(1)(a)

$$
\begin{aligned}
\frac{2-3 i}{1-2 i} \cdot \frac{1+2 i}{1+2 i} & =\frac{2+4 i-3 i-6 i^{2}}{1-4 i^{2}} \\
& =\frac{8+i}{5}=\frac{8}{5}+\frac{1}{5} i
\end{aligned}
$$

(1) (b) $e^{-2+\pi i}=e^{-2}\left[\frac{\cos (\pi)}{-1}+\frac{i \sin (\pi)}{0}\right]=-e^{-2}$

$$
\begin{aligned}
& \text { (1) (c) } \\
& \cos (2 \pi+i)=\frac{e^{i(2 \pi+i)}+e^{-i(2 \pi+i)}}{2}=\frac{1}{2}\left[e^{2 \pi i-1}+e^{-i 2 \pi+1}\right] \\
& =\frac{1}{2}\left[e^{-1}\left[\frac{\cos (2 \pi)+i \sin (2 \pi)}{1}\right]+e\left[\frac{\cos (-2 \pi)+i \sin (-2 \pi))}{0}\right]\right. \\
& =\frac{1}{2}\left[e^{-1}+e\right]
\end{aligned}
$$

(1) (d)

$$
\begin{aligned}
(1-i)(d) & =e^{i \log (1-i)}=e^{i[\ln (\sqrt{2})+i(-\pi / 4)]} \\
& =e^{i \ln (\sqrt{2})+\pi / 4} \\
& =e^{\pi / 4}[\cos (\ln (\sqrt{2}))+i \sin (\ln (\sqrt{2}))] \\
& =e^{\pi / 4} \cos (\ln (\sqrt{2}))+i e^{\pi / 4} \sin (\ln (\sqrt{2}))
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \begin{array}{l}
z^{3}-8 i=0 \\
z^{3}=8 i \\
z_{k}=8 e^{1 / 3}\left(\frac{\pi / 2}{3}+\frac{2 \pi k}{3}\right) i
\end{array}, k=0,1,2 \\
& z_{0}=2 e^{i \pi / 6}=2\left[\cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)\right]=2\left[\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=\sqrt{3}+i \\
& z_{1}=2 e^{i^{5 \pi / 6}}=2\left[\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)\right]=2\left[-\frac{\sqrt{3}}{2}+i \frac{1}{2}\right]=-\sqrt{3}+i \\
& z_{2}=2 e^{i^{9 \pi / 6}}=2\left[\cos \left(\frac{9 \pi}{6}\right)+i \sin \left(\frac{9 \pi}{6}\right)\right]=2[0-i]=-2 i
\end{aligned}
$$

Recall:
 main thing to know to be able to graph e^{z}
A or B
(A) See Hw $1 \# 8(b, d)$
(B) See HW 2 \# 11

CorD
(C) Let's show $A \cup B$ is open. We assume $A \neq \phi$ and $B \neq \phi$.
Then $A \cup B \neq \phi$,
Let $z \in A \cup B$.
Then $z \in A$ or $z \in B$.
case 1: Suppose $z \in A$.
Since A is open, z is an interior pt of A.
So, $\exists r_{a}>0$ where $D\left(z ; r_{a}\right) \subseteq A$.
Then, $D\left(Z_{j} r_{a}\right) \subseteq A \subseteq A \cup B$.
So, z is an interior pt of $A \cup B$.
case 2: Suppose $z \in B$.
Since B is open, z is an interior pt of B. So, $\exists r_{b}>0$ where $D\left(z ; r_{b}\right) \subseteq B$.
Then, $D\left(z ; r_{b}\right) \subseteq B \subseteq A \cup B$.
So, Z is an interior pt of $A \cup B$.
In either case z is an interior pt of $A \cup B$. So all of $A \cup B^{\prime}$'s elements are interior points. Hence AUB is open
(D) Same proof as $\mathbb{C}-\{0\}$ in class with 1 exchanged for 0 , or same as HW $3 \# 3$ (e).

Let $z \in \mathbb{C}-\{1\}$.
Let $r=|z-1|$
Consider $D(z ; r)$.
We must show

$$
D(z ; c) \leq S \text {. }
$$

Let $w \in D(z ; r)$.
Then, $|w-z|<r$.
We must show $w \in S$,
 that is $\omega \neq 1$.

Suppose $\omega=1$.
Then $|z-1|=|z-w|<r=|z-1|$
So, $|z-1|<|z-1|$ which can't happen.
Thus, $w \neq 1$ and $w \in S$.
So, $D(z ; r) \subseteq S$.
So, z is an interior pt of S.
So, S is open.

