Circular Nim Games

S. Heubach ${ }^{1} \quad$ M. Dufour ${ }^{2}$
${ }^{1}$ Dept. of Mathematics, California State University Los Angeles
${ }^{2}$ Dept. of Mathematics, University of Quebeq, Montreal
May 7, 2010
Math Colloquium, Cal Poly San Luis Obispo

Circular Nim CN($n, k)$

- n stacks of tokens arranged in a circle
- Select k consecutive stacks and remove at least one token from at least one of the stacks
- Last player to move wins

$k=1$ corresponds to regular Nim

Circular Nim CN($n, k)$

> Question: For a given position, can we determine whether Player I or Player II has a winning strategy, that is, can make moves in such a way that s / he will win, no matter how the other player plays?

We will determine the set of losing positions, that is, all positions that result in a loss for the player playing from that position.

Combinatorial Games

Definition

An impartial combinatorial game has the following properties:

- each player has the same moves available at each point in the game (as opposed to chess, where there are white and black pieces).
- no randomness (dice, spinners) is involved, that is, each player has complete information about the game and the potential moves

Analyzing $\mathrm{CN}(n, k)$

Definition

A position in $\mathrm{CN}(n, k)$ is denoted by $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{i} \geq 0$ denotes the number of tokens in stack i. A position that arises from a move in the current position is called an option. The directed graph which has the positions as the nodes and an arrow between a position and its options is called the game tree.

We do not distinguish between a position and any of its rotations or reversals.

Options of position $(0,1,2)$ in $\mathrm{CN}(3,2)$

$(0,1,2)$
$(0,1,2)$
\leadsto
$(0,1,2)$

Options of position $(0,1,2)$ in $\mathrm{CN}(3,2)$

$$
\begin{array}{lll}
(0,1,2) & \leadsto & (0,0,2) \\
(0,1,2) & \leadsto & \\
(0,1,2) & \leadsto &
\end{array}
$$

Options of position $(0,1,2)$ in $\mathrm{CN}(3,2)$

$$
\begin{array}{lll}
(0,1,2) & \leadsto & (0,0,2) \\
(0,1,2) & \leadsto & (0,0,2),(0,0,1),(0,0,0),(0,1,1),(0,1,0) \\
(0,1,2) & \leadsto &
\end{array}
$$

Options of position $(0,1,2)$ in $\mathrm{CN}(3,2)$

$$
\left.\left.\begin{array}{ll}
(0,1,2) & \leadsto \\
(0,1,2) & \leadsto \\
(0,1,2) & \leadsto
\end{array}\right)(0,0,2),(0,0,1),(0,0,0),(0,1,1),(0,1,0)\right)
$$

Options of position $(0,1,2)$ in $\mathrm{CN}(3,2)$

$$
\begin{aligned}
& (0,1,2) \quad \sim \quad(0,0,2) \\
& (0,1,2) \\
& ~ \\
& (0,0,2),(0,0,1),(0,0,0),(0,1,1),(0,1,0) \\
& (0,1,2) \\
& \sim \quad(0,1,1),(0,1,0)
\end{aligned}
$$

Overall
$(0,1,2)$
$~$
$(0,0,2),(0,0,1),(0,0,0),(0,1,1)$

Game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

Impartial Games

Definition

A position is a \mathcal{P} position for the player about to make a move if the \mathcal{P} revious player can force a win (that is, the player about to make a move is in a losing position). The position is a \mathcal{N} position if the \mathcal{N} ext player (the player about to make a move) can force a win.

For impartial games, there are only two outcome classes for any position, namely winning position (\mathcal{N} position) or losing position (\mathcal{P} position). The set of losing positions is denoted by \mathcal{L}.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions. Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position
- All options of the position are winning (\mathcal{N}) positions

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a losing (\mathcal{P}) position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}

Recursive labeling

To find out whether Player I has a winning strategy, we label the nodes of the game tree recursively as follows:

- Leaves of the game tree are always losing (\mathcal{P}) positions.

Next we select any position (node) whose options (offsprings) are all labeled. There are two cases:

- The position has at least one option that is a $\operatorname{losing}(\mathcal{P})$ position \Rightarrow winning position and should be labeled \mathcal{N}
- All options of the position are winning (\mathcal{N}) positions \Rightarrow losing position and should be labeled \mathcal{P}
The label of the starting position of the game then tells whether Player I (\mathcal{N}) or Player II (\mathcal{P}) has a winning strategy.

Labeling the game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

Labeling the game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

Labeling the game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

Labeling the game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

Labeling the game tree for $\mathrm{CN}(3,2)$ position $(0,1,2)$

An important tool

Theorem

Suppose the positions of a finite impartial game can be partitioned into mutually exclusive sets A and B with the properties:
I. every option of a position in A is in B;
II. every position in B has at least one option in A; and
III. the final positions are in A.

Then $A=\mathcal{L}$ and $B=\mathcal{W}$.

Proof strategy

- Obtain a candidate set S for the set of losing positions \mathcal{L}
- Show that any move from a position $\mathbf{p} \in S$ leads to a position $\mathbf{p}^{\prime} \notin S$ (I)
- Show that for every position $\mathbf{p} \notin S$, there is a move that leads to a position $\mathbf{p}^{\prime} \in S$ (II)

Note that the only final position is $(0,0, \ldots, 0)$, and it is easy to see that (III) is satisfied in all cases.

Digital sum

Definition

The digital sum $a \oplus b \oplus \cdots \oplus k$ of of integers a, b, \ldots, k is obtained by translating the values into their binary representation and then adding them without carry－over．

Note that $a \oplus a=0$ ．
Example
The digital sum $12 \oplus 13 \oplus 7$ equals 6 ：

12	1	1	0	0
13	1	1	0	1
7		1	1	1
	0	1	1	0

The easy cases

Theorem

(1) The game $\mathrm{CN}(n, 1)$ reduces to Nim, for which the set of losing positions is given by
$\mathcal{L}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{1} \oplus p_{2} \oplus \cdots \oplus p_{n}=0\right\}$.
(2) The game $\mathrm{CN}(n, n)$ has a single losing position, namely $\mathcal{L}=\{(0,0, \ldots, 0)\}$.
(3) The game $\mathrm{CN}(n, n-1)$ has losing positions
$\mathcal{L}=$

The easy cases

Theorem

(1) The game $\mathrm{CN}(n, 1)$ reduces to Nim, for which the set of losing positions is given by

$$
\mathcal{L}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{1} \oplus p_{2} \oplus \cdots \oplus p_{n}=0\right\}
$$

(2) The game $\mathrm{CN}(n, n)$ has a single losing position, namely $\mathcal{L}=\{(0,0, \ldots, 0)\}$.
(3) The game $\mathrm{CN}(n, n-1)$ has losing positions $\mathcal{L}=\{(a, a, \ldots, a) \mid a \geq 0\}$.

The easy cases

Theorem

(1) The game $\mathrm{CN}(n, 1)$ reduces to Nim, for which the set of losing positions is given by
$\mathcal{L}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{1} \oplus p_{2} \oplus \cdots \oplus p_{n}=0\right\}$.
(2) The game $\mathrm{CN}(n, n)$ has a single losing position, namely $\mathcal{L}=\{(0,0, \ldots, 0)\}$.
(3) The game $\mathrm{CN}(n, n-1)$ has losing positions $\mathcal{L}=\{(a, a, \ldots, a) \mid a \geq 0\}$.

This covers the games for $n=1,2,3$. For $n=4$, the only one game to consider is $\mathrm{CN}(4,2)$.

Result for $\mathrm{CN}(4,2)$

Theorem

For the game $\mathrm{CN}(4,2)$, the set of losing positions is $\mathcal{L}=\{(a, b, a, b) \mid a, b \geq 0\}$.

Result for $\mathrm{CN}(4,2)$

Theorem

For the game $\mathrm{CN}(4,2)$, the set of losing positions is $\mathcal{L}=\{(a, b, a, b) \mid a, b \geq 0\}$.

Proof.

Let $S=\{(a, b, a, b)\}$ and $\mathbf{p} \in S$. Playing on any stack results in a different value in its diagonal opposite stack $\Rightarrow \mathbf{p}^{\prime} \notin S$.

Result for $\mathrm{CN}(4,2)$

Theorem

For the game $\mathrm{CN}(4,2)$, the set of losing positions is $\mathcal{L}=\{(a, b, a, b) \mid a, b \geq 0\}$.

Proof.

Let $S=\{(a, b, a, b)\}$ and $\mathbf{p} \in S$. Playing on any stack results in a different value in its diagonal opposite stack $\Rightarrow \mathbf{p}^{\prime} \notin S$. If $\mathbf{p} \notin S$:

Result for $\mathrm{CN}(4,2)$

Theorem

For the game $\mathrm{CN}(4,2)$, the set of losing positions is $\mathcal{L}=\{(a, b, a, b) \mid a, b \geq 0\}$.

Proof.

Let $S=\{(a, b, a, b)\}$ and $\mathbf{p} \in S$. Playing on any stack results in a different value in its diagonal opposite stack $\Rightarrow \mathbf{p}^{\prime} \notin S$. If $\mathbf{p} \notin S$:

Result for $\mathrm{CN}(4,2)$

Theorem

For the game $\mathrm{CN}(4,2)$, the set of losing positions is $\mathcal{L}=\{(a, b, a, b) \mid a, b \geq 0\}$.

Proof.

Let $S=\{(a, b, a, b)\}$ and $\mathbf{p} \in S$. Playing on any stack results in a different value in its diagonal opposite stack $\Rightarrow \mathbf{p}^{\prime} \notin S$. If $\mathbf{p} \notin S$:

Result for $\mathrm{CN}(5,2)$

Theorem (Dufour; Ehrenborg \& Steingrímsson)

The game $\mathrm{CN}(5,2)$ has losing positions
$\mathcal{L}=\left\{\left(a^{*}, b, c, d, b\right) \mid a^{*}+b=c+d, a^{*}=\max (\mathbf{p})\right\}$.

Note that b has to be $\min (\mathbf{p})$.

Result for $\mathrm{CN}(5,2)$

To show part (II), we can assume that $\min (\mathbf{p})=0$. Two cases:
(i) $\max (\mathbf{p})=w^{*}$ and $\min (\mathbf{p})$ adjacent, $\mathbf{p}=\left(0, w^{*}, x, y, z\right)$

- $w^{*} \geq z+y$:

- $w^{*}<z+y$:

Result for $\mathrm{CN}(5,2)$

(ii) $\max (\mathbf{p})$ and $\min (\mathbf{p})$ separated by one stack, $\mathbf{p}=(0, x+y, w, z, y)$, $\max (\mathbf{p}) \in\{w, z\}$

- $z \geq x$:

$\rightarrow z<x:$

Result for $\mathrm{CN}(5,3)$

Theorem (Ehrenborg \& Steingrímsson)

The game $\mathrm{CN}(5,3)$ has losing positions
$\mathcal{L}=\{(0, b, c, d, b) \mid b=c+d\}$.

Note that b has to be $\max (\mathbf{p})$. Proof similar to $\mathrm{CN}(5,2)$ with more cases to be considered.

The big question

How do we find \mathcal{L} ????

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}= \\
& \operatorname{mex}\{0,1,2,6\}=
\end{aligned}
$$

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=
\end{aligned}
$$

Mex

Definition

The minimum excluded value or mex of a set of non-negative integers is the least non-negative integer which does not occur in the set. It is denoted by $\operatorname{mex}\{a, b, c, \ldots, k\}$.

Example

$$
\begin{aligned}
& \operatorname{mex}\{1,4,5,7\}=0 \\
& \operatorname{mex}\{0,1,2,6\}=3
\end{aligned}
$$

The Grundy Function

Definition

The Grundy function $\mathcal{G}(\mathbf{p})$ of a position \mathbf{p} is defined recursively as follows:

- $\mathcal{G}(\mathbf{p})=0$ for any final position \mathbf{p}.
- $\mathcal{G}(\mathbf{p})=\operatorname{mex}\{\mathcal{G}(\mathbf{q}) \mid \mathbf{q}$ is an option of $\mathbf{p}\}$.

The Grundy Function

Definition

The Grundy function $\mathcal{G}(\mathbf{p})$ of a position \mathbf{p} is defined recursively as follows:

- $\mathcal{G}(\mathbf{p})=0$ for any final position \mathbf{p}.
- $\mathcal{G}(\mathbf{p})=\operatorname{mex}\{\mathcal{G}(\mathbf{q}) \mid \mathbf{q}$ is an option of $\mathbf{p}\}$.

Theorem

For a finite impartial game, \mathbf{p} belongs to class \mathcal{P} if and only if $\mathcal{G}(\mathbf{p})=0$.

Recursive computation of Grundy function

Finding candidate set for \mathcal{L}

- Write program that computes options for a given position and then recursively computes Grundy function for each position
- Filter out those positions that have Grundy value zero
- CREATIVITY - find pattern
- Write program that computes values to check your pattern
- If pattern holds for large enough number of examples, try to prove it!

Result for $\mathrm{CN}(6,3)$

Theorem

For the game $\mathrm{CN}(6,3)$, the set of losing positions is given by $\mathcal{L}=\{(a, b, c, d, e, f) \mid a+b=d+e, b+c=e+f\}$.

Note that also $c+d=f+a$.

Result for $\mathrm{CN}(6,4)$

Theorem

For the game $\mathrm{CN}(6,4)$, the set of losing positions is given by

$$
\begin{aligned}
& \mathcal{L}=\{(a, b, c, d, e, f) \mid a+b=d+e, b+c=e+f, a \oplus c \oplus e=0 \\
&a=\min (\mathbf{p})\} .
\end{aligned}
$$

Note that also $c+d=f+a$.

Proof of $\mathcal{L}_{\mathrm{CN}(6,4)}$ uses two lemmas:

Lemma

If the position $\mathbf{p}=(a, b, c, d, e, f) \in \mathcal{L}_{\mathrm{CN}(6,4)}$ has a minimal value in each of the two triples (a, c, d) and (b, d, f), then $\mathbf{p}=(a, b, c, a, b, c)$.

Lemma

For any set of positive integers $x_{1}, x_{2}, \ldots, x_{n}$ there exists an index i and a value x_{i}^{\prime} such that $0 \leq x_{i}^{\prime} \leq x_{i}$ and

$$
x_{1} \oplus \cdots \oplus x_{i-1} \oplus x_{i}^{\prime} \oplus x_{i+1} \oplus \cdots \oplus x_{n}=0
$$

Result for $\mathrm{CN}(6,2)$

?????

- Difficult case to prove - we need ALL Grundy values for a special substructure
- Same substructure occurs in all $\mathrm{CN}(n, 2)$ games for $n \geq 6$
- Structure also occurs in other games such as $\mathrm{CN}(9,3)$

Conjecture for $\mathrm{CN}(2 m, m)$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CN}(4,2)} & =\{(a, b, c, d) \mid a+b=c+d \wedge b+c=a+d\} \\
\mathcal{L}_{\mathrm{CN}(6,3)} & =\{(a, b, c, d, e, f) \mid a+b=d+e \wedge b+c=e+f\}
\end{aligned}
$$

Conjecture for $\mathrm{CN}(2 m, m)$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CN}(4,2)} & =\{(a, b, c, d) \mid a+b=c+d \wedge b+c=a+d\} \\
\mathcal{L}_{\mathrm{CN}(6,3)} & =\{(a, b, c, d, e, f) \mid a+b=d+e \wedge b+c=e+f\}
\end{aligned}
$$

Conjecture:
Sums of pairs that are diagonally across are the same

Conjecture for $\mathrm{CN}(2 m, m)$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CN}(4,2)} & =\{(a, b, c, d) \mid a+b=c+d \wedge b+c=a+d\} \\
\mathcal{L}_{\mathrm{CN}(6,3)} & =\{(a, b, c, d, e, f) \mid a+b=d+e \wedge b+c=e+f\}
\end{aligned}
$$

Conjecture:
Sums of pairs that are diagonally across are the same NO

- We have some partial results/conjectures for $n=7,8,9$.
- Specifically, $\mathcal{L}_{\mathrm{CN}(8,6)}=\{(0, x, a, b, e, c, d, x) \mid a+b=c+d=$ $x, e=\min \{x, a+d\}\}$.

Example for $\mathrm{CN}(8,6)$

Can you find a move that results in a losing position?

Example for $\mathrm{CN}(8,6)$

Can you find a move that results in a losing position?

Example for $\mathrm{CN}(8,6)$

Can you find a move that results in a losing position?

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps

Note that there is a different dynamic when the requirement is to select from each stack, as a zero stack now splits the position into separate positions with smaller n and symmetries disappear.

```
More tools
n=6
Future work
```


Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps
- Select a total of at least a tokens from the k stacks

Note that there is a different dynamic when the requirement is to select from each stack, as a zero stack now splits the position into separate positions with smaller n and symmetries disappear.

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps
- Select a total of at least a tokens from the k stacks
- Select a total of exactly a tokens from the k stacks

Note that there is a different dynamic when the requirement is to select from each stack, as a zero stack now splits the position into separate positions with smaller n and symmetries disappear.

Variations of Circular Nim

- Select a fixed number a from at least one of the stacks
- Select a fixed number a from each of the heaps
- Select at least one token from each of the k heaps
- Select at least a tokens from each of the k heaps
- Select a total of at least a tokens from the k stacks
- Select a total of exactly a tokens from the k stacks
- . .

Note that there is a different dynamic when the requirement is to select from each stack, as a zero stack now splits the position into separate positions with smaller n and symmetries disappear.

Thank You!

References and Further Reading

Elwyn R. Berlekamp, John H. Conway and Richard K. Guy. Winning Ways for Your Mathematical Plays, Vol 1 \& 2. Academic Press, London, 1982.
© Michael H. Albert, Richard J. Nowakowski, and David Wolfe.
Lessons in Play.
AK Peters, 2007.
(R. Ehrenborg and E. Steingrímsson.
Playing Nim on a simplicial complex.
Electronic Journal of Combinatorics, 3(1), 33 pages, 1996.

