THE MISÈRE ★-OPERATOR

Joint work with Silvia Heubach and Urban Larsson

Matthieu Dufour University of Quebec at Montreal

47th CTCG Conference, Florida Atlantic University, March 9, 2016

Observations from Example Looks like there is convergence (fixed point) for each of the games Limit games seem to have a periodic structure: blocks of moves alternate with blocks of non-moves M⁰ = {4, 7, 11} and G⁰ = {4, 9} seem to have the same limit Mestion: What have the two sets M⁰ and G⁰ in common? Answer: The minimal element, k = 4.

What feature of M determines M $?^{\infty}$

Theorem

Two games M, G $\mathfrak{Q}^d \setminus \{0\}$ have the same limit game if and only if their unique **sets of minimal elements** (with the usual partial order on N^d) are the same.

Reflexivity of M_{j,k}

Theorem

The game $M_{j,k} \subseteq \mathbb{N}^2 \setminus \{0\}$ is reflexive.

Corollary

The limit game of a set $M \subseteq \mathbb{N}^d \setminus \{0\}$ equals the game $M_{j,k}$ if and only if the set of minimal elements of **M** equals $\{(j,0),(0,k)\}$.

THANK YOU!

sheubac@calstatela.edu

Slides will be posted at

http://web.calstatela.edu/faculty/sheubac/#pre sentations