THE MISĖRE \star-OPERATOR

Joint work with Silvia Heubach and Urban Larsson

Matthieu Dufour
University of Quebec at Montreal

47 ${ }^{\text {th }}$ CTCG Conference,
Florida Atlantic University, March 9, 2016

1

The Basics

- A two-player game is called a combinatorial game if there is no randomness involved and all possible moves are known to each player.
- A combinatorial game is called impartial if both players have the same moves, and partizan otherwise.
- Under normal play, the last player to move wins. Under misère play, the last player to move loses.
- Examples:

Impartial Games

- Only two possible outcome classes:
- P-positions (Previous player wins = losing position)
- N -positions (Next player wins = winning position)
- Characterization of N - and P -positions
- From a P-position, all allowed moves lead to an N position
- From an N-position, there is at least one move to a Pposition.
- In misère play, the terminal positions are N -positions

Subtraction Games

- A subtraction or take-away game is played on one or more stacks of tokens
- A subtraction set M indicates the allowed moves, as long as they do not result in negative stack height(s)
- Positions are described as vectors of stack heights

Example:

- Nim on one stack $\quad \mathrm{M}=\{1,2,3, \ldots\}$
- WYthoff is played on two stacks. At each turn we can either take one or more tokens from one stack, or the same number from both stacks.

$$
M=\{(1,0),(2,0), \ldots,(0,1),(0,2), \ldots,(1,1),(2,2), \ldots\}
$$

Misère \star-Operator

- Observation:
- For subtraction games, positions and allowed moves have the same structure
- One can iteratively create a new game whose moves are determined by certain positions of the original game.
- The misère-play \star-operator is defined as follows:
- We start with a subtraction game \mathbf{M} that is described by the allowed moves.
- We compute the set of P-positions, $\mathbf{P}(\mathbf{M})$
- Then \star : $\mathbf{M} \quad \mathbf{M}^{*}=\mathbf{P}(\mathbf{M})$, that is, the losing positions of \mathbf{M} become the moves for the game \mathbf{M}^{*}
- Notation: $\mathbf{M}^{0}=\mathbf{M}, \mathbf{M}^{n}=\left(\mathbf{M}^{n-1}\right)^{*}$
- \mathbf{M} is reflexive if $\mathbf{M}=\mathbf{M}^{*}$

Questions for Misère \star-Operator

- Does the misère-play \star-operator converge (point-wise)?
- Limit games are (by definition) reflexive. What is the structure of reflexive games and/or limit games (if they exist)?

Example in one dimension $(\mathrm{M} \subset \mathrm{N})$

Misère-play \star-operator applied five times to initial game

7

Observations from Example

- Looks like there is convergence (fixed point) for each of the games
- Limit games seem to have a periodic structure: blocks of moves alternate with blocks of non-moves
- $M^{0}=\{4,7,11\}$ and $G^{0}=\{4,9\}$ seem to have the same limit

Question: What have the two sets M^{0} and G^{0} in common?

Answer: The minimal element, $k=4$.

Convergence Result

Theorem

Starting from any game $M \Phi^{d} \backslash\{0\}$, the sequence of games created by the misère-play \star-operator converges to a (reflexive) limit game M .

Proof idea: (in dimension d)

- Positions become fixed either as moves or non-moves from "smaller to larger". There are four possibilities:

	$\in \mathbf{P}\left(\mathbf{M}^{\mathbf{i}}\right)=\mathbf{M}^{\mathbf{i + 1}}$	$\notin \mathbf{P}\left(\mathbf{M}^{\mathbf{i}}\right)=\mathbf{M}^{\mathbf{i + 1}}$
$\in \mathbf{M}^{\mathbf{i}}$	Fixed as a move	Erased as move
$\notin \mathbf{M}^{\mathbf{i}}$	Introduced as move	Fixed as non-move

- Show that smallest element not yet fixed becomes fixed.

Point-wise convergence

Point-wise convergence

- Not all positions switch from non-move to move:

Structure of reflexive games in one dimension

$\mathbf{M}_{\mathrm{k}}:=\left\{\mathrm{i} \mathrm{p}_{\mathrm{k}}+\mathrm{k}, \ldots, \mathrm{i} \mathrm{p}_{\mathrm{k}}+(2 \mathrm{k}-1) \mid \mathrm{i}=0,1, \ldots\right\}$, where $\mathrm{p}_{\mathrm{k}}=3 \mathrm{k}-1$

Theorem
The game $M \subseteq N$ is reflexive if and only if $M=M_{k}$ for some $\mathrm{k}>0$.

What feature of M determines M ? ${ }^{\infty}$

Theorem

Two games $\mathrm{M}, \mathrm{G} \mathbb{I}^{\mathrm{d}} \backslash\{0\}$ have the same limit game if and only if their unique sets of minimal elements (with the usual partial order on N^{d}) are the same.

13

Structure of limit games in two dimensions

- Much less is known, but we think similar structure results hold in general
- The limit games seem to have periodic structure
- In two dimensions, positions/moves are points in the twodimensional integer lattice

Example in two dimensions

15

Example of game $\mathrm{M}_{\mathrm{j}, \mathrm{k}}$

Reflexivity of $\mathrm{M}_{\mathrm{j}, \mathrm{k}}$

Theorem

The game $\mathbf{M}_{\mathbf{j}, \mathrm{k}} \subseteq^{2} \backslash\{\mathbf{0}\}$ is reflexive.

Corollary

The limit game of a set $M \subseteq^{d} \backslash\{0\}$ equals the game $\mathbf{M}_{\mathbf{j}, \mathrm{k}}$ if and only if the set of minimal elements of \mathbf{M} equals
$\{(\mathrm{j}, 0),(0, \mathrm{k})\}$.

17

References for Normal Play

- U. Larsson, P. Hegarty, and A. S. Fraenkel. Invariant and dual subtraction games resolving the Duchêne-Rigo conjecture, Theoretical Computer Science, 412, pp 729735, 2011.
- U. Larsson. The *-operator and invariant subtraction games. Theoretical Computer Science, 422, pp 52-58, 2012.

THANK YOU!

sheubac@calstatela.edu

Slides will be posted at
http://web.calstatela.edu/faculty/sheubac/\#pre sentations

