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Abstract. We provide a short proof that a commutative semigroup is finitely

generated if its lattice of congruences is Noetherian.

1. Introduction

Let R be a unitary commutative ring and S a commutative monoid. Gilmer
proves in [3] that the monoid ring R[S] is Noetherian if and only if R is Noetherian
and S is finitely generated. The proof consists of three parts:

(1) If R[S] is Noetherian, then R is Noetherian and Cong S, the lattice of
congruences of S, is Noetherian.

(2) If Cong S is Noetherian, then S is finitely generated (as a semigroup or as
a monoid).

(3) If R is Noetherian and S is finitely generated then R[S] is Noetherian.

By far, the hardest part of this proof is the pure monoid theory represented
by 2 in this list. We will say that a monoid (or semigroup) is Noetherian if its
lattice of congruences is Noetherian. Then 2 says that any Noetherian monoid is
finitely generated. The proof of this is due to Budach [1] and fills Chapter 5 of
[3]. It depends on a primary decomposition theorem for congruences on Noetherian
semigroups proved by Drbohlav in [2].

The purpose of this paper is to provide a shorter and more direct proof of this
result. In fact, it is just as easy to show that any Noetherian semigroup is finitely
generated, a result which Gilmer obtained in [4] by reducing to the monoid case.

2. Main Results

We begin with some definitions, notation and basic properties of partially ordered
sets and semigroups.

Let L be a partially ordered set. Then L is Artinian if every nonempty subset
of L has a minimal element (equivalently, L satisfies the descending chain condi-
tion), and L is Noetherian if every nonempty subset of L has a maximal element
(equivalently, L satisfies the ascending chain condition). If σ : K → L is a strictly
increasing (decreasing) map between partially ordered sets and L is Noetherian,
then K is Noetherian (Artinian).

A lower set of L is a subset D ⊆ L such that for all x, y ∈ L, if x ≤ y
and y ∈ D, then x ∈ D. We write ⇓L for the set of lower sets of L ordered
by inclusion. L embeds in ⇓L via the map x 7→ {y ∈ L | y ≤ x}, hence if
⇓L is Artinian, then so is L. The lower set generated by a subset A ⊆ L is
{x ∈ L | there exists a ∈ A such that x ≤ a}.
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The proof of the main theorem of this paper proceeds by reducing the question
about finite generation of semigroups to the following purely order theoretic result:

Lemma 2.1. Let L be a partially ordered set. If L is Noetherian and ⇓L is
Artinian, then L is finite.

Proof. Suppose to the contrary that L is infinite. Since L is Noetherian we can
construct an infinite sequence {an | n ∈ N} of distinct elements of L such that a1

is maximal in L, and for all n ≥ 2, an is maximal in L \ {a1, a2, a3, . . . , an−1}. For
n ∈ N, let Dn be the lower set generated by {ak | k ≥ n}. Since ⇓L is Artinian
and Dn+1 ⊆ Dn for all n ≥ 1, there must be some n such that Dn = Dn+1. In
particular, an ∈ Dn+1. This means that an ≤ am for some m > n. But an = am is
not possible because the elements in the sequence are distinct, and an < am is not
possible since an is maximal in L \ {a1, a2, a3, . . . , an−1}, a set which also contains
am. Thus we have a contradiction. �

This lemma follows also from the standard result [6], [7], [8, 1.4] that, if ⇓L is
Artinian, then any infinite sequence in L contains an infinite strictly increasing sub-
sequence. If, in addition, L is Noetherian, then no such infinite strictly increasing
sequence exists, and so L cannot be infinite.

For the definitions and basic properties of commutative semigroups we refer the
reader to [3]. If S is a commutative semigroup, we will write Cong S for the set of
congruences of S ordered in the usual way: ∼≤∼′ if for all x, y ∈ S, x ∼ y implies
x ∼′ y. If Cong S is Noetherian, we say that S is a Noetherian semigroup. The
smallest congruence in Cong S is equality, also known as the identity congruence.
The largest congruence is the universal congruence defined by x ∼ y for all
x, y ∈ S. For a fixed congruence ∼, Cong(S/∼) is order isomorphic to the subset
{∼′|∼′≥∼} of Cong S. In particular, if S is Noetherian then so is S/∼. The
subsemigroup generated by an element a or subset A of S will be written 〈a〉 or 〈A〉.
In this paper “(finitely) generated” means “(finitely) generated as a semigroup”.

Define a relation ≤ on S by x ≤ y if x = y or x + s = y for some s ∈ S. It is
easy to see that ≤ is reflexive and transitive. Since it is possible to have x ≤ y ≤ x
but x 6= y, the relation ≤ is not, in general, a partial order on S.

One important case in which ≤ is a partial order on S is when every element
is an idempotent, that is, b = 2b for all b ∈ S. In this circumstance (S,≤) is a
(join-)semilattice in which + and ∨ coincide. See, for example, [5, 1.3.2].

In proving that Noetherian semigroups are finitely generated, certain congru-
ences which behave well with respect to generating sets are the key: A congruence
∼ on a semigroup S satisfies ? or is a ?-congruence if it has the following property:
If Y is a subset of S whose image in S/∼ generates S/∼, then S is generated by Y
and a finite set.

Note that the identity congruence satisfies ?, and that S is finitely generated if
and only if the universal congruence satisfies ?.

Lemma 2.2. Let S be a Noetherian semigroup. If the identity congruence is the
only ?-congruence on S, then S is trivial.

Proof.
(1) (S,≤) is a partially ordered set. Since ≤ is reflexive and transitive, it

remains only to show that a ≤ b ≤ a implies a = b for a, b ∈ S. If
a ≤ b ≤ a, then either a = b or a = b+ t1 and b = a+ t2 for some t1, t2 ∈ S.
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In the second case, set T = 〈t1, t2〉 and define the congruence ∼ by x ∼ y
if x = y or there exist t, t′ ∈ T such that x = y + t and y = x + t′. By
construction, we have a ∼ b, so to prove a = b it suffices to show that ∼ is
a ?-congruence.

Suppose that the image of Y ⊆ S generates S/∼, then for any element
x ∈ S we have x ∼ y for some y ∈ 〈Y 〉. Either x = y ∈ 〈Y 〉 or x = y + t ∈
〈t1, t2, Y 〉 for some t ∈ T . Thus S = 〈t1, t2, Y 〉 and ∼ is a ?-congruence.

(2) ⇓(S,≤) is Artinian. In particular, (S,≤) is Artinian. For D ∈ ⇓(S,≤),
define the congruence ∼

D
by x ∼

D
y if either x = y or x 6∈ D and y 6∈ D. It

is easy to show that the map D 7→∼
D

from ⇓(S,≤) to Cong S is decreasing.

This map is in fact strictly decreasing when restricted to proper lower
sets of (S,≤): If D,E ∈ ⇓(S,≤) with D ⊂ E ⊂ S, then for any x ∈ E \D
and y ∈ S \ E we have x ∼

D
y but not x ∼

E
y. Therefore ∼

D
>∼

E
.

Since Cong S is Noetherian, this implies that the set of proper lower sets
of S is Artinian. It follows immediately that ⇓(S,≤) is Artinian.

Remark: Since (S,≤) is partially ordered, the complement of a proper
lower set is an ideal of S and vice versa. Moreover, for a proper lower set
D, the congruence ∼

D
is the Rees congruence associated to the ideal S \D.

Hence we have also proved that the set of ideals of S ordered by inclusion
is Noetherian, a fact which is true in any Noetherian semigroup. See [3,
5.1].

(3) (S,≤) is a semilattice, that is, b = 2b for all b ∈ S. For b ∈ S define the
congruence ∼ by x ∼ y if either x = y or b ≤ x, y and x + mb = y + nb
for some m,n ∈ N. By construction we have b ∼ 2b, so to prove b = 2b it
suffices to show that ∼ is a ?-congruence.

Suppose the image of Y ⊆ S generates S/∼. We will show that S =
〈b, Y 〉.

If, to the contrary S 6= 〈b, Y 〉, choose x minimal in S \ 〈b, Y 〉. We have
x ∼ y for some y ∈ 〈Y 〉. Since x 6= y ∈ 〈Y 〉, we must have b ≤ x, y and
x + mb = y + nb for some m,n ∈ N. Since x 6= b, there is some x′ such
that x = b + x′. The element x′ cannot be in 〈b, Y 〉 since that would imply
the same for x. By the minimality of x we have x′ = x, that is, x = x + b.
From this we get x = x + mb = y + nb ∈ 〈b, Y 〉, a contradiction.

(4) (S,≤) is Noetherian. For an element s ∈ S define the congruence ∼s by
x ∼s y if s + x = s + y. It is easy to check that, since S is a semilattice,
the map s 7→∼s from (S,≤) to Cong S is strictly increasing. Since Cong S
is Noetherian, so is (S,≤).

(5) S is trivial. We now have that (S,≤) is Noetherian and ⇓(S,≤) is Artinian,
so from Lemma 2.1, we know that S is finite. But in this case, the universal
congruence on S satisfies ?. Thus the universal congruence is also the
identity congruence, meaning that S is trivial.

�

Theorem 2.3. Any Noetherian semigroup is finitely generated.

Proof. Let S be a Noetherian semigroup. Let ≈ be a maximal ?-congruence on S
and S′ = S/≈. We show that the only ?-congruence on S′ is the identity congruence.
Any congruence on S′ is represented by a congruence ∼ on S such that ≈≤∼. If



COMMUTATIVE NOETHERIAN SEMIGROUPS ARE FINITELY GENERATED 4

Y ⊆ S generates S/∼ and ∼ satisfies ? with respect to S′, then Y and a finite set
generate S/≈. But then, since ≈ satisfies ?, Y and a finite set generate S. Thus ∼
is a ?-congruence with respect to S. By the maximality of ≈, we have ≈=∼, that
is ∼ represents the identity congruence on S′.

Since S′ is a Noetherian semigroup whose only ?-congruence is the identity con-
gruence, Lemma 2.2 implies that S′ is trivial. It follows immediately that ≈ is the
universal congruence and hence S is finitely generated. �
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