COMMUTATIVE NOETHERIAN SEMIGROUPS ARE FINITELY GENERATED

GARY BROOKFIELD

ABSTRACT. We provide a short proof that a commutative semigroup is finitely generated if its lattice of congruences is Noetherian.

1. INTRODUCTION

Let R be a unitary commutative ring and S a commutative monoid. Gilmer proves in [3] that the monoid ring R[S] is Noetherian if and only if R is Noetherian and S is finitely generated. The proof consists of three parts:

- (1) If R[S] is Noetherian, then R is Noetherian and Cong S, the lattice of congruences of S, is Noetherian.
- (2) If $\operatorname{Cong} S$ is Noetherian, then S is finitely generated (as a semigroup or as a monoid).
- (3) If R is Noetherian and S is finitely generated then R[S] is Noetherian.

By far, the hardest part of this proof is the pure monoid theory represented by 2 in this list. We will say that a monoid (or semigroup) is Noetherian if its lattice of congruences is Noetherian. Then 2 says that any Noetherian monoid is finitely generated. The proof of this is due to Budach [1] and fills Chapter 5 of [3]. It depends on a primary decomposition theorem for congruences on Noetherian semigroups proved by Drbohlav in [2].

The purpose of this paper is to provide a shorter and more direct proof of this result. In fact, it is just as easy to show that any Noetherian semigroup is finitely generated, a result which Gilmer obtained in [4] by reducing to the monoid case.

2. Main Results

We begin with some definitions, notation and basic properties of partially ordered sets and semigroups.

Let \mathcal{L} be a partially ordered set. Then \mathcal{L} is **Artinian** if every nonempty subset of \mathcal{L} has a minimal element (equivalently, \mathcal{L} satisfies the descending chain condition), and \mathcal{L} is **Noetherian** if every nonempty subset of \mathcal{L} has a maximal element (equivalently, \mathcal{L} satisfies the ascending chain condition). If $\sigma : \mathcal{K} \to \mathcal{L}$ is a strictly increasing (decreasing) map between partially ordered sets and \mathcal{L} is Noetherian, then \mathcal{K} is Noetherian (Artinian).

A lower set of \mathcal{L} is a subset $D \subseteq \mathcal{L}$ such that for all $x, y \in \mathcal{L}$, if $x \leq y$ and $y \in D$, then $x \in D$. We write $\Downarrow \mathcal{L}$ for the set of lower sets of \mathcal{L} ordered by inclusion. \mathcal{L} embeds in $\Downarrow \mathcal{L}$ via the map $x \mapsto \{y \in \mathcal{L} \mid y \leq x\}$, hence if $\Downarrow \mathcal{L}$ is Artinian, then so is \mathcal{L} . The lower set generated by a subset $A \subseteq \mathcal{L}$ is $\{x \in \mathcal{L} \mid \text{ there exists } a \in A \text{ such that } x \leq a\}$. The proof of the main theorem of this paper proceeds by reducing the question about finite generation of semigroups to the following purely order theoretic result:

Lemma 2.1. Let \mathcal{L} be a partially ordered set. If \mathcal{L} is Noetherian and $\Downarrow \mathcal{L}$ is Artinian, then \mathcal{L} is finite.

Proof. Suppose to the contrary that \mathcal{L} is infinite. Since \mathcal{L} is Noetherian we can construct an infinite sequence $\{a_n \mid n \in \mathbb{N}\}$ of distinct elements of \mathcal{L} such that a_1 is maximal in \mathcal{L} , and for all $n \geq 2$, a_n is maximal in $\mathcal{L} \setminus \{a_1, a_2, a_3, \ldots, a_{n-1}\}$. For $n \in \mathbb{N}$, let D_n be the lower set generated by $\{a_k \mid k \geq n\}$. Since $\Downarrow \mathcal{L}$ is Artinian and $D_{n+1} \subseteq D_n$ for all $n \geq 1$, there must be some n such that $D_n = D_{n+1}$. In particular, $a_n \in D_{n+1}$. This means that $a_n \leq a_m$ for some m > n. But $a_n = a_m$ is not possible because the elements in the sequence are distinct, and $a_n < a_m$ is not possible since a_n is maximal in $\mathcal{L} \setminus \{a_1, a_2, a_3, \ldots, a_{n-1}\}$, a set which also contains a_m . Thus we have a contradiction.

This lemma follows also from the standard result [6], [7], [8, 1.4] that, if $\Downarrow \mathcal{L}$ is Artinian, then any infinite sequence in \mathcal{L} contains an infinite strictly increasing subsequence. If, in addition, \mathcal{L} is Noetherian, then no such infinite strictly increasing sequence exists, and so \mathcal{L} cannot be infinite.

For the definitions and basic properties of commutative semigroups we refer the reader to [3]. If S is a commutative semigroup, we will write Cong S for the set of congruences of S ordered in the usual way: $\sim \leq \sim'$ if for all $x, y \in S, x \sim y$ implies $x \sim' y$. If Cong S is Noetherian, we say that S is a **Noetherian semigroup**. The smallest congruence in Cong S is equality, also known as the **identity congruence**. The largest congruence is the **universal congruence** defined by $x \sim y$ for all $x, y \in S$. For a fixed congruence \sim , Cong (S/\sim) is order isomorphic to the subset $\{\sim' \mid \sim' \geq \sim\}$ of Cong S. In particular, if S is Noetherian then so is S/\sim . The subsemigroup generated by an element a or subset A of S will be written $\langle a \rangle$ or $\langle A \rangle$. In this paper "(finitely) generated" means "(finitely) generated as a semigroup".

Define a relation \leq on S by $x \leq y$ if x = y or x + s = y for some $s \in S$. It is easy to see that \leq is reflexive and transitive. Since it is possible to have $x \leq y \leq x$ but $x \neq y$, the relation \leq is not, in general, a partial order on S.

One important case in which \leq is a partial order on S is when every element is an idempotent, that is, b = 2b for all $b \in S$. In this circumstance (S, \leq) is a (join-)semilattice in which + and \vee coincide. See, for example, [5, 1.3.2].

In proving that Noetherian semigroups are finitely generated, certain congruences which behave well with respect to generating sets are the key: A congruence \sim on a semigroup S satisfies \star or is a \star -congruence if it has the following property: If Y is a subset of S whose image in S/\sim generates S/\sim , then S is generated by Y and a finite set.

Note that the identity congruence satisfies \star , and that S is finitely generated if and only if the universal congruence satisfies \star .

Lemma 2.2. Let S be a Noetherian semigroup. If the identity congruence is the only \star -congruence on S, then S is trivial.

Proof.

(1) (S, \leq) is a partially ordered set. Since \leq is reflexive and transitive, it remains only to show that $a \leq b \leq a$ implies a = b for $a, b \in S$. If $a \leq b \leq a$, then either a = b or $a = b + t_1$ and $b = a + t_2$ for some $t_1, t_2 \in S$.

In the second case, set $T = \langle t_1, t_2 \rangle$ and define the congruence \sim by $x \sim y$ if x = y or there exist $t, t' \in T$ such that x = y + t and y = x + t'. By construction, we have $a \sim b$, so to prove a = b it suffices to show that \sim is a \star -congruence.

Suppose that the image of $Y \subseteq S$ generates S/\sim , then for any element $x \in S$ we have $x \sim y$ for some $y \in \langle Y \rangle$. Either $x = y \in \langle Y \rangle$ or $x = y + t \in \langle t_1, t_2, Y \rangle$ for some $t \in T$. Thus $S = \langle t_1, t_2, Y \rangle$ and \sim is a \star -congruence.

(2) $\Downarrow(S, \leq)$ is Artinian. In particular, (S, \leq) is Artinian. For $D \in \Downarrow(S, \leq)$, define the congruence $\underset{D}{\sim}$ by $x \underset{D}{\sim} y$ if either x = y or $x \notin D$ and $y \notin D$. It is easy to show that the map $D \mapsto_{D}$ from $\Downarrow(S, \leq)$ to Cong S is decreasing.

This map is in fact strictly decreasing when restricted to proper lower sets of (S, \leq) : If $D, E \in \bigcup (S, \leq)$ with $D \subset E \subset S$, then for any $x \in E \setminus D$ and $y \in S \setminus E$ we have $x \underset{D}{\sim} y$ but not $x \underset{E}{\sim} y$. Therefore $\underset{D}{\sim} > \underset{E}{\sim}$.

Since $\operatorname{Cong} S$ is Noetherian, this implies that the set of proper lower sets of S is Artinian. It follows immediately that $\Downarrow(S, \leq)$ is Artinian.

Remark: Since (S, \leq) is partially ordered, the complement of a proper lower set is an ideal of S and vice versa. Moreover, for a proper lower set D, the congruence $\underset{D}{\sim}$ is the Rees congruence associated to the ideal $S \setminus D$. Hence we have also proved that the set of ideals of S ordered by inclusion is Noetherian, a fact which is true in any Noetherian semigroup. See [3, 5.1].

(3) (S, \leq) is a semilattice, that is, b = 2b for all $b \in S$. For $b \in S$ define the congruence \sim by $x \sim y$ if either x = y or $b \leq x, y$ and x + mb = y + nb for some $m, n \in \mathbb{N}$. By construction we have $b \sim 2b$, so to prove b = 2b it suffices to show that \sim is a \star -congruence.

Suppose the image of $Y \subseteq S$ generates S/\sim . We will show that $S = \langle b, Y \rangle$.

If, to the contrary $S \neq \langle b, Y \rangle$, choose x minimal in $S \setminus \langle b, Y \rangle$. We have $x \sim y$ for some $y \in \langle Y \rangle$. Since $x \neq y \in \langle Y \rangle$, we must have $b \leq x, y$ and x + mb = y + nb for some $m, n \in \mathbb{N}$. Since $x \neq b$, there is some x' such that x = b + x'. The element x' cannot be in $\langle b, Y \rangle$ since that would imply the same for x. By the minimality of x we have x' = x, that is, x = x + b. From this we get $x = x + mb = y + nb \in \langle b, Y \rangle$, a contradiction.

- (4) (S, \leq) is Noetherian. For an element $s \in S$ define the congruence \sim_s by $x \sim_s y$ if s + x = s + y. It is easy to check that, since S is a semilattice, the map $s \mapsto \sim_s$ from (S, \leq) to Cong S is strictly increasing. Since Cong S is Noetherian, so is (S, \leq) .
- (5) S is trivial. We now have that (S, \leq) is Noetherian and $\Downarrow(S, \leq)$ is Artinian, so from Lemma 2.1, we know that S is finite. But in this case, the universal congruence on S satisfies \star . Thus the universal congruence is also the identity congruence, meaning that S is trivial.

Theorem 2.3. Any Noetherian semigroup is finitely generated.

Proof. Let S be a Noetherian semigroup. Let \approx be a maximal *-congruence on S and $S' = S/\approx$. We show that the only *-congruence on S' is the identity congruence. Any congruence on S' is represented by a congruence ~ on S such that $\approx \leq \sim$. If

 $Y \subseteq S$ generates S/\sim and \sim satisfies \star with respect to S', then Y and a finite set generate S/\approx . But then, since \approx satisfies \star , Y and a finite set generate S. Thus \sim is a \star -congruence with respect to S. By the maximality of \approx , we have $\approx = \sim$, that is \sim represents the identity congruence on S'.

Since S' is a Noetherian semigroup whose only \star -congruence is the identity congruence, Lemma 2.2 implies that S' is trivial. It follows immediately that \approx is the universal congruence and hence S is finitely generated.

References

- L. Budach, Struktur Noetherscher Kommutativer Halbgruppen, Monatsb. Deutsch. Akad. Wiss. Berlin, 6, (1964), 81-85.
- [2] K. Drbohlav, Zur Theorie der Kongruenzrelationen auf Kommutativen Halbgruppen, Math. Nachr., 26, (1963/64), 233-245.
- [3] R. Gilmer, Commutative Semigroup Rings, Univ. of Chicago Press, Chicago, 1984.
- [4] R. Gilmer, Chain Conditions in Commutative Semigroup Rings, J. Algebra, 103, (1986), 592-599.
- [5] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Univ. Press, (1995).
- [6] G. Higman, Ordering by Divisibility in Abstract Algebras, Proc. London Math. Soc., Ser. 3, 2, (1952), 326-336.
- [7] E. C. Milner, Basic WQO- and BQO-Theory, in Graphs and Order, ed. I. Rival, D. Reidel, (1984), 487-502.
- [8] J. C. Robson, Well Quasi-Ordered Sets and Ideals in Free Semigroups and Algebras, J. Algebra, 55, (1978), 521-535.

E-mail address: brookfield@math.ucr.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CA 92521-0135