

We have then an injective map from the proper class Ord into L(M), hence L(M) is a
proper class. M itself must therefore be a proper class, since otherwise, if M were a set,
then L(M) would be also. �

Lemma 14.19. For an element x in a decomposition monoid, {≤ x} is a set if and only
if {≺ x} is a set.

Proof. Suppose {≤ x} is a set. If z ≺ x then there is some n ∈ N such that z ≤ nx. By the
decomposition property there are z1, z2, . . . , zn such that z = z1 + z2 + . . .+ zn and zi ≤ x
for all i ≤ n. Thus every element of {≺ x} is a finite sum of elements of {≤ x}. Since the
class of finite subsets of {≤ x} is a set, so is {≺ x}. The converse is trivial. �

Proposition 14.20. Let M be a decomposition monoid.
1. If M is a set and M/I has an atom for all order ideals I ⊂ M , then M is semi-

Artinian.
2. If {≤ x} is a set for all x ∈ M and for all order ideals I ⊂ J of M , J/I has an

atom, then M is semi-Artinian.

Proof.
1. Since M is a set there is some α ∈ Ord such that sradM = AradαM . In particular,

Aradα+1M = AradαM so Arad(M/AradαM) = {≤ 0}. From 14.15, M/AradαM
has no atoms, so by hypothesis, AradαM = M , and M is then semi-Artinian.

2. Fix an x ∈M . From the lemma, {≺ x} is a set and, by hypothesis, {≺ x}/I has an
atom for all I ⊂ {≺ x}. From 1, {≺ x} is semi-Artinian.

Using 14.7.3, M is then semi-Artinian.
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�

A semi-Artinian series for a monoid M can be constructed inductively using atoms as
follows:

1. Set I0 = {≤ 0}
2. For any ordinal α, pick an atom aα in M/Iα, or, if M/Iα has no atoms, pick aα = 0.

Set Iα+1 = σ−1
α ({≺ aα}) where σα is the quotient homomorphism from M to M/Iα.

3. For any limit ordinal α set Iα =
⋃
β<α Iβ

A monoid may have many atoms, so it may have many semi-Artinian series of this type.
In this construction, there is no obvious way of choosing a particular atom at each stage.
Thus we are led to consider the order ideal generated by all the atoms. This will give us a
canonical way of producing a semi-Artinian series, the socle series, in any monoid.

Definition 14.21. Let M be a monoid. The socle of M (written socM) is the order ideal
generated by all atoms of M .

The following are easily checked consequences of the definition:

Proposition 14.22. Let M be a monoid, and I ≤M an order ideal. Then
1. socM = socM
2. soc I ⊆ I ∩ socM

Proposition 14.23. Let M be a decomposition monoid, I ≤M an order ideal. Then
1. socM = {all finite sums of atoms of M}

⋃
{≤ 0}

2. soc I = I ∩ socM

Proof.
1. If x ∈ socM there are atoms a1, a2, . . . , an such that x ≤ a1 + a2 + · · · + an. From

this relationship we get the decomposition matrix

(≤ a1 ≤ a2 . . . ≤ an
x x1 x2 . . . xn

)
.

Since the ai are atoms, the xi are either atoms or in {≤ 0}.
If xi ∈ {≤ 0} for all i, then x ∈ {≤ 0}. If, on the other hand, one of the xi is an

atom then adding any elements of {≤ 0} to this element leaves it an atom. Thus x
can be written as a sum of atoms.

2. From 14.22, we have already that soc I ⊆ I ∩ socM .
To show the opposite inclusion, suppose x ∈ I ∩ socM . Then from 1, either

x ∈ {≤ 0} ⊆ soc I, or there are atoms a1, a2, . . . , an such that x = a1 + a2 + · · ·+ an.
Since ai ≤ x ∈ I, each ai is in I. Thus, using 14.13, x ∈ soc I.

�

Proposition 14.24. If M is a decomposition monoid then socM is an Artinian order
ideal.

Proof. From 14.22.1, we can assume M is partially ordered.
Let 0 6= a ∈ socM . Then there are atoms a1, a2, . . . , an such that a = a1 + a2 + . . .+ an.

Suppose b ≤ a, then using decomposition, b can be written b = b1 +b2 + . . .+bn with bi ≤ ai
for all i = 1, 2, . . . , n. For each i, ai is an atom, so either bi = ai or bi = 0. Thus b is a sum of
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a subset of the atoms a1, a2, . . . , an, and {≤ a} is a finite set. In particular, {≤ a} is Artinian,
and a ∈ AradM . Since this is true for all a ∈ socM , we have socM ⊆ AradM . �

This proposition allows us to construct a semi-Artinian series in any decomposition
monoid based on the socle:

Definition 14.25. Let M be a decomposition monoid. Define inductively an increasing
sequence of order ideals, soc0M ≤ soc1M ≤ · · · ≤ socαM ≤ . . . for α ∈ Ord, as follows:

1. soc0M = {≤ 0}
2. socα+1M = σ−1

α (soc(M/ socαM)) where σα is the quotient homomorphism from M
to M/ socαM .

3. If α is a limit ordinal, define socαM =
⋃
β<α socβM

In addition, we define the Loewy radical of M by

LradM =
⋃

α∈Ord

socαM.

As in 14.3, we have

(socα+1M)/ socαM = soc(M/ socαM)

and so using 14.24, soc0M ≤ soc1M ≤ . . . is a semi-Artinian series in M . Consequently,
LradM ⊆ sradM .

Proposition 14.26. If I is an order ideal in a decomposition monoid M , then for all
α ∈ Ord

socα I = (socαM) ∩ I
and

Lrad I = (LradM) ∩ I.

Proof. The proof is the same as the proof of 14.6, except for the use of 14.23.2 in place of
12.5.7. �

Given reasonable set theoretic conditions we get LradM = sradM :

Proposition 14.27. Let M be a decomposition monoid.
1. If M is a set then there is some α ∈ Ord such that LradM = socαM .
2. If M is a set then LradM = sradM .
3. If {≤ x} is a set for all x ∈M then LradM = sradM .

Proof.
1. The proof is almost the same as for 14.18, since if socαM = socα+1M for some
α ∈ Ord then LradM = socαM .

2. From 1, there is some α ∈ Ord such that LradM = socαM ⊆ sradM . So, in
particular, M/LradM and hence, (sradM)/LradM , have no atoms. Since sradM
is semi-Artinian, by 14.17, this is only possible if LradM = sradM .

3. Let x ∈ sradM . Using 14.19, {≺ x} is a set, so using 2 and 14.26,

x ∈ {≺ x} = srad({≺ x}) = Lrad{≺ x} ⊆ LradM.

Thus sradM ⊆ LradM . The opposite inclusion is always true, as we have already
noted.
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�

Since atoms are defined in terms of the order of the monoid, it is no surprise that they
behave well with respect to exact and strictly increasing functions:

Proposition 14.28. Let σ: M → N be a monoid homomorphism.

1. If σ is strictly increasing and a ∈ N an atom, then all elements of σ−1(a) are atoms.
2. If σ is exact and a ∈M an atom, then σ(a) is an atom or σ(a) ≤ 0.
3. If σ is exact then σ(socM) ⊆ socN .

Proof.

1. Let a′ ∈ σ−1(a). If a′ ≤ 0 we would have a = σ(a′) ≤ 0, contrary to a being an
atom. So we must have a′ 6≤ 0.

Now suppose b ≤ a′. Then σ(b) ≤ σ(a′) = a, so either σ(b) ≤ 0 or σ(b) ≥ a. In
the first case, we have 0 ≤ b and σ(0) ≥ σ(b), so, since σ is strictly increasing, b ≤ 0.
In the second case we have b ≤ a′ and σ(b) ≥ σ(a′), so b ≥ a′. Therefore a′ is an
atom of M .

2. Let a′ = σ(a) and suppose a′ 6≤ 0. Then to show a′ is an atom it remains to check
that b′ ≤ a′ implies either b′ ≤ 0 or b′ ≥ a′. . .

Suppose b′ ≤ a′ = σ(a). Then, using exactness, b′ ∈ {≤ σ(a)} ⊆ σ({≤ a}). So
there is some b ≤ a such that b′ = σ(b). Since a is an atom, either b ≤ 0 or b ≥ a,
and hence, either b′ ≤ 0 or b′ ≥ a′. Therefore a′ is an atom of N .

3. If a ∈ socM then there are atoms a1, a2, . . . , an such that a ≤ a1 + a2 + . . . + an.
Thus in N , σ(a) ≤ σ(a1)+σ(a2)+ . . .+σ(an). From 2, for each i ≤ n, σ(ai) is either
an atom or in {≤ 0}. Thus σ(a) ∈ soc(N).

�

Proposition 14.29. Let σ: M → N be an exact monoid homomorphism with N a decom-
position monoid. Then for all α ∈ Ord

σ(socαM) ⊆ socαN.

Proof. By induction. . .

• α = 0 σ(soc0M) = σ({≤ 0}) ⊆ {≤ 0} = soc0N

• α is a successor ordinal Suppose α = β + 1 and σ(socβ(M)) ⊆ socβ(N). Let τ, ρ be
the quotient homomorphisms as in the diagram.

M
σ //

τ

��

N

ρ

��
M/ socβM

ψ // N/ socβ N

Since σ(socβ(M)) ⊆ socβ N , there is a homomorphism ψ making the diagram
commute.
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Since N has decomposition, ρ and, hence ρ ◦ σ, are exact. τ is surjective so, by
12.2, ψ is exact. By 14.28.3,

ψ(soc(M/ socβM)) ⊆ soc(N/ socβ N)

Now suppose we have a ∈ socαM . Then τ(a) ∈ soc(M/ socβM), and therefore
ρ(σ(a)) = ψ(τ(a)) ∈ soc(N/ socβ N). This means that σ(a) ∈ socαN .

• α is a limit ordinal We assume σ(socβ(M)) ⊆ socβ N for all β < α. Thus

σ(socαM) = σ(
⋃
β<α

socβM) =
⋃
β<α

σ(socβM)

⊆
⋃
β<α

socβ N = socα(N).

�

For the remainder of this section we will turn our attention to strongly separative monoids.
The reason for this is that the monoids M(R-Noeth) and M(R-Art), to be defined in
Section 16, are strongly separative (as well as semi-Artinian).

Proposition 14.30.
1. If M is a strongly separative decomposition monoid, then for all a, b ∈M

a� b ∈ socM =⇒ a ≤ 0.

2. If M is an Artinian monoid, then for all b ∈M ,

((∀a ∈M) (a� b =⇒ a ≤ 0)) =⇒ b ∈ socM.

Proof.
1. If b ≤ 0 then a ≤ 0 and we are done. Thus by 14.23, we can assume b = b1+b2+. . .+bn

for some atoms b1, b2, . . . , bn.
We will assume first that a is an atom, and show by induction on n that this leads

to a contradiction. . .
n = 1 We have a ≤ b1. Since a 6≤ 0 and b1 is an atom, this implies a ≡ b1, and so

a � a. But a strongly separative monoid has no proper regular elements, so
this contradicts our hypothesis.

n > 1 Since M has decomposition, a is prime. So from a ≤ b1 + b2 + . . . + bn,
there is some index I such that a ≤ bI . As above, this implies a ≡ bI . Let
b′ =

∑
i 6=I bi. Then b ≡ a+ b′ and from a� b, we get 2a+ b′ ≤ a+ b′. Since

M is strongly separative, we can cancel a from this to get a+ b′ ≤ b′, that is
a � b′. Since b′ is a sum of n − 1 atoms, we have completed the induction
step.

Finally, we consider the general situation. We have a ∈ socM , so either a ≤ 0 or
a = a1 + a2 + . . . + am for some atoms a1, a2, . . . , am. In the second case we would
have a1 ≤ a � b, so a1 � b. Since a1 is an atom, this leads to the contradiction
discussed above. Thus we must have a ≤ 0.
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2. We prove the contrapositive. . .
Suppose b 6∈ socM . Define

B = {b′ | b′ ≤ b and b′ 6∈ socM}.

Since b ∈ B, B is not empty and has a minimal element, b0. b0 6∈ socM so, in
particular, b0 is not an atom. Thus there is some b1 ≤ b0 such that b1 6≤ 0 and
b1 6≥ b0. Let b2 be such that b0 = b1 + b2. We must have b2 6≤ 0, since otherwise we
would get b0 ≤ b1.

socM is an order ideal, so at least one of b1 and b2 must not be in socM . Since in
the following we need only that b1, b2 6≤ 0, we can, without loss of generality, assume
that b1 6∈ socM .

We have b1 ∈ B and b1 ≤ b0, so, by the minimality of b0, b0 ≤ b1. Thus, setting
a = b2, we get b0 + a ≤ b1 + a = b0, that is, a � b0. Since b0 ≤ b, we get finally
a� b with a 6≤ 0.

�

Combining the two parts of this proposition we get

Corollary 14.31. If M is a strongly separative Artinian decomposition monoid, then for
all b ∈M ,

((∀a ∈M) (a� b =⇒ a ≤ 0)) ⇐⇒ b ∈ socM.

Proposition 14.32. Let N be a strongly separative decomposition monoid, and σ: M → N
a monoid homomorphism such that σ−1({≤ 0}) = {≤ 0}. Then

σ−1(socN) ⊆ socM.

Proof. First we note the following fact:
Suppose a, b ∈ σ−1(socN) such that σ(a) � σ(b). We have σ(b) ∈ socN with N a

strongly separative decomposition monoid, so from 14.30.1, σ(a) ≤ 0. By the hypothesis,
this implies a ≤ 0. In particular, a� b.

From 12.1.5, this implies that σ is strictly increasing on σ−1(socN). From 14.24, socN
is Artinian, and so, from 12.5.1, σ−1(socN) is Artinian.

Let b ∈ σ−1(socN). Then from the above discussion we have that a � b implies a ≤ 0.
Since σ−1(socN) is Artinian, 14.30.2 shows that b ∈ soc(σ−1(socN)), and so, by 14.22.2,
b ∈ socM .

�

Proposition 14.33. Let M and N be decomposition monoids with N strongly separative,
and σ: M → N a monoid homomorphism such that σ−1({≤ 0}) = {≤ 0}. Then for all
α ∈ Ord

σ−1(socαN) ⊆ socαM.

Proof. By induction. . .

• α = 0 By hypothesis, we have σ−1(soc0N) = σ−1({≤ 0}) = {≤ 0} = soc0M .
• α is a successor ordinal Suppose α = β + 1 and σ−1(socβ N) ⊆ socβM .
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Let µ, τ and ρ be quotient homomorphisms as in the diagram:

M
µ

vvmmmmmmmmmmmmmm
σ //

τ

��

N

ρ

��
M/ socβM M/σ−1(socβ N)νoo ψ // N/ socβ N

Since σ(σ−1(socβ N)) ⊆ socβ N and σ−1(socβ N) ⊆ socβM , we can fill in the
diagram with homomorphisms ν and ψ making it commute.
N is strongly separative, so by 8.15, N/ socβ N is also strongly separative. Also,

by construction, ψ−1({≤ 0}) = {≤ 0}, so, using 14.32, we get

ψ−1(soc(N/ socβ N)) ⊆ soc(M/σ−1(socβ N)).

Since M has decomposition, the homomorphism ν is exact (12.2). From 14.28.3, we
then get

ν(soc(M/σ−1(socβ N))) ⊆ soc(M/ socβM).
Now suppose a ∈ σ−1(socα(N)). We will show that a ∈ socαM . . .
We have σ(a) ∈ socαN , so ψ(τ(a)) = ρ(σ(a)) ∈ soc(N/ socβ N). This implies

that τ(a) ∈ ψ−1(soc(N/ socβ N)). From above, τ(a) ∈ soc(M/σ−1(socβ N). Then
µ(a) = ν(τ(a)) ∈ ν(soc(M/σ−1(socβ N))), and from above, µ(a) ∈ soc(M/ socβM).
Hence a ∈ socαM .

• α is a limit ordinal We assume σ−1(socβ N) ⊆ socβM for all β < α. Thus

σ−1(socα(N)) = σ−1(
⋃
β<α

socβ N) =
⋃
β<α

σ−1(socβ N)

⊆
⋃
β<α

socβM) = socαM

�
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15 Semi-Artinian Refinement Monoids

In this section we consider the properties of semi-Artinian refinement monoids. Unlike
Artinian monoids, semi-Artinian monoids are not, in general, primely generated, so we do
not expect to get all the properties that Artinian monoids have. The main result of this
section is that semi-Artinian refinement monoids are midseparative (and hence separative).
We will also show by example that semi-Artinian monoids do not have weak cancellation or
≤-multiplicative cancellation.

The key to showing that semi-Artinian monoids are separative is the extension property
of separative monoids given in 8.16: If I is a separative order ideal in a refinement monoid
M such that M/I is separative, then M is separative. In particular, if I and M/I are
Artinian, then M is separative.

Proposition 15.1. Any semi-Artinian refinement monoid is separative.

Proof. Let I0 ≤ I1 ≤ · · · ≤ M be a semi-Artinian series such that M =
⋃
α Iα. We do the

proof by induction. . .
First we note that I0 = {≤ 0} is a group so I0 is both cancellative and separative. Now

suppose α ∈ Ord such that Iβ is separative for all β < α. We have two cases:
• If α is a successor ordinal, α = β+ 1, then Iβ is separative, and Iα/Iβ is an Artinian

refinement monoid, hence is also separative. From 8.16, this implies Iα is separative.
• If α is a limit ordinal, then Iα =

⋃
β<α Iβ . This is easily seen to imply that Iα is

separative.
Finally, since Iα is separative for all α, M is also separative. �

The extension property of separative monoids used in this proof is not shared by weakly
cancellative or midseparative monoids. See Examples 9.7 and 15.9. Nonetheless for the
midseparative case we have the extension property given in 13.6: If I is an Artinian order
ideal in a refinement monoid M such that M/I is midseparative, then M is midseparative.
In particular, if I and M/I are Artinian, then M is midseparative. The existence of this
property suggests that semi-Artinian refinement monoids are midseparative. To prove this
we will first prove a semi-Artinian monoid version of Proposition 13.4.

Theorem 15.2. Let a and b be elements of a refinement monoid M such that 2a = a+ b.
If {≺ b} is semi-Artinian, then there exists an idempotent e such that a = b+ e.

Proof. Let I0 ≤ I1 ≤ . . . ≤ {≺ b} be a semi-Artinian series such that {≺ b} =
⋃
α Iα. As in

13.4, we define

B = {b′ ∈M | ∃a′, d′ such that a = d′ + a′, b = d′ + b′, 2a′ = a′ + b′}.

Now b ∈ B, and b ∈ Iγ for some γ ∈ Ord, so B ∩ Iγ 6= ∅.
Let α ∈ Ord be the least ordinal such that B ∩ Iα 6= ∅. We will prove that α = 0 by

showing that if α is either a limit or successor ordinal then we get a contradiction. . .
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• α is a limit ordinal Let b0 ∈ B ∩ Iα. Since Iα =
⋃
β<α Iβ , there must be some β < α

with b0 ∈ Iβ and hence b0 ∈ B ∩ Iβ . This contradicts the minimality of α.
• α is a successor ordinal Suppose α = β + 1. Let σβ : {≺ b} → {≺ b}/Iβ be the

quotient homomorphism. Then σβ(Iα) = Iα/Iβ is Artinian and B′ = σβ(B ∩ Iα) is a
nonempty subclass of an Artinian monoid.

Let b0 ∈ B ∩ Iα be chosen so that σβ(b0) is minimal in B′. Since b0 ∈ B, there are
a0 and d0 such that a = d0 + a0, b = d0 + b0, and 2a0 = a0 + b0.

Exactly as in 13.4, by 8.6, there is a refinement matrix

( b0 a1

a0 d2 a2

a1 b2 c2

)
with c2 ≤ a2 and 2b2 ≤ a0. We also have a = (d0 + d2) + a2, b = (d0 + d2) + b2, and,
by 8.1.2, 2a2 = a2 + b2, so b2 ∈ B. Since b2 ≤ b0, the minimality of σβ(b0) implies
σβ(b0) ≤ σβ(b2). In particular, σβ(2b0) ≤ σβ(2b2) ≤ σβ(a0).

Since σβ(2b0) ≤ σβ(a0), there is some u ∈ Iβ such that 2b0 ≤ a0 + u. We make a
refinement of this inequality

(≤ a0 ≤ u

b0 a3 u3

b0 a4 u4

)
and then a further refinement of b0 = a3 + u3 = a4 + u4:

( a3 u3

a4 d′ y1
u4 y2 y3

)
Set b′ = y1 + y2 + y3 so that b0 = d′ + b′. We will show that b′ ∈ B ∩ Iβ . . .

We have 2d′ ≤ a3+a4 ≤ a0, so there is some x such that a0 = 2d′+x. Set a′ = d′+x
so that a0 = d′+a′. Then a = d0 +a0 = (d0 +d′)+a′ and b = d0 +b0 = (d0 +d′)+b′.

Note that d′ ≤ a3 ≤ b0 ≤ b, so that d′ ∈ {≺ b} and also that, from 15.1, {≺ b} is
separative. From the equation 2a0 = a0 + b0 we get 2a′ + 2d′ = a′ + b′ + 2d′ with
d′ ≤ 2a′, a′ + b′. We can then use 8.14.3 to cancel 2d′ and get 2a′ = a′ + b′. Thus
b′ ∈ B.

Also b′ ≤ u3 + u4 ≤ u ∈ Iβ , so b′ ∈ Iβ , that is b′ ∈ Iβ ∩ B. Since β < α, this
contradicts α being the least ordinal such that B ∩ Iα 6= ∅.

Since α is neither a limit ordinal or a successor ordinal, we must have α = 0. Thus
there is some b0 ∈ I0 ∩ B = {≤ 0} ∩ B. Let a0, d0 be the corresponding elements such that
a = d0 + a0, b = d0 + b0 and 2a0 = a0 + b0. Since b0 ≤ 0, there is some b′0 such that
b0 + b′0 = 0. Set e = a0 + b′0. It is then easy to check that e is an idempotent such that
a0 = b0 + e. Adding d0 to this equation gives a = b+ e. �

As an immediate corollary we have

Corollary 15.3. Any semi-Artinian refinement monoid is midseparative.

The next two results follow from 15.2 in the same way that 13.5 and 13.6 follow from
13.4:

Corollary 15.4. Let I be an semi-Artinian order ideal in a refinement monoid M .
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1. If a, b, c ∈ M with a+ c = b+ c, c ≤ a and b ∈ I, then there is an idempotent e ≤ c
such that a = b+ e.

2. If 2[e]I = [e]I for some e ∈ M , then there is an idempotent e′ ≤ e such that
[e′]I = [e]I .

3. If 2[e]I = [e]I ≤ [a]I for some e, a ∈M , then there is an idempotent e′ ≤ a such that
[e′]I = [e]I .

Proof. Exactly as in the proof of 13.5. �

Proposition 15.5. Let I be a semi-Artinian order ideal in a refinement monoid M . Then
if M/I is midseparative, so is M .

Proof. Exactly as in the proof of 13.6. �

The next goal of this section is to show that semi-Artinian refinement monoids do not, in
general, have weak cancellation or ≤-multiplicative cancellation. Constructing a counterex-
ample in the ≤-multiplicative cancellation case is made more difficult by the fact that any
weakly cancellative semi-Artinian refinement monoid has ≤-multiplicative cancellation. To
show this we will need the following two lemmas:

Lemma 15.6. [31, Lemma 1.9] Let M be a refinement monoid and a, b, c ∈ M such that
a+ b = nc for some n ∈ N. Then there are x0, x1, . . . , xn ∈M such that

a =
n∑
k=0

kxk b =
n∑
k=0

(n− k)xk c =
n∑
k=0

xk.

Proof. The n = 1 case is trivial. We will prove the other cases by induction. . .
Suppose the claim is true for some n ∈ N and we have a + b = nc + c in M . Then we

make a refinement of this equation

(nc c

a a1 a2

b b1 b2

)
Since a1 + b1 = nc, we use the induction hypothesis to get y0, y1, . . . , yn ∈ M such that
a1 =

∑n
k=0 kyk, b1 =

∑n
k=0(n−k)yk and c =

∑n
k=0 yk. We also have a2 +b2 = c =

∑n
k=0 yk

so we get a refinement

( y0 y1 . . . yn
a2 u0 u1 . . . un
b2 v0 v1 . . . vn

)
For k = 0, 1, 2, . . . , n, n+ 1, define

xk =


v0 k = 0
uk−1 + vk 1 ≤ k ≤ n

un k = n+ 1
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It is then straight forward to check that x0, x1, . . . , xn+1 satisfy the equations

a =
n+1∑
k=0

kxk b =
n+1∑
k=0

(n+ 1− k)xk c =
n+1∑
k=0

xk.

�

Lemma 15.7. Let M be a weakly cancellative refinement monoid, and a0, b0 ∈M such that
na0 ≤ nb0 for some n ∈ N. Then there are a1, b1, d1 such that a0 = d1 + a1, b0 = d1 + b1,
na1 ≤ nb1 and na1 ≤ (n− 1)a0.

Proof. Let u ∈M be such that na0+u = nb0. We write this equation as a0+((n−1)a0+u) =
nb0 and then use the previous lemma to get x0, x1, . . . , xn ∈ M such that a0 =

∑n
k=0 kxk

and b0 =
∑n
k=0 xk.

Set d1 =
∑n
k=1 xk and a1 =

∑n
k=2(k − 1)xk so that a0 = d1 + a1 and b0 = d1 + x0. We

also have

na1 = n
n∑
k=2

(k − 1)xk =
n∑
k=2

(nk − n)xk ≤
n∑
k=2

(nk − k)xk = (n− 1)
n∑
k=2

kxk ≤ (n− 1)a0.

From na0 ≤ nb0 we now get nd1 + na1 ≤ nd1 + nx0. Using separativity, we cancel
(n−1)d1 from this to get d1 +na1 ≤ d1 +nx0, and using 9.13.1, there is some y1 � d1 such
that na1 ≤ nx0 + y1. Let y2 be such that d1 = d1 + y1 + y2, and set b1 = x0 + y1 + y2. Then
d1 + b1 = d1 + x0 + y1 + y2 = d1 + x0 = b0 and na1 ≤ nx0 + y1 ≤ n(x0 + y1 + y2) = nb1.

�

Theorem 15.8. Any semi-Artinian refinement monoid which has weak cancellation, also
has ≤-multiplicative cancellation.

Proof. Suppose a and b are elements of a weakly cancellative semi-Artinian refinement
monoid M such that na ≤ nb for some n ≥ 2. We will show that a ≤ b. . .

Let I0 ≤ I1 ≤ . . . ≤M be a semi-Artinian series such that M =
⋃
α Iα. We define

A = {a′ | ∃b′, d′ such that a = d′ + a′, b = d′ + b′, and na′ ≤ nb′}.

Now a ∈ A, and a ∈ Iγ for some γ ∈ Ord, so A ∩ Iγ 6= ∅.
Let α ∈ Ord be the least ordinal such that A ∩ Iα 6= ∅. We will prove that α = 0 by

showing that if α is either a limit or successor ordinal then we get a contradiction. . .
• α is a limit ordinal Let a0 ∈ A∩ Iα. Since Iα =

⋃
β<α Iβ , there must be some β < α

with a0 ∈ Iβ and hence a0 ∈ A ∩ Iβ . This contradicts the minimality of α.
• α is a successor ordinal Suppose α = β + 1. Let σβ : M → M/Iβ be the quotient

homomorphism. Then σβ(Iα) ∼= Iα/Iβ is an Artinian monoid and A′ = σβ(A ∩ Iα)
is a nonempty subclass of an Artinian monoid.

Let a0 ∈ A ∩ Iα be chosen so that σβ(a0) is minimal in A′. Since a0 ∈ A, there
are b0, d0 such that a = d0 + a0, b = d0 + b0, and na0 ≤ nb0.

By 15.7, there are a1, b1, d1 such that a0 = d1 + a1, b0 = d1 + b1, na1 ≤ nb1
and na1 ≤ (n − 1)a0. We have a = (d0 + d1) + a1 and b = (d0 + d1) + b1 and
so a1 ∈ A. Since also a1 ≤ a0 ∈ Iα, we have a1 ∈ A ∩ Iα and σβ(a1) ∈ A′
with σβ(a1) ≤ σβ(a0). The minimality of σβ(a0) then implies σβ(a0) ≤ σβ(a1). In
particular, σβ(na0) ≤ σβ(na1) ≤ σβ((n− 1)a0).
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Since σβ(na0) ≤ σβ((n−1)a0), there is some u ∈ Iβ such that na0 ≤ (n−1)a0 +u.
The monoid M is separative so we can cancel (n− 2)a from this to get 2a0 ≤ a0 +u.
Using 9.13.1, there is some y0 � a0 such that a0 ≤ u + y0. Decomposing this, we
get a0 = a2 + y1 with a2 ≤ u and y1 ≤ y0 � a0, that is, y1 � a0. We will show that
a2 ∈ A. . .

Let y2 be such that a0 = a0+y1+y2. Since na0 ≤ nb0, we have nb0 = nb0+y1+y2,
and since M is separative, b0 = b0 + y1 + y2. Set b2 = b0 + y2. Then b0 = b2 + y1, so
a = (d0 + y1) + a2 and b = (d0 + y1) + b2. Also na2 ≤ na0 ≤ nb0 ≤ nb2, so a2 ∈ A.

We also have a2 ≤ u ∈ Iβ , and so a2 ∈ Iβ , that is a2 ∈ Iβ ∩ A. Since β < α, this
contradicts α being the least ordinal such that A ∩ Iα 6= ∅.

Since α is neither a limit ordinal or a successor ordinal, we must have α = 0, and so there
is some a0 ∈ I0 ∩ A = {≤ 0} ∩ A. Since a0 ∈ A, there are b0, d0 such that a = d0 + a0,
b = d0 + b0. Finally a0 ≤ 0, so we get a = d0 + a0 ≤ d0 ≤ b. �

This proposition explains the complexity of the following example, which to exhibit failure
of ≤-multiplicative cancellation in a semi-Artinian refinement monoid must also fail weak
cancellation. This example has many other interesting properties and serves also as a general
purpose counterexample for many hoped-for-but-not-true claims about monoids.

Example 15.9. A semi-Artinian refinement monoid containing two incomparable elements
a0, b0 such that 2a0 = 2b0.

Let F be the free monoid on the generators, c′, d′, a′0, b
′
0, a

′
1, b

′
1, a

′
2, b

′
2, . . .. Let ∼ be the

congruence on F generated by

2a′n ∼ 2b′n
a′n ∼ a′n+1 + c′ ∼ b′n+1 + d′

b′n ∼ b′n+1 + c′ ∼ a′n+1 + d′

for all n ∈ Z+.
Let M = F/ ∼ and σ: F → M the quotient homomorphism. We write an = σ(a′n),

bn = σ(b′n), c = σ(c′) and d = σ(d′). Then in M we have

2an = 2bn
an = an+1 + c = bn+1 + d

bn = bn+1 + c = an+1 + d.

Note also that an = an+2 + 2c = an+2 + 2d, bn = bn+2 + 2c = bn+2 + 2d, and also
an + 2c = an + 2d and bn + 2c = bn + 2d for all n ∈ Z+.

• Claim an and bn are incomparable:
Define monoid homomorphism α′: F → Z+ × Z× Z2 by

α′(a′n) = (1, n, 0) α′(b′n) = (1, n, 1)

α′(c′) = (0,−1, 0) α′(d′) = (0,−1, 1)
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for all n ∈ Z+. Z+ × Z× Z2 is a cancellative refinement monoid. Since

α′(2a′n) = α′(2b′n)

α′(a′n) = α′(a′n+1) + α′(c′) = α′(b′n+1) + α′(d′)

α′(b′n) = α′(b′n+1) + α′(c′) = α′(a′n+1) + α′(d′),

there is an induced monoid homomorphism α: M → Z+×Z×Z2 such that α′ = α◦σ,
in particular,

α(an) = (1, n, 0) α(bn) = (1, n, 1)

α(c) = (0,−1, 0) α(d) = (0,−1, 1)

Since the images of c, d, a0, b0, a1, b1, a2, b2, . . . are distinct elements in Z+×Z×Z2,
these elements are distinct in M .
α(M) is (Z+ × Z × Z2) \ (({0} × N × Z2) ∪ {(0, 0, 1)}), which is, of course, a

submonoid of Z+×Z×Z2. Notice that α(c)+α(c) = α(d)+α(d). This equation has
no refinement in α(M), as is easily checked, so α(M) does not have refinement.

Now we show that for each n ∈ N, the elements an and bn are incomparable. . .
If an ≤ bn, then there would be some u ∈ M such that an + u = bn. Applying

α to this equation gives (1, n, 0) + α(u) = (1, n, 1) and hence α(u) = (0, 0, 1). But
(0, 0, 1) 6∈ α(M), so no such u can exist. Therefore an 6≤ bn and similarly, bn 6≤ an.

• Claim M is partially ordered:
A straight forward calculation shows that for two elements u′, v′ ∈ F , we have

α′(u′) + α′(v′) = (0, 0, 0) if and only if u′ = v′ = 0. Thus we have a similar result
for two elements u, v ∈M : α(u) + α(v) = (0, 0, 0) if and only if u = v = 0.

A consequence of this is that u� x in M if and only if u = 0: If x+ u ≤ x then
there is v such that x+u+v = x and hence α(x) = α(u)+α(v)+α(x). Cancellation
in Z+ × Z× Z2 gives α(u) + α(v) = (0, 0, 0), and so u = 0.

Now it is easy to show that M is partially ordered. . .
If x ≡ y in M then there is u� x such that x = y+ u. But u� x implies u = 0,

and so x = y.
• Claim M is not weakly cancellative:

Let I ⊆ M be the submonoid generated by c and d. In fact, I is an order ideal,
since it is the inverse image under α of the order ideal {0}×Z×Z2 ≤ Z+ ×Z×Z2.
We will also show that I is free. . .

Write (Z+ × Z+)∞ for the monoid obtained by adjoining an infinite element to
Z+ × Z+.

We define a monoid homomorphism β′: F → (Z+ × Z+)∞

β′(a′n) = ∞ β′(b′n) = ∞
β′(c′) = (1, 0) β′(d′) = (0, 1)

Just as for the homomorphism α′, β′ induces a homomorphism β: M → (Z+×Z+)∞

such that

β(an) = ∞ β(bn) = ∞
β(c) = (1, 0) β(d) = (0, 1)
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Using this homomorphism it is easy to see that m1c + n1d = m2c + n2d in M if
and only if m1 = m2 and n1 = n2. Thus c and d generate a free submonoid in M .
One immediate consequence is that 2c 6= 2d, so the equation a0 + 2c = a0 + 2d does
not cancel. This means that M is not cancellative, and, since for any u, u � a0

implies u = 0, M can not be weakly cancellative either.
Note that α(M) is cancellative but M is not, so M and α(M) are not isomorphic.

• Claim M is semi-Artinian:
We have already noted that the order ideal I is isomorphic to Z+ × Z+, so I is

Artinian and I ⊆ AradM . In fact, we will show that I = AradM . . .
We have an = an+1 + c and bn = bn+1 + c for all n ∈ Z+, so a0 ≥ a1 ≥ a2 ≥ . . .

and b0 ≥ b1 ≥ b2 ≥ . . .. These sequences must be strictly decreasing since M is
partially ordered and all the an and bn are distinct. Thus M is not Artinian, no an
or bn is in AradM , and I = AradM .

In M/I, it is easy to check that [a0]I = [am]I = [bn]I for all m,n ∈ Z+, so that
M/I has a single generator. We will show, in fact, that M/I ∼= Z+. . .

Let γ′: F → Z+ be the monoid homomorphism defined by γ′(a′n) = γ′(b′n) = 1 for
all n ∈ Z+ and γ′(c′) = γ′(d′) = 0. This homomorphism is surjective. It is easily
checked that γ′ induces a surjective monoid homomorphism γ: M → Z+ such that
γ(an) = γ(bn) = 1 for all n ∈ Z+ and γ(c) = γ(d) = 0. Since I ⊆ ker γ, there is
another induced homomorphism γ̄: M/I → Z+ such that γ̄([a0]I) = 1. Since [a0]I
generates M/I and γ̄ is surjective, we have M/I ∼= Z+.

Thus both I and M/I are Artinian and so M is semi-Artinian. Notice also that I
and M/I are cancellative but M is not, and I and M/I are weakly cancellative but
M is not.

• Claim M has refinement:
Let x ∈M . Then x can, in general, be written as a sum of the generators in many

ways. Fix such an expression and let N ∈ N be a number greater than any subscript
of a or b appearing in this expression. If there is no an or bn in this expression,
then any N ∈ N will do. Then using the rules an = an+1 + c and bn = an+1 + d a
sufficient number of times, x can be written in the form

x = laN +mc+ nd

for some l,m, n ∈ Z+. Note that α(x) = (l, Nl −m− n, n (mod 2)).
We now consider how to construct a refinement of the equation x1 + x2 = x3 + x4

for elements x1, x2, x3, x4 ∈M . . .
If we happened to have x1, x2, x3, x4 ∈ I, then, since I ∼= Z+ × Z+ which is a

refinement monoid, we are done.
So it remains to deal with the case where not all of x1, x2, x3, x4 are in I. We will

assume, without loss of generality, that x1 6∈ I. This, of course, implies that either
x3 or x4 is not in I. By choosing a suitably large N ∈ N, we can write

xi = liaN +mic+ nid i = 1, 2, 3, 4

with li,mi, ni ∈ Z+. Since x1 6∈ I, we have l1 ≥ 1.



Section 15: Semi-Artinian Refinement Monoids 139

Applying the homomorphism α to the equation x1 + x2 = x3 + x4 we get

l1 + l2 = l3 + l4

N(l1 + l2)− (m1 +m2 + n1 + n2) = N(l3 + l4)− (m3 +m4 + n3 + n4)

n1 + n2 ≡ n3 + n4 (mod 2)

Set ∆ = n3 + n4 − (n1 + n2). Then from the above equations we get ∆ ≡ 0 (mod 2),
that is, ∆ is an even integer, and ∆ = m1 + m2 − (m3 + m4). Without loss of
generality, we will assume ∆ ≥ 0. (If ∆ < 0 we can interchange the variables x1, x2

with x3, x4 and start over again.)
If ∆ = 0 then we have l1 + l2 = l3 + l4, m1 +m2 = m3 +m4 and n1 +n2 = n3 +n4.

Refinements of these three equations in Z+ then provide coefficients of aN , c, d for a
refinement of the original equation, x1 + x2 = x3 + x4.

If ∆ > 0 then we will show that by replacing N by N + 2 we can reduce ∆ by 2.
Repetition of this process eventually gives ∆ = 0.

We make new expressions for x1, x2, x3, x4, using the rule aN = aN+2 + 2c =
aN+2 + 2d. . .

Since l1 ≥ 1 we can write

x1 = (aN+2 + 2d) + (l1 − 1)(aN+2 + 2c) +m1c+ n1d

= l1aN+2 + (m1 + 2l1 − 2)c+ (n1 + 2)d,

and for i = 2, 3, 4 we write

xi = li(aN+2 + 2c) +mic+ nid

= liaN+2 + (2li +mi)c+ nid.

A simple check shows that the ∆ for these new expressions is n3 +n4− (n1 +n2)− 2
as promised.

To close this section we combine the midseparativity of semi-Artinian refinement monoids
with 14.29 and 14.33 to produce a proposition which is in a useful form for application to
the monoids M(R-Noeth) and M(R-Art) in Section 17.

Corollary 15.10. Let M and N be refinement monoids such that N = LradN and N has
no proper regular elements. Let σ: M → N be an exact monoid homomorphism such that
σ−1({≤ 0}) = {≤ 0}. Then

1. M = LradM , in particular, M is semi-Artinian.
2. M is strongly separative.
3. For all α ∈ Ord, socαM = σ−1(socαN).
4. If, in addition, σ is surjective, then for all α ∈ Ord, socαN = σ(socαM).

Proof. N is a semi-Artinian refinement monoid with no proper regular elements, so by 15.3
and 9.6, it is strongly separative. Thus from 14.33, σ−1(socαN) ⊆ socαM for all α ∈ Ord.
In particular, M = σ−1(N) = σ−1(LradN) ⊆ LradM , that is, M = LradM .
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Let e ∈M be regular, then σ(e) is regular in N . But N has no proper regular elements,
so we must have σ(e) ≤ 0, and because σ−1({≤ 0}) = {≤ 0}, e ≤ 0. Thus M is a semi-
Artinian refinement monoid with no proper regular elements. As above, this implies M is
strongly separative.

Since σ is exact, we get from 14.29, σ(socα(M)) ⊆ socαN for all α ∈ Ord. Hence

socαM ⊆ σ−1(σ(socαM)) ⊆ σ−1(socαN) ⊆ socαM,

that is, socαM = σ−1(socαN).
If, in addition, σ is surjective, then we get

socαN = σ(σ−1(socαN)) = σ(socαM) ⊆ socαN,

so socαN = σ(socαM). �



141

16 Monoids from Modules

The purpose of the current section is to construct monoids which will encode the prop-
erties of certain subcategories of R-Mod with respect to short exact sequences:

Definition 16.1. A Serre subcategory of R-Mod, is a full subcategory S of R-Mod
such that for every short exact sequence 0 → A → B → C → 0 in R-Mod, B ∈ S if and
only if A,C ∈ S.

In particular, a Serre subcategory is closed under taking submodules, factor modules and
finite direct sums. The zero module is an object in any Serre subcategory.

Some standard Serre subcategories of R-Mod are
• R-Noeth, the full subcategory of R-Mod consisting of all Noetherian R-modules.
• R-Art, the full subcategory of R-Mod consisting of all Artinian R-modules.
• R-len, the full subcategory of R-Mod consisting of all R-modules of finite length.

For each Serre subcategory S of R-Mod we will construct a monoid M(S) whose elements
are equivalence classes of modules:

Definition 16.2. A submodule series for a module A is a finite sequence of submodules
of the form 0 = A0 ≤ A1 ≤ · · · ≤ An = A. The factors of this series are the modules
Ai/Ai−1 for i = 1, 2, . . . , n. A refinement of this series is a another submodule series
0 = A′0 ≤ A′1 ≤ · · · ≤ A′m = A which contains all the Ai, that is, Ai ∈ {A′0, A′1, . . . , A′m} for
each i.

Let A and B be R-modules. Then two submodule series 0 = A0 ≤ A1 ≤ · · · ≤ An = A
and 0 = B0 ≤ B1 ≤ · · · ≤ Bm = B are isomorphic if n = m and there is a permutation of
the indices, σ, such that Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n. In this situation we
will say A and B have isomorphic submodule series and write A ∼ B.

It is clear that isomorphism of submodule series is an equivalence relation, and that
if 0 = A0 ≤ A1 ≤ · · · ≤ An = A and 0 = B0 ≤ B1 ≤ · · · ≤ Bn = B are two isomorphic
submodule series then any refinement of one of these series induces an isomorphic refinement
of the other series.

If S is a Serre subcategory of R-Mod and A ∈ S then the factors of any submodule series
for A are also in S. So, in particular, if B ∈ R-Mod with B ∼ A then B ∈ S. Thus S is a
union of ∼-equivalence classes.

The most important property of submodule series is the Schreier refinement theorem
which says that any two submodule series in a module have isomorphic refinements. This
is exactly what is needed to make ∼ an equivalence relation:

Proposition 16.3. ∼ is an equivalence relation on R-Mod.

Proof. Reflexivity and symmetry are trivial, so it remains to check transitivity...
Suppose A ∼ B and B ∼ C. From the first relation we get isomorphic submodule

series 0 = A0 ≤ A1 ≤ · · · ≤ An = A and 0 = B0 ≤ B1 ≤ · · · ≤ Bn = B. From the
second relation we get isomorphic submodule series 0 = B′0 ≤ B′1 ≤ · · · ≤ B′m = B and
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0 = C0 ≤ C1 ≤ · · · ≤ Cm = C. From the Schreier refinement theorem, the two series
in B have isomorphic refinements. These new isomorphic submodule series in B induce
isomorphic refinements in A and C. Hence A ∼ C. �

Lemma 16.4. If A,B,C ∈ R-Mod then A ∼ B =⇒ A⊕ C ∼ B ⊕ C.

Proof. Let 0 = A0 ≤ A1 ≤ · · · ≤ An = A and 0 = B0 ≤ B1 ≤ · · · ≤ Bn = B be isomorphic
submodule series, then it is easily checked that 0 ≤ A0⊕C ≤ A1⊕C ≤ · · · ≤ An⊕C = A⊕C
and 0 ≤ B0 ⊕ C ≤ B1 ⊕ C ≤ · · · ≤ Bn ⊕ C = B ⊕ C are isomorphic submodule series in
A⊕ C and B ⊕ C. �

This lemma has the immediate consequence that if A ∼ B and C ∼ D then A⊕C ∼ B⊕D.
That is, ⊕ induces a well defined operation on the ∼-equivalence classes. We formalize this
in the following definition:

Definition 16.5. Let S be a Serre subcategory of R-Mod. We will write M(S) for S/∼,
the class of ∼-equivalence classes of S. We will write [A] ∈ M(S) for the ∼-equivalence
class containing A ∈ S. Define the operation + on M(S) by [A] + [B] = [A ⊕ B] for all
A,B ∈ S.

(M(S),+) is, in fact, a commutative monoid (and, by 16.10, a refinement monoid).
Rather than proving this directly we will use the following more general and useful propo-
sition.

Proposition 16.6. Let S be a Serre subcategory of R-Mod, N a class with a binary
operation +, and Λ: S → N , a function. Then the following properties of Λ are equivalent:

(i) Λ(B) = Λ(A) + Λ(C) whenever 0 → A → B → C → 0 is a short exact sequence in
S.

(ii) Λ(A) = Λ(B) for any A,B ∈ S with A ∼ B, and Λ(A ⊕ B) = Λ(A) + Λ(B) for all
A,B ∈ S.

If either property is true, then Λ(S) is a commutative monoid with identity element Λ(0).
Also, for A ∈ S, we have Λ(A) = Λ(A1) + Λ(A2) + · · ·+ Λ(An) where A1, A2, . . . An are the
successive factors of any submodule series for A.

Proof. We show first that (i) implies (ii), and at the same time we prove the other claims
of the proposition:

1. For any A,B ∈ S, the obvious exact sequence 0 → A → A ⊕ B → B → 0 implies
Λ(A⊕B) = Λ(A) + Λ(B).

2. Let A ∈ S, then the exact sequences 0 → A
id→ A→ 0 → 0 and 0 → 0 → A

id→ A→ 0
imply that Λ(A) + Λ(0) = Λ(A) = Λ(0) + Λ(A). Thus Λ(0) is an identity of Λ(S).

3. Suppose σ: A → B is an isomorphism with A,B ∈ S, then 0 → A
σ→ B → 0 → 0

is an exact sequence and so Λ(B) = Λ(A) + Λ(0) = Λ(A). So we have shown that
A ∼= B implies Λ(A) = Λ(B).

4. The commutativity and associativity of the operation + on Λ(S) come directly from
these same properties of ⊕ up to isomorphism. With 2, we have proved that Λ(S) is
a commutative monoid with identity Λ(0).

5. Suppose 0 = A′0 ≤ A′1 ≤ · · · ≤ A′n = A is a submodule series for A ∈ S with factors
Ai = A′i/A

′
i−1. All A′i and Ai are in S. For each i we have the exact sequence
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0 → A′i−1 → A′i → Ai → 0, so Λ(A′i) = Λ(Ai) + Λ(A′i−1). A simple induction then
shows that Λ(A) = Λ(A1) + Λ(A2) + · · ·+ Λ(An).

6. If A,B ∈ S have isomorphic submodule series, that is A ∼ B, then using 3, 4 and 5,
we get Λ(A) = Λ(B).

To show that (ii) implies (i), suppose 0 → A
σ→ B → C → 0 is exact for some A,B,C ∈ S.

Then C ∼= B/ im(σ) with im(σ) ∼= A, so B has the submodule series 0 ≤ im(σ) ≤ B with
factors isomorphic to A and C. The module A⊕C has the submodule series 0 ≤ A⊕0 ≤ A⊕C
with these same factors, so A⊕ C ∼ B. By (ii), Λ(B) = Λ(A⊕ C) = Λ(A) + Λ(C).

�

Any function Λ which satisfies either of the conditions of this proposition will be said to
respect short exact sequences in S.

Since the map A 7→ [A] from S to M(S) satisfies condition (ii) and is surjective, M(S) is
a commutative monoid with identity [0]. We will use the notation M(S) and M̃(S) for the
universal monoids constructed from M(S) according to 6.3 and 6.18, respectively.

The monoid (M(S),+) has the following universal property:

Proposition 16.7. Let S be a Serre subcategory of R-Mod, N a class with a binary
operation +, and Λ: S → N , a map which respects short exact sequences in S. Then Λ
factors uniquely through M(S). Specifically, there exists a unique monoid homomorphism λ
from M(S) to Λ(S) such that the following diagram commutes:

S
[ ] //

Λ

!!C
CC

CC
CC

CC
M(S)

λ

��
Λ(S)

Proof. Define the map λ: M(S) → Λ(S) by λ([A]) = Λ(A) for all A ∈ S. This is well defined
because if [A] = [B], then A ∼ B and, by 16.6, Λ(A) = Λ(B). For any [A], [B] ∈M , we have
λ([A]+[B]) = λ([A⊕B]) = Λ(A⊕B) = Λ(A)+Λ(B) = λ([A])+λ([B]). Also, λ([0]) = Λ(0)
which is the identity for Λ(S). So λ is a monoid homomorphism. �

We note that, in this proposition, if N happened to be a monoid, the homomorphism
λ would not be a monoid homomorphism when viewed as a map to N unless, in addition,
Λ(0) = 0. This will indeed be the case in all the applications of the proposition we will
make.

Proposition 16.7 provides a second characterization of the equivalence relation ∼ for mod-
ules A,B ∈ R-Mod, namely, A ∼ B if and only if the modules A and B are indistinguishable
by functions on R-Mod which respect short exact sequences.

By construction, M(S) is a submonoid of M(R-Mod) for any Serre subcategory S. In
fact, we will see that M(S) is not just a submonoid but also an order ideal of M(R-Mod),
and further that every order ideal of M(R-Mod) is M(S) for some Serre subcategory S:
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Let S be a Serre subcategory of R-Mod and define a map Λ: R-Mod → {0,∞} by

Λ(A) =

{
0 A ∈ S
∞ A 6∈ S

It is easy to check that Λ respects short exact sequences so that there is an induced
monoid homomorphism λ: M(R-Mod) → {0,∞} such that λ([A]) = 0 if and only if A ∈ S.
From 6.12, λ−1(0) = M(S) is then an order ideal in M(R-Mod).

Conversely, given an order ideal I of M(R-Mod), it is easy to show that

S = {A ∈ R-Mod | [A] ∈ I}
is a Serre subcategory of R-Mod.

These two constructions can be used to prove:

Proposition 16.8. The map S 7→M(S) is a bijection from the class of all Serre subcate-
gories of R-Mod to the class of all order ideals of M(R-Mod).

Proof. It remains only to check that the maps described above are inverses of each other. �

An immediate consequence of this proposition is that if Λ: S → N respects short exact se-
quences, then the inverse image of any order ideal in the monoid Λ(S) is a Serre subcategory
in S.

We collect in the next proposition some simple properties of M(R-Mod):

Proposition 16.9. Let A,B ∈ R-Mod.
1. If A is a submodule of B, then

[B] = [A] + [B/A].

2. If A is a submodule, factor module or subfactor module of B, then [A] ≤ [B].
3. [A] ≤ [B] if and only if there are submodule series 0 = A0 ≤ A1 ≤ · · · ≤ An = A and

0 = B0 ≤ B1 ≤ · · · ≤ Bm = B and an injection, σ: {1, 2, . . . , n} → {1, 2, . . . ,m},
such that Ai/Ai−1

∼= Bσ(i)/Bσ(i)−1 for i = 1, 2, . . . , n.
4. [A] ≺ [B] if and only if there is a submodule series 0 = A0 ≤ A1 ≤ · · · ≤ An = A

such that Ai/Ai−1 is isomorphic to a subfactor of B for i = 1, 2, . . . , n.

Proof.
1. Follows from the existence of the obvious exact sequence 0 → A→ B → B/A→ 0.
2. Immediate from 1.
3. If [A] ≤ [B], then there is some module C such that [B] = [A] + [C] = [A⊕ C], that

is B and A⊕ C have isomorphic submodule series. The submodules series in A⊕ C
can be chosen as a refinement of the series 0 ≤ A⊕ 0 ≤ A⊕ C. The permutation of
factors of the two submodule series restricted to the factors in A gives the map σ as
required.

The converse is easy.
4. Proved in a similar way to 3.

�
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We have, by definition, that a short exact sequence 0 → A → B → C → 0 in a Serre
subcategory S gives rise to the equation [B] = [A] + [C] in M(S). For an exact sequence
with four terms,

0 → A→ B
β→ C

γ→ D → 0,
we get the equation [A] + [C] = [B] + [D]. This is proved by making the two short exact
sequences

0 → A→ B
β→ imβ → 0,

and
0 → ker γ → C

γ→ D → 0.
Since imβ = ker γ, we get [A] + [C] = [A] + [ker(γ)] + [D] = [A] + [im(β)] + [D] = [B] + [D].
Induction using this process gives the general rule that if

0 → A1 → B1 → A2 → B2 → . . .→ An → Bn → 0

is an exact sequence in S, then [A1] + [A2] + . . .+ [An] = [B1] + [B2] + . . .+ [Bn].
The most important algebraic property of the monoid M(R-Mod) is that it has refine-

ment. . .
Suppose a submodule series is given for a module A and there is another module B such

that A ∼ B, then the Schreier refinement theorem implies that there is a refinement of the
existing series in A which is isomorphic to a submodule series in B. If B also happened
to have a submodule series given, then a second application of the theorem would give
refinements of the two given series which are isomorphic. This principle is used in showing
that M(S) is a refinement monoid:

Proposition 16.10. M(S) is a refinement monoid for any Serre subcategory S of R-Mod.

Proof. Suppose there are modules A,B,C,D ∈ S such that [A] + [B] = [C] + [D] in M(S).
Then [A ⊕ B] = [C ⊕ D], that is, A ⊕ B ∼ C ⊕ D. From the above discussion, there
are isomorphic submodule series for these two modules which are refinements of the series
0 ≤ A ⊕ 0 ≤ A ⊕ B and 0 ≤ C ⊕ 0 ≤ C ⊕ D. That is, there are submodule series
0 ≤ A1 ≤ · · · ≤ A, 0 ≤ B1 ≤ · · · ≤ B, 0 ≤ C1 ≤ · · · ≤ C, and 0 ≤ D1 ≤ · · · ≤ D such that
the series

0 ≤ A1 ⊕ 0 ≤ · · · ≤ A⊕ 0 ≤ A⊕B1 ≤ · · · ≤ A⊕B

and
0 ≤ C1 ⊕ 0 ≤ · · · ≤ C ⊕ 0 ≤ C ⊕D1 ≤ · · · ≤ C ⊕D

are isomorphic.
The permutation that matches isomorphic factors in these submodule series divides them

into four types: (1) Ai/Ai−1
∼= Cj/Cj−1; (2) Ai/Ai−1

∼= Dj/Dj−1; (3) Bi/Bi−1
∼= Cj/Cj−1;

or (4) Bi/Bi−1
∼= DjDj−1 for suitable indices i, j. If we let W,X, Y, Z ∈ S be the direct

sums of the factors of type 1,2,3,4 respectively, then one can easily check that [W ] + [X] =∑
i[Ai/Ai−1] = [A] and, similarly, [W ] + [Y ] = [C], [X] + [Z] = [D], [Y ] + [Z] = [B], that is,

we have the refinement matrix ( [A] [B]
[C] [W ] [Y ]
[D] [X] [Z]

)
�

We can now identify the atoms and the socle of the monoid M(R-Mod):
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Proposition 16.11. Let A ∈ R-Mod.
1. [A] ≤ 0 = [0] if and only if A = 0. In particular, M(R-Mod) is a conical monoid.
2. If [A] ≤ [M ] with M a simple module, then either A = 0 or A ∼= M .
3. If [A] 6= 0, then there is a simple module M ∈ R-Mod such that [M ] ≤ [A].
4. [A] is an atom of M(R-Mod) if and only if A is a simple module.
5. soc(M(R-Mod)) = M(R-len)
6. soc(M(R-Mod)) is a free monoid with the atoms of M(R-Mod) as its basis.

Proof.
1. Direct from the definition.
2. Follows from 16.9.3 and the scarcity of submodule series for M .
3. Since [A] 6= 0, the module A is nonzero. Let Ra ≤ A be a nonzero cyclic submodule.

We have Ra ∼= R/ ann(a) with ann(a) a proper ideal of R. Let I be a maximal
(one-sided) ideal of R containing ann(a), and M = R/I. Then M is simple and

[M ] ≤ [M ] + [I/ ann(a)] = [R/I] + [I/ ann(a)] = [R/ ann(a)] = [Ra] ≤ [A].

4. Suppose [A] is an atom of M(R-Mod). Since [A] 6= 0, there is a simple module M
such that 0 6= [M ] ≤ [A]. Since [A] is an atom, this implies that [A] ≤ [M ], and
hence, from 2, that A ∼= M .

Conversely, if A is simple, then 2 shows immediately that [A] is an atom.
5. If A has finite length, then it is the zero module or it has a composition series whose

factors are all simple modules. In the first case [A] = 0 ∈ soc(M(R-Mod)). In the
second case, from 4, we get that [A] is a sum of atoms of M(R-Mod) and hence is
in soc(M(R-Mod)).

Conversely, if a ∈ soc(M(R-Mod)) then by 14.23, a is zero or a sum of atoms.
(Here we need that M(R-Mod) has refinement.) If a = 0 then a = [0] ∈M(R-len).
Otherwise, using 4, there are simple modules A1, A2, . . . An, such that

a = [A1] + [A2] + . . .+ [An] = [A1 ⊕A2 ⊕ . . .⊕An].

Since A1 ⊕A2 ⊕ . . .⊕An has finite length, we have a ∈M(R-len).
6. If [A] ∈ soc(M(R-Mod)) is nonzero, then A has finite length and so

[A] = [A1] + [A2] + . . .+ [An]

where A1, A2, . . . , An are the simple factor modules of a composition series for A. By
the Jordan-Hölder Theorem [1, 11.3] these simple modules are uniquely determined
by A. Thus, with 4, [A] is uniquely a sum of atoms of M(R-Mod).

Let B be the class of all atoms of M(R-Mod) and Λ: B → M ′ a map from B to
an arbitrary monoid M ′. From the above discussion, there is a unique way to extend
Λ to a monoid homomorphism from soc(M(R-Mod)) to M ′. Thus from Definition
5.13, soc(M(R-Mod)) is a free monoid with basis B.

�

For finite length modules, we have the composition series length function len from R-len
to Z+. If 0 → A → B → C → 0 is a short exact sequence in R-len, then lenB =
lenA + lenC. Thus len respects short exact sequences as a map to the monoid (Z+,+).
From 16.7, there is an induced monoid homomorphism, which we will also call len, from
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M(R-len) to Z+ such that len[A] = lenA for all A ∈ R-len. So, for example, [A] ≤ [B]
implies len[A] ≤ len[B] implies lenA ≤ lenB for all A,B ∈ R-len. In Section 17, this map
will be extended to all of R-Noeth using the Krull length function.

Having established the main properties of M(R-Noeth), we calculate this monoid in the
simplest case:

Example 16.12. Suppose R is a field. Then, up to isomorphism, any R-module A is
determined by the cardinality of a basis, that is, by its dimension, dimA. Further, for any
short exact sequence, 0 → A → B → C → 0 we have dimB = dimA + dimC. Here the
operation is cardinal addition. Thus the map dim respects short exact sequences as a map
from R-Mod to (Card,+). By 16.7, there is a monoid homomorphism from M(R-Mod)
to Card. This homomorphism must be injective since elements of M(R-Mod) are unions
of isomorphism classes of modules and each isomorphism class maps to a different cardinal
via dim. The homomorphism is surjective because for every cardinal a, the free module Ra

has dimRa = a. Thus M(R-Mod) is isomorphic to Card.

Note that, in this example, M(R-Mod) is not a set. This is, in fact, always the case:

Proposition 16.13. For any non-trivial ring R, M(R-Mod) is a proper class.

Proof. Let (Card, ·) be the commutative monoid whose elements are the cardinal numbers
and whose operation is cardinal multiplication [25, Section 5.4]. Define a map Φ from
R-Mod to (Card, ·) by Φ(A) = |A| for all A ∈ R-Mod, that is, Φ(A) is the cardinality of
A as a set. If 0 → A→ B → C → 0 is a short exact sequence in R-Mod, then, as sets, we
have B ∼= A × C. Thus Φ respects short exact sequences. Let φ: M(R-Mod) → (Card, ·)
be the monoid homomorphism induced from Φ.

We proceed by contradiction. . .
Suppose M(R-Mod) is a set. Then φ(M(R-Mod)) is a set of cardinal numbers, so must

have an upper bound a ∈ Card [25, 5.2.7]. The free module Ra has cardinality |R|a, and
since R has at least two distinct elements, we get [25, 5.4.2p]

a < 2a ≤ |R|a = φ([Ra]).

Thus a can not be an upper bound for φ(M(R-Mod)). �

As partial compensation for this proposition we have

Proposition 16.14. For any ring R and a ∈M(R-Mod), the order ideal {≺ a} is a set.

Proof. Let a = [A] for some A ∈ R-Mod. Since A is a set, so are the classes of all
submodules, factor modules, and subfactor modules of A. By 16.9, {≺ [A]} consists of all
elements of the form [A1] + [A2] + . . . + [An] ∈ M(R-Mod) where Ai is a subfactor of A
for i = 1, 2, . . . , n. Since the class of finite sets of subfactor modules of A is also a set, this
implies that {≺ [A]} is a set. �

Corollary 16.15. LradM(R-Mod) = sradM(R-Mod)

Proof. This follows from 14.27. �
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Another feature of Example 16.12 is that each ∼-equivalence class is an isomorphism
class of modules. That is, M(R-Mod) contains as much information as the classification
of the R-modules up to isomorphism given by the dimension function. To investigate when
this situation happens we define another monoid based on the category R-Mod:

Definition 16.16. For any module A ∈ R-Mod, let {∼= A} be its isomorphism class.
Let V (R-Mod) be the monoid whose elements are the isomorphism classes of R-Mod with
operation + induced by the direct sum, that is,

{∼= A}+ {∼= B} = {∼= A⊕B}
for all A,B ∈ R-Mod.

It is easy to see that V (R-Mod) is a well defined commutative monoid. Further, there is a
well defined monoid homomorphism τ : V (R-Mod) →M(R-Mod) given by τ({∼= A}) = [A]
for A ∈ R-Mod.

Proposition 16.17. For a ring R, the following are equivalent:
1. R is semisimple
2. τ : V (R-Mod) →M(R-Mod) is a monoid isomorphism
3. For A,B ∈ R-Mod, A ∼= B if and only if A ∼ B

Proof. See [26, Theorem 4.13] for the relevant properties of semisimple rings.
1 ⇒ 2 Let 0 → A → B → C → 0 be an exact sequence in R-Mod. Since R is semisimple,

this sequence splits to give B ∼= A ⊕ C, and hence {∼= B} = {∼= A} + {∼= C}.
Thus the map which takes a module A to its isomorphism class {∼= A} respects
short exact sequences. By the universal property of M(R-Mod), there is a monoid
homomorphism σ: M(R-Mod) → V (R-Mod) such that σ([A]) = {∼= A} for all
A ∈ R-Mod. Clearly σ is the inverse of τ , so τ is an isomorphism.

2 ⇒ 3 Since τ is injective, [A] = [B] if and only if {∼= A} = {∼= B}.
3 ⇒ 1 We show that every R-module is projective. . .

Let A ∈ R-Mod. Then there is an exact sequence 0 → K → F → A → 0 in
R-Mod such that F is a free module and K ≤ F . Thus [F ] = [A] + [K] = [A⊕K],
and F ∼ A⊕K. By 3, F ∼= A⊕K, that is, A is a direct summand of a free module.
This implies that A is projective.

�
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17 Noetherian and Artinian Modules

In this section we will investigate the cancellation properties of the monoid M(R-Noeth).
Since modules in R-Noeth satisfy the descending chain condition, one might expect that
there is some corresponding chain condition appearing in M(R-Noeth). This is indeed
true. For example, in Section 19, we will see that for FBN rings and, in particular, for
commutative Noetherian rings, M(R-Noeth) is Artinian.

Our goal in this section is to show that, though M(R-Noeth) may not be Artinian for
all rings, it is always semi-Artinian. Since M(R-Noeth) has no proper regular elements,
this then implies that M(R-Noeth) is strongly separative.

We start by providing an example that shows that M(R-Noeth) may not be Artinian:

Example 17.1. [9] A Noetherian R-module S such that [S] 6∈ Arad(M(R-Noeth)):
Let F be a field of characteristic zero, and S = F [[t]], the formal power series ring over

F . For each n ∈ N, define the ideal Sn = Stn. Every nonzero ideal of S is Sn for some
n ∈ N, and these ideals form a descending chain S = S0 > S1 > S2 > . . . of S-submodules
of S.

Define a derivation δ on S according to the rule

δ(s) = t
d

dt
(s)

for all s ∈ S. Let R = S[θ; δ], the skew polynomial ring over S with multiplication defined
so that

θs = sθ + δ(s)
for all s ∈ S. This ring is Noetherian [11, Theorem 1.12], as is the left R-module R/Rθ. To
discuss the properties of R/Rθ it is convenient to make S into a left R-module isomorphic
to R/Rθ:

Since R/Rθ is already isomorphic to S as an S-module, we need only define the action
of θ on elements of s. In R/Rθ we have θ(s+Rθ) = δ(s) +Rθ, for all s ∈ S. Accordingly,
we define a new module multiplication · on S by

s′ · s = s′s

and
θ · s = δ(s)

for all s, s′ ∈ S. In particular, θ · tm = δ(tm) = mtm for all m ∈ N.
It is easily checked that Sn is an R-module for all n ∈ N. Since any R-submodule of

S must also be an S-submodule, S0, S1, . . . are all the R-submodules of S. Each of these
submodules has infinite length, whereas for any n ≤ k, len(Sn/Sk) = k − n.

• Claim Sm and Sn are isomorphic as R-modules if and only if m = n.
Without loss of generality we assume m ≤ n. Let φ: Sm → Sn be an R-module

isomorphism. Since Sn = Stn, there is some u ∈ S such that φ(tm) = utn. Set
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v = utn−m so that φ(tm) = vtm. Since φ is an R-module homomorphism, we have
φ(θ · tm) = θ · φ(tm), and so,

mvtm = φ(mtm) = φ(θ · tm) = θ · φ(tm)

= θ · vtm = δ(vtm) = δ(v)tm + vδ(tm)

= δ(v)tm +mvtm.

Thus δ(v)tm = 0, and, since S is a domain, δ(v) = 0. From the definition of δ, it
is easy to see that δ(v) = 0 implies v ∈ F . Since φ is an isomorphism, v = 0 is not
possible, so we have v = utn−m ∈ F ∗. This implies m = n.

Consider the module Sn for some n ∈ N. From the above discussion it is clear that any
submodule series for Sn has exactly one factor which has infinite length, and this factor is
Sk for some k ≥ n. All other factors in the series have finite length.

• Claim [Sm] ≤ [Sn] in M(R-Noeth) if and only if m ≥ n.
Suppose [Sm] ≤ [Sn]. Then, from 16.9.3, Sm and Sn have submodule series

such that every factor in the series for Sm is isomorphic to a factor in the series
for Sn. Both of these series have exactly one factor with infinite length. From
the previous claim, these infinite factors must coincide in both series: Sk, say,
for some k ≥ m,n. The remaining factors in the two series can then be used to
show that [Sm/Sk] ≤ [Sn/Sk]. But Sm/Sk and Sn/Sk are finite length modules, so
len(Sm/Sk) ≤ len(Sn/Sk), that is, k −m ≤ k − n and m ≥ n.

The converse is trivial since if m ≥ n, then Sm is a submodule of Sn.
From this claim we get immediately that [S] = [S0] ≥ [S1] ≥ [S2] ≥ . . . is a decreas-

ing sequence in M(R-Noeth) which has no minimal element. Therefore [S] is not in
Arad(M(R-Noeth)). In particular, M(R-Noeth) is not an Artinian monoid.

Having shown that M(R-Noeth) may not be Artinian, we turn to the positive result
that M(R-Noeth) is semi-Artinian. The main tool for proving this claim is the function
Klen◦ : R-Noeth → Krull which we defined and discussed in Section 4. Thus it will be
necessary to reformulate what we know about Krull length and Krull dimension in terms of
Serre categories, monoids and monoid homomorphisms. . .

Recall from 3.21 that Krull = (Ord× N) ∪ {0} with operation + given by
1. 0 + 0 = 0
2. 0 + (γ, n) = (γ, n) + 0 = (γ, n) for all (γ, n) ∈ Ord× N
3.

(γ1, n1) + (γ2, n2) =


(γ1, n1) if γ2 < γ1

(γ2, n2) if γ1 < γ2

(γ1, n1 + n2) if γ1 = γ2

for all (γ1, n1), (γ2, n2) ∈ Ord× N.
We also defined Ord∗ = Ord ∪ {−1} and the function κ: Krull → Ord∗ such that

κ(γ, n) = γ for (γ, n) ∈ Ord × N and κ(0) = −1. We will henceforth consider Krull
and Ord∗ to be monoids with the operations + and max, respectively, and in the next
proposition we collect their basic properties.
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Proposition 17.2.

1. (Krull,+) and (Ord∗,max) are commutative monoids. Ord∗ is a semilattice monoid
whose identity element is −1, rather than 0.

2. The minimum order on Krull is given by

(γ1, n1) ≤ (γ2, n2) ⇐⇒ (γ1 < γ2 or (γ1 = γ2 and n1 ≤ n2))

⇐⇒ ωγ1n1 ≤ ωγ2n2 in Ord

for all (γ1, n1), (γ2, n2) ∈ Ord× N. The minimum order on Ord∗ is the usual one.
Both of these monoids are totally ordered and Artinian.

3. Krull is strongly separative and Ord∗ is separative. Both monoids have refinement.
4. For all α ∈ Ord, socαOrd∗ = {< α} = {β ∈ Ord∗ | β < α}
5. For all α ∈ Ord, socαKrull = κ−1({< α}) = {(γ, n) | γ < α and n ∈ N} ∪ {0}.

Proof.
1. Trivial.
2. Trivial.
3. That Krull is strongly separative is an easy check, and that Ord∗ is separative is

trivial. Since these monoids are totally ordered, by 9.4, they also have refinement.
4. This is an easy induction.
5. It is easy to see that the map κ: Krull → Ord∗ is exact, so by 14.29,

κ(socαKrull) ⊆ socαOrd∗ = {< α}

for all α ∈ Ord. That is, socαKrull ⊆ κ−1({< α}).
To prove the converse inclusion we use induction:
• α = 0 Trivial.
• α is a successor ordinal Suppose α = β + 1 and socβ Krull = κ−1({< β}).

Then (β, 1) is the minimum element of Krull\(socβ Krull). It must therefore
map to an atom of Krull/(socβ Krull). This implies that (β, 1) ∈ socαKrull.
Since socαKrull is an order ideal, this means that (β, n) ∈ socαKrull for all
n ∈ N, and so κ−1({< α}) ⊆ socαKrull.

• α is a limit ordinal Trivial.
�

The order in Krull is such that

0 < (0, 1) < (0, 2) < . . . < (1, 1) < (1, 2) < . . . < (2, 1) < . . .

Thus len{≤ (2, 1)} = ω2, Klen{≤ (2, 1)} = (1, 2) and Kdim{≤ (2, 1)} = 1. So it is not true,
in general, that Klen{≤ (γ, n)} = (γ, n) or Kdim{≤ (γ, n)} = γ.

Now we consider the Serre category R-Noeth for some ring R. Of course, what we will
prove here applies equally well to R-Art. From 4.1, we have the Krull length function
Klen◦ : R-Noeth → Krull such that if

0 → A→ B → C → 0



Section 17: Noetherian and Artinian Modules 152

is an exact sequence in R-Noeth, then

Klen◦B = Klen◦A+ Klen◦ C.

That is, Klen◦ respects exact sequences. From 16.7, there is an induced monoid homomor-
phism, which we will also call Klen◦, from M(R-Noeth) to Krull. Since Krull is partially
ordered, there is another induced homomorphism, again called Klen◦, from M(R-Noeth)
to Krull.

We also have the monoid homomorphism Kdim◦ = κ ◦ Klen◦ from M(R-Noeth) to
the semilattice monoid Ord∗. So, from 6.22, there is an induced monoid homomorphism,
also called Kdim◦, from M̃(R-Noeth) to Ord∗. Thus we get the following commutative
diagram:

R-Noeth

Klen◦

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX
[ ] // M(R-Noeth)

{≡ } //

Klen◦

((QQQQQQQQQQQQQ M(R-Noeth)

Klen◦

��

{� } // M̃(R-Noeth)

Kdim◦

��
Krull

κ // Ord∗

For all A ∈ R-Noeth we have

Klen◦A = Klen◦[A] = Klen◦{≡ [A]} ∈ Krull

and
Kdim◦A = Kdim◦[A] = Kdim◦{≡ [A]} = Kdim◦{� [A]} ∈ Ord∗

where in all but the last case, Kdim◦ is the composition of the maps Klen◦ and κ.

Lemma 17.3. The homomorphism Klen◦ : M(R-Noeth) → Krull is exact.

Proof. We need to show that {≤ Klen◦[A]} ⊆ Klen◦{≤ [A]} for all A ∈ R-Noeth. If A = 0
then this is trivially true.

So suppose A 6= 0 and we have some (γ, n) ∈ Krull with (γ, n) ≤ Klen◦[A] = Klen◦A.
Then ωγn ≤ len◦A, so using 4.7.1, there is some submodule A′ ≤ A such that len(A/A′) =
ωγn. Thus we have [A/A′] ≤ [A] and Klen◦[A/A′] = Klen◦A/A′ = (γ, n). �

We now have all the ingredients in place to prove the main theorem of this section:

Theorem 17.4.
1. LradM(R-Noeth) = M(R-Noeth). In particular, M(R-Noeth) is semi-Artinian.
2. M(R-Noeth) is strongly separative.
3. For all A ∈ R-Noeth and α ∈ Ord,

[A] ∈ socα(M(R-Mod)) ⇐⇒ KdimA < α.

Proof. We apply 15.10, to the homomorphism Klen◦ : M(R-Noeth) → Krull. . .
We have already noted that Krull is a refinement monoid without proper regular ele-

ments. M(R-Noeth) is an order ideal in the refinement monoid, M(R-Mod), so is itself a
refinement monoid. The homomorphism Klen◦ is exact by the lemma, and, since the only
module with zero Krull length is the zero module, we have (Klen◦)−1({≤ 0}) = {≤ 0}.

Therefore, using 15.10, we get immediately 1 and 2 above. From 14.26,

socα(M(R-Noeth)) = socα(M(R-Mod)) ∩M(R-Noeth),
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and from 15.10.3, we get

socα(M(R-Noeth)) = (Klen◦)−1(socα(Krull)).

Thus for A ∈ R-Noeth,

[A] ∈ socα(M(R-Mod)) ⇐⇒ [A] ∈ socα(M(R-Noeth))

⇐⇒ Klen◦[A] ∈ socα(Krull)

⇐⇒ Kdim(Klen◦[A]) < α

⇐⇒ KdimA < α.

�

The dual proposition for the Serre category R-Art is

Theorem 17.5.
1. LradM(R-Art) = M(R-Art). In particular, M(R-Art) is semi-Artinian.
2. M(R-Art) is strongly separative.
3. For all A ∈ R-Art and α ∈ Ord,

[A] ∈ socα(M(R-Mod)) ⇐⇒ Kdim◦(A) < α.

From these two propositions and 14.8, we have

M(R-Noeth) +M(R-Art) ⊆ sradM(R-Mod).

Before discussing the consequences of these theorems, we will provide a more direct way
of proving that M(R-Noeth) and M(R-Art) are strongly separative which avoids needing
to understand semi-Artinian monoids. The disadvantage of this method is that nothing
is learned about the relationship between the Loewy series in the monoid and the Krull
dimensions of modules as seen in 17.4.3 and 17.5.3.

First we prove a monoid theoretic lemma:

Lemma 17.6. Let M be a refinement monoid and K an Artinian monoid. If there is a
monoid homomorphism σ: M → K such that σ(2a) ≤ σ(a) implies a ≤ 0 for any a ∈ M ,
then M is strongly separative.

Proof. Suppose a, b, c ∈M such that a+ c = b+ c and c ≤ a. We will show that a = b. . .
Define

T = {(a′, b′, c′, d′) ∈M4 | a′ + c′ = b′ + c′, a = d′ + a′, b = d′ + b′ and c′ ≤ a′}.
Let C ⊆M be the projection of T onto the third component. C is not empty since (a, b, c, 0)
is in T . Let c0 ∈ C be chosen such that σ(c0) is minimal in σ(C), and let a0, b0, d0 be such
that (a0, b0, c0, d0) ∈ T .

From Lemma 8.5.1, there is a refinement of a0 + c0 = b0 + c0,

( b0 c0
a0 d1 a1

c0 b1 c1

)
such that c1 ≤ a1. Thus a1 + c1 = b1 + c1, a = (d0 + d1) + a1, b = (d0 + d1) + b1, that
is, (a1, b1, c1, d0 + d1) ∈ T and c1 ∈ C. Since c1 ≤ c0, we have σ(c1) ≤ σ(c0), and then the
minimality of σ(c0) implies σ(c0) ≤ σ(c1).
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From c1 ≤ a1, we get 2σ(c0) ≤ 2σ(c1) ≤ σ(c1) + σ(a1) = σ(c1 + a1) = σ(c0). By our
hypotheses, this implies c0 ≤ 0. Thus a0 = b0 and a = d0 + a0 = d0 + b0 = b. �

Theorem 17.7. The monoids M(R-Noeth) and M(R-Art) are strongly separative.

Proof. For these refinement monoids we have the maps Klen◦ and Klen◦ which satisfy the
hypotheses of Lemma 17.6. �

For the remainder of this section we will investigate the consequences of Theorem 17.4
for Noetherian modules. Similar results can, of course, be obtained by duality for Artinian
modules.

Many simple results can be obtained by reinterpreting a relationship among modules
as an equation in the monoid M(R-Noeth), and then applying strong separativity. For
example, the existence of any of the following types of exact sequences in R-Noeth implies
that A ∼ B:

0 → A→ A⊕B → A→ 0,

0 → A→ A⊕A→ B → 0,

0 → A⊕A→ A⊕A⊕B → A→ 0,

0 → A→ A→ A→ B → 0,

0 → A→ B → A→ A→ 0,

0 → A→ A→ A→ B → A→ A→ 0.

We prove that A ∼ B only for the last case: From the given exact sequence we get the
equation 3[A] = 2[A]+[B] in M(R-Noeth). Since this monoid is strongly separative, 8.12.4
implies that [A] = [B], that is, A ∼ B.

We can also apply Theorem 17.4 in a similar way to direct sums of Noetherian modules.
For example, if A,B ∈ R-Noeth, then

A⊕A⊕A ∼ A⊕A⊕B =⇒ A ∼ B.

Since M(R-Noeth) is a strongly separative order ideal in M(R-Mod), we can use 8.14
to get stronger cancellation properties which involve modules which are not Noetherian. For
example, if

0 → C → A→ B → C → 0

is an exact sequence in R-Mod with C ∈ R-Noeth, then A ∼ B. Here we use the fact that
C is isomorphic to a submodule of A and so [C] ≤ [A] as well as [A] + [C] = [B] + [C].

For comparison with Theorem 17.10 we single out one particular result of this type:

Proposition 17.8. Let A,B ∈ R-Mod, C ∈ R-Noeth and n ∈ N. If C is a submodule,
factor module or subfactor module of

⊕n(A⊕B), and A⊕ C ∼ B ⊕ C, then A ∼ B.

Proof. In the monoid M(R-Mod) we have [A] + [C] = [B] + [C] with [C] ≺ [A] + [B]. Since
[C] ∈ M(R-Noeth), we also have that {≺ [C]} is strongly separative. Thus from 8.14.2,
[A] = [B]. �
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The final aim of this section is to show that, in this proposition, we can drop the hypoth-
esis on C if we have A⊕ C ∼= B ⊕ C instead of A⊕ C ∼ B ⊕ C. To do this we need a way
of cutting down the size of C in the relation A ⊕ C ∼= B ⊕ C so that C is comparable to
A⊕B:

For any R-module X we define a map TX : R-Mod → R-Mod by

TX(C) =
∑

{im γ | γ ∈ HomR(X,C)},

that is, TX(C) is the sum of all submodules of C which are isomorphic to factor modules of
X. We note that if X1 is a direct summand of X then TX(X1) = X1.

Lemma 17.9. For all C1, C2, X ∈ R-Mod, TX(C1 ⊕ C2) = TX(C1)⊕ TX(C2).

Proof. See [1, Proposition 8.18]. �

Theorem 17.10. If A,B ∈ R-Mod and C ∈ R-Noeth such that A ⊕ C ∼= B ⊕ C, then
A ∼ B.

Proof. We apply the map TA⊕B to the equation A⊕ C ∼= B ⊕ C. . .
We have TA⊕B(A) = A and TA⊕B(B) = B, so using 17.9, we get A⊕C ′ ∼= B⊕C ′ where

C ′ = TA⊕B(C).
The module C is Noetherian, so C ′ is a finite sum of images of A⊕B, that is, there is an

n ∈ N such that C ′ is a factor module of
⊕n(A⊕B). Since C ′ is Noetherian, 17.8 implies

that A ∼ B. �

We should remark that this theorem is not true with the weaker hypothesis that A⊕C ∼
B ⊕ C. For example, let R = Z. Then from the short exact sequence

0 → Z 2→ Z → Z2 → 0

we get [Z] = [Z2] + [Z] = [Z2 ⊕ Z]. Hence 0⊕ Z ∼ Z2 ⊕ Z but 0 6∼ Z2.

It is an interesting question to ask what further cancellation properties M(R-Noeth)
may have. We will see in Section 19 that if the ring R is FBN, or, in particular, commu-
tative Noetherian, then M(R-Noeth) is Artinian. Thus in this case, M(R-Noeth) has
≤-multiplicative cancellation and weak cancellation in addition to strong separativity. Is
this true in general?

It is clear from Example 15.9 that a refinement monoid can be semi-Artinian but not have
≤-multiplicative cancellation or weak cancellation. So if M(R-Noeth) has these properties,
they arise from some module property that has not yet been taken into account. Also
clear from 15.8, is that these two cancellation properties are closely related in semi-Artinian
monoids.
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18 The Radann Map

The radann map takes R-modules to semiprime ideals of the ring R and respects exact
sequences. With it we will be able to link the prime elements of the monoid M(R-Mod)
with the prime ideals of the ring.

Definition 18.1. Let SpecR be the set of all prime ideals of R, and SSpecR the set of all
semiprime ideals of R, that is, all intersections of sets of prime ideals. R is a semiprime
ideal by this definition since it is the intersection of the empty set of prime ideals.

For a two-sided ideal I ⊆ R we define

K(I) = {P ∈ SpecR | I ⊆ P} ⊆ SpecR

and the (prime) radical of I by

rad I =
⋂
K(I) =

⋂
{P ∈ SpecR | I ⊆ P} ∈ SSpecR.

Clearly I ⊆ rad I, and if I1 ⊆ I2 then K(I1) ⊇ K(I2) and rad I1 ⊆ rad I2. Also if I is a
semiprime ideal then rad I =

⋂
K(I) = I.

Lemma 18.2. If I1 and I2 are two-sided ideals of R then

K(I1) ∪ K(I2) = K(I1 ∩ I2) = K(I1I2)

rad I1 ∩ rad I2 = rad(I1 ∩ I2) = rad(I1I2)

Proof. Since I1I2 ⊆ I1∩I2 ⊆ I1, I2, we get K(I1I2) ⊇ K(I1∩I2) ⊇ K(I1)∪K(I2). Conversely,
if P ∈ K(I1I2) so P ⊇ I1I2, then P ⊇ I1 or P ⊇ I2, that is, P ∈ K(I1) or P ∈ K(I2). This
implies P ∈ K(I1) ∪ K(I2). Thus K(I1I2) ⊆ K(I1) ∪ K(I2). The equation rad I1 ∩ rad I2 =
rad(I1 ∩ I2) = rad(I1I2) follows directly. �

Next we prove a simple property of annihilators of modules. Reminder: The annihilator
of a module A, annA = {r ∈ R | rA = 0}, is a two-sided ideal in R.

Lemma 18.3. If 0 → A→ B → C → 0 is a short exact sequence in R-Mod, then

(annA)(annC) ⊆ annB ⊆ annA ∩ annC.

Proof. Without loss of generality we can assume that A ⊆ B and C = B/A. If r ∈ annA,
s ∈ annC and b ∈ B, then b+A ∈ B/A so s(b+A) = 0, that is, sb ∈ A. But then rsb = 0.
Therefore annA annC ⊆ ann(B).

Now let r ∈ annB. Since A ⊆ B, r ∈ annA. Also, if b+ A ∈ C = B/A then r(b+ A) =
rb+A = 0 +A so that r ∈ annC. Therefore ann(B) ⊆ annA ∩ annC. �

If we had used right modules instead of left modules, the first inequality would become
(annC)(annA) ⊆ annB.
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Definition 18.4. We define the map radann : R-Mod → SSpecR as the composition of
the radical and annihilator maps,

radannA = rad(annA)

for all A ∈ R-Mod.

From Lemmas 18.2 and 18.3 we get immediately

Proposition 18.5. If 0 → A→ B → C → 0 is a short exact sequence in R-Mod, then

radannB = radannA ∩ radannC.

This proposition suggests that we should consider SSpecR to be a monoid with the opera-
tion ∩ and identity R, so that radann respects exact sequences as a map to (SSpecR,∩). The
radann map is surjective since for any semiprime ideal I we have radann(R/I) = rad I = I.

We investigate the properties of the monoid SSpecR. . .

Proposition 18.6.
1. The minimum preorder on SSpecR is reverse inclusion:

S1 ≤ S2 ⇐⇒ S1 ⊇ S2

for all S1, S2 ∈ SSpecR.
2. SSpecR is a partially ordered monoid.
3. SSpecR with its minimum order is a distributive lattice in which

S1 ∨ S2 = S1 ∩ S2

S1 ∧ S2 = rad(S1 ∪ S2)
for all S1, S2 ∈ SSpecR.

4. SSpecR has refinement.

Proof.
1. If S1 ≤ S2, then there exists some S3 ∈ SSpecR such that S1 ∩S3 = S2. So S1 ⊇ S2.

Conversely, if S1 ⊇ S2, then S2 ∩ S1 = S2 so S1 ≤ S2.
2. Immediate from 1.
3. The claims that S1 ∨ S2 = S1 ∩ S2 and S1 ∧ S2 = rad(S1 ∪ S2) are easy. To show

distributivity we calculate using 18.2

S1 ∧ (S2 ∨ S3) = rad(S1 ∪ (S2 ∩ S3))

= rad((S1 ∪ S2) ∩ (S1 ∪ S3))

= rad(S1 ∪ S2) ∩ rad(S1 ∪ S3)

= (S1 ∧ S2) ∨ (S1 ∧ S3)

4. Follows from the distributivity of the lattice as in Example 7.7.
�
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Proposition 18.7. S ∈ SSpecR is a prime element of the monoid if and only if S = R
or S is a prime ideal of R.

Proof.

⇒ Suppose S is a prime element of SSpecR and I1, I2 ⊆ R are two-sided ideals such
that I1I2 ⊆ S. Using 18.2 , we get rad I1 ∩ rad I2 = rad(I1I2) ⊆ rad(S) = S, or, as
elements of the monoid, rad I1∩rad I2 ≥ S. Since S is a prime element of the monoid,
either rad I1 ≥ S or rad I2 ≥ S. Hence, either I1 ⊆ rad I1 ⊆ S or I2 ⊆ rad I2 ⊆ S.
This makes S either a prime ideal of R or R itself.

⇐ Since R is the identity of the monoid, it is also a prime element.
Suppose S is a prime ideal and S1, S2 ∈ SSpecR such that S1 ∩ S2 ≥ S, that is,

S1 ∩ S2 ⊆ S. Then S1S2 ⊆ S so either S1 ⊆ S or S2 ⊆ S, that is, either S1 ≥ S or
S2 ≥ S. Thus S is a prime element of SSpecR.

�

Since the map radann respects exact sequences, it induces a monoid homomorphism from
M(R-Mod) to SSpecR, and since the monoid SSpecR is a semilattice, there are further
induced monoid homomorphisms from M(R-Mod) and M̃(R-Mod) to SSpecR. These
induced maps we will also call radann so we get the following commutative diagram:

R-Mod

radann
++WWWWWWWWWWWWWWWWWWWWWWWWW

[ ] // M(R-Mod)
{≡ } //

radann

''OOOOOOOOOOOO M(R-Mod)

radann

��

{� } // M̃(R-Mod)

radannwwooooooooooo

SSpec

We next will show that the homomorphism radann : M̃(R-Mod) → SSpecR has a right
inverse, so that SSpecR embeds in M̃(R-Mod). First we need an easy lemma:

Lemma 18.8. Let A1 and A2 be submodules of A ∈ R-Mod. Then

1. {� [A1 +A2]} = {� [A1]}+ {� [A2]}
2. {� [A/(A1 ∩A2)]} = {� [A/A1]}+ {� [A/A2]}

Proof.

1. Since A1, A2 are submodules of A1 + A2, we get [A1], [A2] ≤ [A1 + A2]. Thus
[A1] + [A2] ≤ 2[A1 + A2], that is, [A1] + [A2] ≺ [A1 + A2]. For the converse we
use the module isomorphism (A1 +A2)/A1

∼= A2/(A1∩A2) and the submodule series
0 ≤ A1 ≤ A1 +A2:

[A1 +A2] = [A1] + [(A1 +A2)/A1] = [A1] + [A2/(A1 ∩A2)] ≤ [A1] + [A2].

Thus [A1 +A2] ≺ [A1] + [A2].
2. Proof is very similar to the proof of 1.

�
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Proposition 18.9. Let Ψ: SSpecR → M̃(R-Mod) be defined by Ψ(S) = {� [R/S]}
for all S ∈ SSpecR. Then Ψ is a monoid homomorphism, and radann ◦Ψ is the identity
homomorphism on SSpecR.

Proof. First we check that Ψ is a monoid homomorphism. . .
The identity element of SSpecR is R and Ψ(R) = {� [R/R]} = 0. Also, if S1, S2 ∈

SSpecR then, using the lemma,

Ψ(S1 ∩ S2) = {� [R/(S1 ∩ S2)]} = {� [R/S1]}+ {� [R/S1]} = Ψ(S1) + Ψ(S2).

Thus Ψ is a monoid homomorphism.
To prove the second claim, suppose S ∈ SSpecR. Then

radannΨ(S) = radann{� [R/S]} = radann(R/S) = radS = S.

�

In particular, this lemma implies that SSpecR is embedded in M̃(R-Mod) by the homo-
morphism Ψ. Since [R/S] ≤ [R] for any S ∈ SSpecR, we have more exactly that SSpecR
is embedded in the order ideal {≤ {� [R]}} of M̃(R-Mod). We will see later that for FBN
rings, and in particular, for commutative Noetherian rings, Ψ becomes an isomorphism
between SSpecR and M̃(R-Noeth).
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19 Noetherian and FBN Rings

The main purpose of this section is to show that if R is a (left) fully bounded Noetherian
(FBN) ring, then the monoid M(R-Noeth) is Artinian. The proof of this fact is primarily
a reinterpretation of theorems about FBN rings that are available in the literature. We will
use Chapter 8 of K. R. Goodearl and R. B. Warfield Jr., An Introduction to Noncommutative
Noetherian Rings [11], as a source of such results, and we refer the reader to this book for
further details.

All commutative Noetherian rings are FBN, and in fact, FBN rings are studied because
they share many properties with commutative Noetherian rings which do not occur in the
general non-commutative case.

Before discussing FBN rings we will prove some properties of arbitrary (left) Noetherian
rings. . .

For the first lemma, we do not require that R be a Noetherian ring:

Lemma 19.1. Let A ∈ R-Mod be finitely generated module. Then [A] ≺ [R/ annA].

Proof. Suppose A = Ra1 + Ra2 + . . . + Ran for generators a1, a2, . . . , an ∈ A. For each i,
we have annA ⊆ ann(ai) so that r+ annA 7→ rai is a homomorphism from R/ annA to A.
Combining these, we get a homomorphism φ: (R/ annA)n → A defined by

(r1 + annA, r2 + annA, . . . , rn + annA) 7→ r1a1 + r2a2 + . . .+ rnan.

φ is surjective so [A] ≤ [(R/ annA)n] = n[R/ annA], that is, [A] ≺ [R/ annA]. �

For a Noetherian ring R, a module A ∈ R-Mod is finitely generated if and only if it is
Noetherian. In M(R-Mod), we can add another equivalent condition:

Lemma 19.2. Let R be a Noetherian ring and A ∈ R-Mod. Then
[A] ≺ [R] ⇐⇒ A is finitely generated ⇐⇒ A is Noetherian.

Proof. If A is finitely generated then from 19.1, [A] ≺ [R/ annA]. But [R/ annA] ≤ [R] so
[A] ≺ [R].

Conversely, suppose [A] ≺ [R]. Since R is Noetherian, [R] is an element of the order ideal
M(R-Noeth) ⊆ M(R-Mod), and so {≺ [R]} ⊆ M(R-Noeth). Thus [A] ∈ M(R-Noeth),
and A is Noetherian. �

In particular, M(R-Noeth) = {≺ [R]} ⊆M(R-Mod).
Lemma 19.1 says in particular, that if A is finitely generated and annA is semiprime then

[A] ≺ [R/ radannA]. If R is Noetherian, then we get the same result without the restriction
on the annihilator. . .

Proposition 19.3. Let R be a Noetherian ring. Then for all A ∈ R-Noeth we have
[A] ≺ [R/ radannA].

Proof. If A = 0 then the claim is trivial. Otherwise, from [11, 2.13], there is a submodule
series 0 = A0 < A1 < . . . < An = A such that Pi = ann(Ai/Ai−1) is a prime ideal for each
i. For each i, annA ⊆ ann(Ai/Ai−1) = Pi, so we have radannA ⊆ Pi.
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Each quotient module Ai/Ai−1 is Noetherian and so finitely generated. From 19.1,

[Ai/Ai−1] ≺ [R/Pi] ≤ [R/ radannA].

Thus

[A] =
n∑
i=1

[Ai/Ai−1] ≺ n[R/ radannA],

and [A] ≺ [R/ radannA] �

We next consider prime elements in M(R-Mod) for Noetherian rings.

Proposition 19.4. Let R be a Noetherian ring, U ∈ R-Mod such that [U ] is a prime
element of M(R-Mod) and P = radannU . Then P is a prime ideal or P = R, and there
is a subfactor U0 of U such that [U0] ≡ [U ] and P = annU0.

Proof. Let
U = {U ′ | U ′ is a subfactor of U and [U ′] ≡ [U ]}.

Since R is Noetherian, there is some U0 ∈ U such that the ideal P0 = annU0 is maximal
among annihilators of elements of U . We will show that P0 is either a prime ideal or P0 = R.

Suppose I and J are left ideals such that IJ ⊆ P0. The modules JU0 and U0/JU0 are
subfactors of U , with ann(JU0) ⊇ annU0 = P0 and ann(U0/JU0) ⊇ annU0 = P0.

Since [U0] ≡ [U ], the element [U0] is prime. The equation

[U0] = [JU0] + [U0/JU0]

implies that either [U0] ≡ [JU0] or [U0] ≡ [U0/JU0].
In the first case we have [JU0] ≡ [U ], so JU0 ∈ U and the maximality of annU0 implies

that ann(JU0) = P0. From I(JU0) ⊆ P0U0 = 0, we then get I ⊆ ann(JU0) = P0.
In the second case, the maximality of annU0 implies similarly that ann(U0/JU0) = P0

and so J ⊆ ann(U0/JU0) = P0.
Therefore P0 is either a prime ideal or P0 = R. Further, since U0 ≡ U , we have P =

radannU = radannU0 = radP0 = P0 completing the proof. �

From this proposition and 18.7, we see that radann function takes prime elements of
M(R-Noeth) to prime elements of SSpecR.

Proposition 19.5. Let U be a nonzero Noetherian R-module such that [U ] is a prime
element of M(R-Mod) and P = annU is a prime ideal. Then there is a uniform cyclic
subfactor U ′ of U such that [U ′] ≡ [U ] and annU ′ = P .

Proof. Any Noetherian module contains a uniform submodule [11, 4.15], and any nonzero
cyclic submodule of a uniform module is again uniform. So any Noetherian module contains
a cyclic uniform submodule. Using this fact and the Noetherian hypothesis, there is a
submodule series 0 = U0 < U1 < . . . < Un = U in U whose factors are cyclic uniform
modules.

In M(R-Noeth) we get

[U ] = [U1/U0] + [U2/U1] + . . .+ [Un/Un−1].

Since [U ] is prime, it is indecomposable and there is some index i such that [U ] ≡ [Ui/Ui−1].
Set U ′ = Ui/Ui−1. Then, since P is prime,

P = annU ≤ annU ′ ≤ radannU ′ = radannU = annU = P.
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Thus annU ′ = P . �

The module U ′ is isomorphic to R/I for some left ideal I, so combining these two propo-
sitions we get

Corollary 19.6. Let R be a Noetherian ring and U ∈ R-Noeth such that [U ] is a nonzero
prime element of M(R-Mod). Then there is a left ideal I ≤ R such that R/I is a uniform
module, [R/I] ≡ [U ] and annR/I = radannU .

In this corollary, P = radannU is, by 19.4, a prime ideal. Since also annR/I = P ,
we have P ≤ I. Thus every nonzero prime element of M(R-Noeth) is ≡-equivalent to a
uniform factor module of R/P for some prime ideal P ≤ R.

Our next goal is to show that every uniform submodule of R/P for a prime ideal P ≤ R
gives a corresponding prime element in M(R-Noeth).

Lemma 19.7. Let R be a Noetherian ring, P a prime ideal of R, and U, V uniform left
ideals of R/P . Then V is isomorphic to a submodule of U and vice versa. In particular,
[U ] ≡ [V ].

Proof. The ring S = R/P is prime left Noetherian (hence prime left Goldie). From [23,
3.3.4], V is isomorphic to a submodule of U and vice versa. This immediately implies
[U ] ≤ [V ] and [V ] ≤ [U ], that is, [U ] ≡ [V ]. �

Proposition 19.8. Let R be a Noetherian ring, P a prime ideal of R, and U a uniform
left ideal of R/P . Then [U ] is a prime element of M(R-Mod).

Proof. Suppose we have A,B ∈ R-Mod such that [U ] ≤ [A] + [B] = [A⊕B]. From 16.9.3,
there are submodule series for U and A ⊕ B such that every factor in the series for U is
isomorphic to a factor in the series for A ⊕ B. Using the Shreier refinement theorem, we
can assume that the series for A ⊕ B is a refinement of the series 0 ≤ A ⊕ 0 ≤ A ⊕ B.
In particular, considering the first factor of the series for U , there is a nonzero submodule
V ≤ U which is isomorphic to a subfactor of the series for A ⊕ B. Thus we have either
[V ] ≤ [A] or [V ] ≤ [B].

Any nonzero submodule of a uniform module is also uniform, so by 19.7, [U ] ≡ [V ], and
we have either [U ] ≤ [V ] ≤ [A] or [U ] ≤ [V ] ≤ [B]. Therefore [U ] is prime. �

Of course, if U ∈ R-Noeth as in this proposition then radannU = annU = P .
Given a prime ideal P in a Noetherian ring, the nonzero module R/P is Noetherian

and so, by [11, 4.15] has a uniform submodule, which by this proposition maps to a prime
element of M(R-Mod). Thus for Noetherian rings we have:

• Every nonzero prime element of M(R-Mod) is ≡-equivalent to a uniform factor
module of R/P for a prime ideal P .

• For every prime ideal P of R there is a uniform submodule U of R/P such that [U ]
is a prime element of M(R-Mod).

Without further hypotheses, it is not possible to fill the gap between uniform factor
modules of R/P and uniform submodules of R/P :

Example 19.9. Let F be a field with characteristic zero and R = A1(F ) the Weyl algebra
over F . See [11, pages 14-16] for details. This ring is simple [11, 1.15], so 0 is the only
prime ideal of R. On the other hand, R is not a division ring. In particular, R has nonzero
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maximal left ideals. If I is such a maximal left ideal, then S = R/I is a simple module and
[S] is an atom, and hence a prime element, of M(R-Mod). It is also trivially, a factor
module of R/P where P = 0 is the only prime ideal.

Since R is a domain but not a division ring, it has no simple submodules: If I were a
simple left ideal, then for any 0 6= x ∈ I we would have R ∼= Rx ≤ I. Since I is simple, this
would imply that R ∼= I, and R is a simple left module. This in turn would imply that R is
a division ring.

Since R has no simple submodules, the prime element [S] cannot be constructed from a
submodule of R/P .

In FBN rings we will be able to bridge this gap between between uniform factor modules
of R/P and uniform submodules of R/P .

Definition 19.10.

1. A prime ring R is left bounded if every essential left ideal contains a non-zero
two-sided ideal.

2. A ring R is left fully bounded if every prime factor ring of R is left bounded.
3. A ring R is left fully bounded Noetherian(left FBN) if it is left fully bounded

and left Noetherian.

Right bounded, right fully bounded and right FBN rings are defined in the obvious way.
We will not need to discuss these right-handed variations, and so following the pattern
already established for Noetherian rings, any ring labeled as FBN, will be assumed to be
left FBN.

Proposition 19.11. Let R be an FBN ring and A ∈ R-Noeth. Then there exist submod-
ules 0 = A0 < A1 < . . . < An = A such that, for i = 1, 2, . . . , n, Pi = ann(Ai/Ai−1) is a
prime ideal of R, and Ai/Ai−1 is isomorphic to a uniform left ideal of R/Pi.

Proof. See [11, Theorem 8.6]. �

If R is a commutative Noetherian ring then we may take Ai/Ai−1 to be isomorphic to
R/Pi in this proposition. See, for example, [22, 6.4].

Reinterpreting this as a property of M(R-Noeth) we get

Corollary 19.12. Let R be an FBN ring and A ∈ R-Noeth. Then

[A] = [U1] + [U2] + . . .+ [Un]

where, for i = 1, 2, . . . , n, Pi = annUi is a prime ideal of R, and Ui is a uniform left ideal
of R/Pi.

In this proposition we include the case A = 0 by defining the sum of an empty set of
terms to be 0. If R is commutative Noetherian, then we can take Ui = R/Pi, so that if
A ∈ R-Noeth then

[A] = [R/P1] + [R/P2] + . . .+ [R/Pn]

where, for i = 1, 2, . . . , n, Pi is a prime ideal of R.
Since, by 19.8, each term in the summation of 19.12 is prime we have

Proposition 19.13. If R is an FBN ring, then M(R-Noeth) is primely generated.
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Proposition 19.14. Let R be an FBN ring, A ∈ R-Mod such that [A] is a prime element
of M(R-Mod) and P = radannA. Then A = 0 or [A] ≡ [U ] where U is a uniform left ideal
of R/P .

Proof. If A 6= 0, then, from 19.12, [A] = [U1] + [U2] + . . . + [Un] where for i = 1, 2, . . . , n,
Pi = annUi is a prime ideal of R, and Ui is a uniform left ideal of R/Pi. Since [A] is prime,
it is also indecomposable, so there is some index I such that [UI ] ≡ [A]. This then implies
that P = radannA = radannUI = PI �

In FBN rings we have therefore that every prime element in M(R-Noeth) is, up to ≡,
in the form discussed in 19.8.

Corollary 19.15. Let R be an FBN ring. Then the restriction of the radann map to prime
elements of M(R-Noeth) is strictly increasing.

Proof. Suppose [A] and [B] are prime elements of M(R-Noeth) such that [A] ≤ [B] and
radann[A] ≥ radann[B]. From [A] ≤ [B] we get radann[A] ≤ radann[B], hence radann[A] =
radann[B]. Set P = radannA. If P = R, then A = B = 0 and [A] = [B] = 0. Otherwise,
from 19.14, there are uniform left ideals U and V of R/P such that [A] ≡ [U ] and [B] ≡ [V ].
From 19.7 we get [U ] ≡ [V ], so finally [A] ≡ [B]. �

Now we prove the main theorem of this section:

Theorem 19.16. If R is an FBN ring then M(R-Noeth) is Artinian.

Proof. Since R is a Noetherian module, SSpecR is an Artinian monoid (the minimum
order in SSpecR is reverse inclusion). The subset of prime elements of M(R-Noeth) is
mapped to SSpecR by the radann map which, by the corollary, is strictly increasing. So,
by 2.17, the subset of prime elements of M(R-Noeth) is Artinian. Since M(R-Noeth) has
refinement and is primely generated (19.13), we can apply 12.13, to get that M(R-Noeth)
is Artinian. �

From 13.1, 13.2 and 17.4 we get

Corollary 19.17. If R is an FBN ring, then M(R-Noeth) and M(R-Noeth) have weak
cancellation, strong separativity and ≤-multiplicative cancellation. M(R-Noeth) is a join-
semilattice when viewed as a poclass.

By the last claim we mean that any pair of elements a, b ∈M(R-Noeth) has a supremum
a ∨ b ∈M(R-Noeth). It may not be true that a ∨ b = a+ b.

We consider again the relationship between SSpec(R) and M̃(R-Mod) that we began in
Section 18. Recall from 18.9 that the monoid homomorphism Ψ: SSpecR → M̃(R-Mod)
defined by Ψ(S) = {� [R/S]} for all S ∈ SSpecR, is a right inverse for radann, that is,
radann ◦Ψ is the identity map on SSpecR.

From 19.3, we have, for R Noetherian and A ∈ R-Noeth, that

[A] ≺ [R/ radannA].

Equivalently, this says that

{� [A]} ≤ {� [R/ radannA]} = Ψ(radannA) = Ψ(radann{� [A]})



Section 19: Noetherian and FBN Rings 165

for all {� [A]} ∈ M̃(R-Noeth). For FBN rings this inequality becomes an equality:

Proposition 19.18. Let R be an FBN ring, and A ∈ R-Noeth. Then

{� A} = {� [R/ radannA]}.

Proof. From the above discussion we have {� [A]} ≤ {� [R/ radannA]}. So it remains to
prove the opposite inequality. . .

From [11, Theorem 8.9] there exists a finite subset {a1, a2, . . . , an} ⊆ A such that annA =⋂n
i=1 ann(ai). Let φ: R → An be the homomorphism defined by φ(r) = (ra1, ra2, . . . , ran).

Then kerφ = annA, and R/ annA is isomorphic to a submodule of An. In addition,
annA ≤ radannA, so we get

[R/ radannA] ≤ [R/ annA] ≤ [An] = n[A],

That is, [R/ radannA] ≺ [A] and {� [R/ radannA]} ≤ {� [A]} �

Corollary 19.19. Let R be an FBN ring. Then radann : M̃(R-Noeth) → SSpec(R) is an
isomorphism with inverse Ψ.

Proof. We know already that the homomorphism radann ◦Ψ is the identity homomorphism
on SSpec(R). The proposition says that Ψ ◦ radann is the identity homomorphism on
M̃(R-Noeth). �

In the remainder of this section we will calculate M(R-Noeth) for commutative principal
ideal domains (PIDs) and Dedekind domains. These are commutative Noetherian rings and
so are FBN.

First we note a few simple properties of domains:

Proposition 19.20. Let R be a (possibly noncommutative) domain and r = [R].
1. If I = Rx is a nonzero principal left ideal of R, then

[R] + [R/I] = [R].

2. For every nonzero left ideal I we have [I] ≡ [R].
3. [R] is a prime element of M(R-Mod).

If, in addition, R is Noetherian and A ∈ R-Noeth, then
4. nr([A]) <∞
5. nr([A]) = 0 ⇐⇒ [A] � [R]
6. (∀n ∈ N) (nr([A]) = n ⇐⇒ [A] ≡ n[R])

Proof.
1. As left modules we have I ∼= R, so [I] = [R] and [R] + [R/I] = [I] + [R/I] = [R].
2. Any ideal I of R is a submodule so we get [I] ≤ [R]. For the opposite inequality, let
x be a nonzero element of I. Then, as in 1, [R] = [Rx] ≤ [I].

3. To show that [R] is prime, it suffices to show that it is indecomposable:
Suppose [R] = [A]+[B] = [A⊕B]. Then R and A⊕B have isomorphic submodule

series. Without loss of generality, we can assume that the submodule series for A⊕B
is a refinement of the series 0 ≤ A ⊕ 0 ≤ A ⊕ B which has factors A and B. The
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first nonzero factor module in the series for R is a nonzero ideal, I, say, which by 2
satisfies [R] ≤ [I]. Using the isomorphism of the submodule series, I is isomorphic
to a factor in the series for A⊕B. Thus either [R] ≤ [A] or [R] ≤ [B].

4. Since M(R-Noeth) = {≺ [R]} is a strongly separative refinement monoid, [R] is
free. Also A is Noetherian, so we have [A] ≺ [R] and Lemma 11.32.1 applies.

5. From 11.32.
6. From 11.32.

�

We can now describe precisely the structure of M(R-Noeth) when R is a PID:

Proposition 19.21. Let R be a commutative PID and r = [R] ∈M(R-Mod).
1. r+[S] = r for all simple modules S, and so r+a = r for all a ∈ soc(M(R-Noeth)).
2. For all a ∈M(R-Noeth) we have nr(a) <∞ and

• nr(a) = 0 ⇐⇒ a� r ⇐⇒ a ∈ soc(M(R-Noeth))
• (∀n ∈ N) (nr(a) = n ⇐⇒ a = nr)

Proof.
1. Any simple module S is isomorphic to R/I for some maximal ideal I. Since I is

principal, we get, as in 19.20.1, [R] + [S] = [R].
2. The prime ideals of R are 0 and all maximal ideals. From 19.12, every element of
M(R-Noeth) is then a sum of elements of the form [R] and [R/I] where I is a
maximal ideal, that is, R/I is simple and [R/I] is an atom. Using 1, an element
a ∈M(R-Noeth) is then either in soc(M(R-Noeth)) or a = nr for some n ∈ N.

From 1, a ∈ soc(M(R-Noeth)) implies a� r implies nr(a) = 0 . In the converse
direction, since nr(nr) = n for any n ∈ N, nr(a) = 0 implies a ∈ soc(M(R-Noeth)).

The rest of the claim is then trivial or is proved in 19.20.
�

This proposition, and the fact that soc(M(R-Noeth)) is isomorphic to the free monoid
generated by the atoms of the monoid, suffices to determine M(R-Noeth) for PIDs. Notice
that {≡ r} = {r} and so Gr is the trivial group.

The next most complicated rings after PIDs are Dedekind domains. What distinguishes
M(R-Noeth) when R is a Dedekind domain from the same monoid when R is a PID, is that
in the former case, G[R] may be non-trivial. In fact, we will show that G[R] is isomorphic
to the ideal class group of the ring.

Before discussing this fact, we recall the definition and some of the properties of Dedekind
domains. For more details, see [26, Chapter VIII.6]. There are many equivalent ways to
define Dedekind domains – we will choose one which will be useful in the proofs of the
upcoming theorems:

Definition 19.22. A Dedekind domain is a hereditary commutative domain. A frac-
tional ideal of a Dedekind domain R is a nonzero finitely generated R-submodule of the
quotient field of R.
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Proposition 19.23. Let R be a Dedekind domain.
1. R is Noetherian.
2. All nonzero prime ideals of R are maximal.
3. Every fractional ideal is isomorphic to a nonzero ideal of R.
4. For all fractional ideals I, J of R

I ⊕ J ∼= R⊕ IJ.

5. For every fractional ideal I of R there is a unique fractional ideal, written I−1, such
that I(I−1) = R.

6. Every nonzero projective module P ∈ R-Noeth is isomorphic to nR ⊕ I for some
n ∈ Z+ and nonzero ideal I. The number n is uniquely determined by P and the
fractional ideal I is determined up to isomorphism.

Proof. See [26, Chapter VIII.6] and [24, Chapter 7]. �

Definition 19.24. Let R be a Dedekind domain. For a fractional ideal I of R we will write
〈I〉 for the set of all fractional ideals of R which are isomorphic to I. Then the ideal class
group of R, I(R), is the set of all isomorphism classes of fractional ideals with operation
defined by

〈I〉+ 〈J〉 = 〈IJ〉.
Proposition 19.23.5 ensures that I(R) is a group with identity 0 = 〈R〉.

Suppose that R is a Dedekind domain and r = [R] ∈ M(R-Noeth). In the next propo-
sition we will show that Gr ∼= I(R). To do so, we will need to think of {≡ r} ⊆M itself as
the group Gr. Recall from 10 that, since M(R-Noeth) is separative, we can do this if we
define the group operation +r in terms of the monoid operation as follows: If r1, r2 ∈ {≡ r}
then r1 +r r2 = r3 where r3 ∈ {≡ r} is the unique element such that r1 + r2 = r+ r3. With
this group structure on {≡ r}, r is the identity element.

Theorem 19.25. Let R be a Dedekind domain, M = M(R-Noeth), and r = [R] ∈ M .
Then the map σ: I(R) → Gr = ({≡ r},+r) defined by σ(〈I〉) = [I], is a group isomorphism.

Notation: In this proof it will be convenient to write nR, instead of Rn, for the direct
sum of n copies of R.

Proof. First we note that, since R is a Noetherian domain, Proposition 19.20 applies. In
particular, any fractional ideal I is isomorphic to a nonzero ideal of R, and so σ(〈I〉) = [I]
is in {≡ r} = {≡ [R]}. The identity 〈R〉 of I(R) maps to [R] = r which is the identity of
({≡ r},+r). Further, for fractional ideals I, J we have

σ(〈I〉+ 〈J〉) = σ(〈IJ〉) = [IJ ]

and also from 19.23.4,

σ(〈I〉) + σ(〈J〉) = [I] + [J ] = [I ⊕ J ] = [R⊕ IJ ] = [R] + [IJ ].

Thus σ(〈I〉+ 〈J〉) = σ(〈I〉) +r σ(〈J〉), which makes σ a group homomorphism.
We will show that σ is an isomorphism by constructing the inverse homomorphism. To

do this we define first a map Λ: R-Noeth → I(R) which respects short exact sequences. . .
Let A be a Noetherian R-module. Since A is finitely generated, there is a short exact

sequence of the form
0 → P → mR→ A→ 0
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where m ∈ N, and P is a submodule of mR. The ring R is hereditary, so P is projective. It
will be convenient to assume that P 6= 0. This we can do since if P = 0, we can replace the
above sequence in an obvious way by

0 → R→ (m+ 1)R→ A→ 0.

By 19.23.6, there is a fractional ideal I and n ∈ Z+ such that P ∼= nR⊕ I. Using 19.23.5,
we set Λ(A) = 〈I−1〉.

We need to check that Λ(A) does not depend on the short exact sequence used. Suppose
we have a second short exact sequence for A,

0 → P ′ → m′R→ A→ 0,

with P ∼= n′R ⊕ I ′. Then Schanuel’s Lemma, [26, Theorem 3.62], implies that P ⊕m′R ∼=
P ′ ⊕mR, that is (n+m′)R ⊕ I ∼= (n′ +m)R ⊕ I ′. The uniqueness part of 19.23.6 implies
that n+m′ = n′ +m and I ∼= I ′. Thus I

′−1 ∼= I−1, that is, 〈I ′−1〉 = 〈I−1〉.
Note that Λ(0) = Λ(R) = 〈R〉 = 0.
Suppose we have the exact sequence

0 → A1 → A2 → A3 → 0

in R-Noeth. Using the method described above we can find projective resolutions for A1

and A3 to make up the top and bottom rows of the following diagram:

0

��

0

��

0

��
0 // n1R⊕ I1 //

��

m1R //

��

A1
//

��

0

0 // (n1 + n3)R⊕ I1 ⊕ I3 //

��

(m1 +m3)R //

��

A2
//

��

0

0 // n3R⊕ I3 //

��

m3R //

��

A1
//

��

0

0 0 0

Here I1 and I2 are fractional ideals, m1,m2 ∈ N and n1, n3 ∈ Z+. Using the Horseshoe
Lemma, [26, Lemma 6.20], we can fill in the middle row so that all rows and columns are
exact. Each new entry in the middle row is the direct sum of the corresponding entries in
the top and bottom rows. From 19.23.4, we get (n1 +n3)R⊕I1⊕I3 ∼= (n1 +n3 +1)R⊕I1I3,
so Λ(A2) = 〈(I1I3)−1〉 = 〈I−1

1 I−1
3 〉 = 〈I−1

1 〉+ 〈I−1
3 〉 = Λ(A1) + Λ(A3).

Since Λ respects short exact sequences, it induces a unique monoid homomorphism
λ: M(R-Noeth) → I(R). We will show that the restriction of λ to {≡ r} ⊆ M is the
inverse map to σ. . .

First we show that λ ◦ σ is the identity on I(R):
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Let 〈I〉 ∈ I(R) with I a fractional ideal. Then σ(〈I〉) = [I]. From 4 and 5 of 19.23, we
have I ⊕ I−1 ∼= R⊕R, so there is a short exact sequence

0 → I−1 → 2R→ I → 0.

Thus λ([I]) = 〈(I−1)−1〉 = 〈I〉 and so λ(σ(〈I〉)) = 〈I〉.
Finally we show that σ ◦ λ is the identity on {≡ r} ⊆M :
Let [A] ∈ {≡ r} for some A ∈ R-Mod. To find σ(λ([A])) we find a short exact sequence

of the form
0 → nR⊕ I → mR→ A→ 0

with m ∈ N, n ∈ Z+ and I a fractional ideal. Then σ(λ([A])) = [I−1]. From the short exact
sequence we get m[R] = [A]+n[R]+[I], and from I⊕I−1 ∼= R⊕R, we get [I]+[I−1] = 2[R].
Combining these gives m[R] + [I−1] = (n+ 2)[R] + [A].

From 19.20 we have nr([A]) = nr([I−1]) = 1, so applying the monoid homomorphism nr
to the above equation gives m = n+ 2 and hence m[R] + [I−1] = m[R] + [A].

We have [R] ≤ [A] and [R] ≤ [I] so that the separativity of M allows us to cancel m[R]
from the equation to get [I−1] = [A]. Thus σ(λ([A])) = [I−1] = [A].

�

We can now describe the structure of M(R-Noeth) when R is a Dedekind domain:

Theorem 19.26. Let R be a Dedekind domain and r = [R] ∈M(R-Mod).
1. For all a ∈M(R-Noeth) we have nr(a) <∞ and

• nr(a) = 0 ⇐⇒ a� r ⇐⇒ a ∈ soc(M(R-Noeth))
• (∀n ∈ N) (nr(a) = n ⇐⇒ a = (n− 1)r + [I] for some nonzero ideal I of R)

2. If a ∈ M(R-Noeth) with nr(a) = n ∈ N, then in the expression above for a, a =
(n− 1)r+ [I], the nonzero ideal I is uniquely determined up to module isomorphism.

We consider next how to add two elements of M(R-Noeth):
4. If a = [S] for a simple module S, then S ∼= R/I for some nonzero ideal I of R. If J

is a nonzero ideal of R then

a+ [J ] = [JI−1].

In particular,
a+ r = [I−1].

5. If I1 and I2 are nonzero ideals of R, then

[I1] + [I2] = r + [I1I2].

In particular,
[I] + [I−1] = 2r

for any nonzero ideal I.

Proof. We consider first the addition rules 4 and 5. . .
Item 5, of course, is just a restatement of 19.23.4.
To prove 4, suppose a ∈M(R-Noeth) is an atom, that is, a = [S] for a simple module S,

and J is a nonzero ideal. We have S ∼= R/I for some nonzero ideal I, so a+[I] = [S]+[I] = r.
Adding [J ] + [I−1] = r + [JI−1] to both sides gives

a+ [J ] + 2r = [JI−1] + 2r.



Section 19: Noetherian and FBN Rings 170

We also have r ≤ [J ], [JI−1] and so we can use the separativity of M(R-Noeth) to cancel
2r from this equation to get a+ [J ] = [JI−1].

From 19.23.2, we have that the prime ideals of R are 0 and all maximal ideals. Exactly as
in 19.21, this implies that M(R-Noeth) is generated by r and the atoms of M(R-Noeth),
and also that nr(a) = 0 ⇐⇒ a� r ⇐⇒ a ∈ soc(M(R-Noeth)).

Suppose nr(a) = n ∈ N. Then, by 19.20, a ≡ nr so a = nr + s for some s � r, that is,
s ∈ soc(M(R-Noeth)). Using 4, we can write a = (n − 1)r + [I] for some nonzero ideal I
of R. This ideal is unique up to isomorphism, since if a = (n − 1)r + [I] = (n − 1)r + [I ′],
then, using r ≤ [I], [I ′] and the separativity of M(R-Noeth) we can cancel (n − 1)r from
this equality to get [I] = [I ′]. By 19.25, this implies that 〈I〉 = 〈I ′〉 in I(R), and hence
I ∼= I ′. �

We have already noted in 19.17 that, for an FBN ring R, the monoid M(R-Noeth)
will have ≤-multiplicative cancellation. With our new understanding of the structure of
M(R-Noeth) for such rings, we can show that M(R-Noeth) may not have multiplicative
cancellation. Specifically, we will show that 2a = 2b does not, in general, imply that a = b
in M(R-Noeth):

Example 19.27. Let R be a Dedekind domain whose ideal class group is isomorphic to
Z2. An example of such a ring is R = R[X,Y ]/(X2 + Y 2 − 1). See [23, 12.1.6]. Let I be a
nonzero ideal of R such that 〈I〉 6= 〈R〉 = 0, and 2〈I〉 = 〈I2〉 = 〈R〉 = 0 in the ideal class
group. This implies in particular that I2 ∼= R, so, using 19.25 and 19.23.4, we get

2[I] = [I ⊕ I] = [R⊕ I2] = [R] + [I2] = 2[R],

and [I] 6= [R].
Thus M(R-Noeth) does not have multiplicative cancellation.
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