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Abstract

For a graph G, let diam(G) denote the diameter of G. For any
two vertices u and v in G, let d(u, v) denote the distance between u

and v. A multilevel distance labeling (or distance labeling) for G is a
function f that assigns to each vertex of G a non-negative integer such
that for any vertices u and v, |f(u)− f(v)| ≥ diam(G)− dG(u, v) + 1.
The span of f is the largest number in f(V ). The radio number of G,
denoted by rn(G), is the minimum span of a distance labeling for G.
In this paper, we completely determine the radio numbers for paths
and cycles.
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1 Introduction

multilevel distance labeling can be regarded as an extension of distance two

labeling which is motivated by the channel assignment problem introduced

by Hale [10]. For a set of given cities (or stations), the task is to assign to

each city a channel, which is a non-negative integer, so that interference is

prohibited, and the span of the channels assigned is minimized.

Usually, the level of interference between any two stations is closely re-

lated to the geographic locations of the stations – the closer are the stations

the stronger is the interference. Suppose we consider two levels of inter-

ference, major and minor. Major interference occurs between two very close

stations; to avoid it, the channels assigned to a pair of very close stations have

to be at least two apart. Minor interference occurs between close stations;

to avoid it, the channels assigned to close stations have to be different.

To model this problem, we construct a graph G by representing each

station by a vertex and connecting two vertices by an edge if the geographical

locations of the corresponding stations are very close. Two close stations are

represented by, in the corresponding graph G, a pair of vertices that are

distance two apart.

Let dG(u, v) denote the distance (the shortest length of a path) between

u and v in G (or simply d(u, v) when G is clear in the context). Thus, for

a graph G, a distance two labeling (or L(2, 1)-labeling) with span k is a

function, f : V (G) → {0, 1, 2, · · · , k}, such that the following are satisfied:

1) |f(x) − f(y)| ≥ 2 if d(x, y) = 1; and 2) |f(x) − f(y)| ≥ 1 if d(x, y) = 2.

Distance two labeling has been studied extensively in the past decade (cf.

[1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15]). One of the main research focuses has

been the λ-number for a graph G, denoted by λ(G), which is the smallest

span k of a distance two labeling for G.
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Practically, interference among channels might go beyond two levels. We

consider interference levels from one through the largest possible value – the

diameter of G, denoted by diam(G), which is the largest distance between

two vertices of G.

A multilevel distance labeling (or distance labeling for short), with span

k, is a function f : V (G) → {0, 1, 2, · · · , k}, so that for any vertices u and v,

|f(u) − f(v)| ≥ diam(G) − dG(u, v) + 1.

The radio number (as suggested by the FM radio frequency assignment [4])

for G, denoted by rn(G), is the minimum span of a distance labeling for

G. Note that if diam(G) = 2, then distance two labeling coincides with

multilevel distance labeling, and in this case, λ(G) = rn(G).

Besides its motivation from the channel assignment problem, distance la-

beling itself is an interesting, relatively new notion in graph coloring, and

worthy of further investigation for its own sake. It is surprising that de-

termining the radio number seems a difficult problem even for some basic

families of graphs. For instance, the radio number for paths and cycles has

been studied by Chartrand et al. [3] and Chartrand, Erwin, and Zhang [4].

In [4] and [3], some bounds of the radio numbers for paths and cycles, re-

spectively, were presented, while the exact values remained unknown at that

time.

In this article, we completely determine the radio numbers for paths and

cycles. Note that, to be consistent with distance two labelings, we allow 0 to

be used as a color (or channel). However, in [4, 3], only positive integers can

be used as colors. Therefore, the radio number defined in this article is one

less than the radio number defined in [4, 3]. Being consistent, throughout the

article, we make necessary adjustments, reflecting this “one less” difference,

for all the results quoted from [4, 3].
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2 The Radio Number for Paths

Let Pn be the path on n vertices. Chartrand, Erwin and Zhang [4] proved

the following upper bounds for rn(Pn):

Theorem 1 [4] For any positive integer n,

rn(Pn) ≤

{

2k2 + k, if n = 2k + 1;
2(k2 − k) + 1, if n = 2k.

Moreover, the bound is sharp when n ≤ 5.

In this section, we completely settle the radio numbers for paths. We first

prove the following Lemma.

Lemma 2 Let Pn be a path with vertex set V (Pn) = {v1, v2, · · · , vn}, in

which vi ∼ vi+1 for i = 1, 2, · · · , n − 1. Let f be an assignment of distinct

non-negative integers to V (Pn). Let (x1, x2, · · · , xn) be the ordering of V (Pn)

such that f(xi) < f(xi+1). The following three statements are equivalent.

(1) For any 1 ≤ i ≤ n − 2, min{d(xi, xi+1), d(xi+1, xi+2)} ≤ n/2.

(2) If f(xi+1) − f(xi) ≥ n − d(xi, xi+1) for all 1 ≤ i ≤ n − 1, then f is a

distance labeling.

(3) If f(xi+1) − f(xi) = n − d(xi, xi+1) for all 1 ≤ i ≤ n − 1, then f is a

distance labeling.

Proof. Note that diam(Pn) = n − 1.

(1) ⇒ (2) Assume (1) For any 1 ≤ i ≤ n−2, min{d(xi, xi+1), d(xi+1, xi+2)} ≤

n/2, and (2) f(xi+1)− f(xi) ≥ n− d(xi, xi+1) for all 1 ≤ i ≤ n− 1. We need

to show that for any i 6= j, |f(xi) − f(xj)| ≥ n − d(xi, xj).
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For each i = 1, 2, · · · , n − 1, set

fi = f(xi+1) − f(xi).

Assume i < j. Then

f(xj) − f(xi) = fi + fi+1 + · · ·+ fj−1.

Assumptions (1) and (2) imply that fi ≥ n−d(xi, xi+1), fi+1 ≥ n−d(xi+1, xi+2),

and for any i,

max{fi, fi+1} ≥ n/2.

Thus, if j ≥ i + 4, then f(xj) − f(xi) ≥ n > n − d(xi, xj), and we are done.

It suffices to consider the cases that j = i + 2 or j = i + 3.

Assume j = i + 2. Without loss of generality, we may assume that

d(xi, xi+1) ≥ d(xi+1, xi+2), and hence d(xi+1, xi+2) ≤ n/2. Since d(xi, xi+2) ≥

d(xi, xi+1) − d(xi+1, xi+2), we have

f(xj) − f(xi) = fi + fi+1

≥ (n − d(xi, xi+1)) + (n − d(xi+1, xi+2))

= 2n − 2d(xi+1, xi+2) − (d(xi, xi+1) − d(xi+1, xi+2))

≥ n − d(xi, xi+2).

Assume j = i + 3. If the sum of some pair of the distances d(xi, xi+1),

d(xi+1, xi+2), and d(xi+2, xi+3) is at most n, then f(xi+3)−f(xi) = fi+fi+1+

fi+2 ≥ n, so we are done.

Thus, we assume that the sum of every pair of the distances d(xi, xi+1),

d(xi+1, xi+2), and d(xi+2, xi+3) is greater than n. This implies that

d(xi+1, xi+2) ≤ n/2 and d(xi, xi+1), d(xi+2, xi+3) > n/2.
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Let xi = va, xi+1 = vb, xi+2 = vc, xi+3 = vd. Let m and m′ be, respectively,

the maximum and the minimum of {a, b, c, d}. Then {m, m′} = {a, d}. For

otherwise, say m′ = b, then we have b < c < d, implying that d(xi+1, xi+2) +

d(xi+2, xi+3) ≤ n, in contrary to our assumption. Hence, one has

d(xi, xi+3) = d(xi, xi+1) + d(xi+2, xi+3) − d(xi+1, xi+2) > n/2.

So, f(xi+3) − f(xi) = fi + fi+1 + fi+2 > fi+1 ≥ n/2 > n − d(xi, xi+3).

(2) ⇒ (3) Trivial.

(3) ⇒ (1) Let f(x1) = 0, and let f(xi) = f(xi−1)+n− d(xi, xi+1) for all i.

By (3), f is a distance labeling of Pn. Assume, to the contrary of (1), that

there is an index i such that

min{d(xi, xi+1), d(xi+1, xi+2)} > n/2.

Without loss of generality, we assume that d(xi, xi+1) ≥ d(xi+1, xi+2). Then

d(xi, xi+2) = d(xi, xi+1) − d(xi+1, xi+2),

and thus

f(xi+2) − f(xi) = n − d(xi, xi+1) + n − d(xi+1, xi+2)

= 2n − 2(d(xi+1, xi+2)) − d(xi, xi+2)

< n − d(xi, xi+2),

contrary to the assumption that f is a distance labeling.

Theorem 3 For any n ≥ 4,

rn(Pn) =

{

2k2 + 2, if n = 2k + 1;
2k(k − 1) + 1, if n = 2k.
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Proof. Note that, for even paths, by Theorem 1, it suffices to show that

rn(P2k) ≥ 2k(k− 1) +1. However, for completeness, we present a proof here

without using Theorem 1.

First, we show that rn(P2k+1) ≤ 2k2 + 2 and rn(P2k) ≤ 2k(k − 1) + 1.

Assume P2k+1 = (v1, v2, · · · , v2k+1), where vi ∼ vi+1. Order the vertices of

P2k+1 as follows:

vk, vk+k, v1, v1+k, v1+k+k, v3, v3+k, v4, v4+k, v5, v5+k, · · · , vk−1, vk−1+k, v2, v2+k.

Rename the vertices of P in the above ordering by x1, x2, · · ·, x2k+1.

Namely, let x1 = vk, x2 = vk+k, · · ·, x2k+1 = v2+k.

Let f be the mapping defined as f(x1) = 0, and for i = 2, 3, · · · , 2k + 1,

f(xi) = f(xi−1) + 2k + 1 − d(xi−1, xi).

It is easy to verify that the ordering and the mapping f satisfy the conditions

of Lemma 2 (1) and (3). Therefore f is a distance labeling of P2k+1.

It remains to show that f(x2k+1) = 2k2 + 2. By definition,

f(x2k+1) =
2k
∑

i=1

[2k + 1 − d(xi, xi+1)]

= 2k(2k + 1) −
2k
∑

i=1

d(xi, xi+1).

Thus, it suffices to show that

2k
∑

i=1

d(xi, xi+1) = 2k2 + 2k − 2.

Note that if xi = vj and xi+1 = vj′ , then d(xi, xi+1) = |j − j′|, which is

equal to either j − j′ or j′ − j, whichever is positive. By replacing each term

d(xi, xi+1) with the corresponding j − j′ or j′ − j, whichever is positive, we

obtain a summation whose entries are ±j for j ∈ {1, 2, · · · , 2k + 1}.
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For the ordering above, if j ≤ k, then the vertex preceding vj is vj′ for

some j′ ≥ k + 2, and the vertex following vj is vj′′ for some j′′ ≥ k + 1.

Therefore, for each 1 ≤ j ≤ k, whenever ±j occurs in the summation above,

it occurs as a −j. Similarly, if k+2 ≤ j ≤ 2k+1, then whenever ±j occurs in

the summation it occurs as a +j. The number k + 1 occurs once as +(k + 1)

and once as −(k + 1). Also it is easy to see that each j occurs twice in the

summation, except that each of j = k and j = k + 2 occurs only once in the

summation. Hence, we have

2k
∑

i=1

d(xi, xi+1) = 2(
2k+1
∑

j=k+2

j −
k

∑

j=1

j) − (k + 2 − k)

= 2k2 + 2k − 2.

The case for even paths is similar. Order the vertices of P2k as follows:

vk, vk+k, v2, v2+k, v3, v3+k, · · · , vk−1, vk−1+k, v1, v1+k.

Rename the vertices so that the ordering above is x1, x2, · · · , x2k. Namely,

let x1 = vk, x2 = vk+k, · · · , x2k = v1+k.

Let f be the mapping defined as f(x1) = 0, and for i = 2, 3, · · · , 2k,

f(xi) = f(xi−1) + 2k − d(xi−1, xi).

Then the ordering and the mapping f satisfy the conditions of Lemma 2 (1)

and (3). Therefore f is a distance labeling of P2k.

Similarly, in the summation
∑2k−1

i=1 d(xi, xi+1), each j ∈ {1, 2, · · · , k − 1}

occurs twice as −j, k occurs once as a −k, each of j ∈ {k + 2, k + 3, · · · , 2k}

occurs twice as +j, and k + 1 occurs once as a +(k + 1). Therefore,

2k−1
∑

i=1

d(xi, xi+1) = 2(
2k
∑

j=k+2

j −
k−1
∑

j=1

j) + k + 1 − k

= 2k2 − 1.
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This implies,

f(x2k) =
2k−1
∑

i=1

[2k − d(xi, xi+1)]

= 2k(2k − 1) −
2k−1
∑

i=1

d(xi, xi+1)

= 4k2 − 2k − 2k2 + 1

= 2k(k − 1) + 1.

Next, we show that rn(P2k+1) ≥ 2k2 + 2. Let f be a distance labeling

of P2k+1. Order the vertices of P2k+1 as x1, x2, · · · , x2k+1 such that f(xi) <

f(xi+1) for all i. Assume xi = vσ(i). Then σ is a permutation of {1, 2, · · · , 2k+

1}. We shall prove that f(x2k+1) ≥ 2k2 + 2.

By definition, f(x1) ≥ 0 and f(xi) ≥ f(xi−1) + 2k + 1 − d(xi−1, xi) for

i = 2, 3, · · · , 2k + 1. Thus

f(x2k+1) ≥
2k
∑

i=1

[2k + 1 − d(xi, xi+1)]

= 2k(2k + 1) −
2k
∑

i=1

d(xi, xi+1).

If
∑2k

i=1 d(xi, xi+1) ≤ 2k2 + 2k− 2, then f(x2k+1) ≥ 2k2 + 2, and we are done.

Hence, assume
∑2k

i=1 d(xi, xi+1) > 2k2 + 2k − 2.

Claim. If
∑2k

i=1 d(xi, xi+1) > 2k2+2k−2, then
∑2k

i=1 d(xi, xi+1) = 2k2+2k−1

and there is an index i such that f(xi+1) − f(xi) ≥ n − d(xi+1, xi) + 1.

Proof of Claim. Note that d(xi, xi+1) is equal to either σ(i) − σ(i + 1) or

σ(i+1)−σ(i), whichever is positive. By replacing each term d(xi, xi+1) with

the corresponding σ(i)−σ(i+1) or σ(i+1)−σ(i), whichever is positive, we

obtain a summation whose entries are ±j for j ∈ {1, 2, · · · , 2k + 1}.

All together, there are 4k terms in the summation
∑2k

i=1 d(xi, xi+1), half

of them positive and half negative. Each j ∈ {1, 2, · · · , 2k + 1} occurs as
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±j exactly twice in the summation, except for two values which each occurs

only once.

To maximize the summation
∑2k

i=1 d(xi, xi+1), one needs to minimize the

absolute values for the negative terms while maximize the values of the posi-

tive terms. It is easy to verify that there are two combinations achieving the

maximum summation:

Case 1) Each of the numbers in {k + 2, k + 3, k + 4, · · · , 2k + 1} occurs twice

as a positive, each of {1, 2, · · · , k − 1} occurs twice as a negative, and

each of k and k + 1 occurs once as a negative.

Case 2) Each of the numbers in {k + 3, k + 4, · · · , 2k + 1} occurs twice as a

positive, each of {1, 2, · · · , k} occurs twice as a negative, and each of

k + 1 and k + 2 occurs once as a positive.

In both cases, we have

2k
∑

i=1

d(xi, xi+1) = 2k2 + 2k − 1.

In Case 1, we must have {σ(1), σ(2k + 1)} = {k + 1, k}. Moreover,

σ(i) ≥ k + 2 if and only if σ(i + 1) ≤ k + 1. In particular, if σ(i) = 1, then

σ(i − 1) ≥ k + 2 and σ(i + 1) ≥ k + 2. This violates (1) in Lemma 2. As f

is a distance labeling, it follows from Lemma 2 (3) that there exists some i

such that f(xi+1) − f(xi) ≥ n − d(xi, xi+1) + 1.

In Case 2, we must have {σ(1), σ(2k + 1)} = {k + 1, k + 2}. Moreover,

σ(i) ≥ k + 1 if and only if σ(i + 1) ≤ k. In particular, if σ(i) = 2k + 1, then

σ(i − 1) ≤ k and σ(i + 1) ≤ k. Again, this violates (1) in Lemma 2, and it

follows from Lemma 2 (3) that there exists some i such that f(xi+1)−f(xi) ≥

n − d(xi, xi+1) + 1. 2
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By some calculation, it follows from Claim that if
∑2k

i=1 d(xi, xi+1) > 2k2+

2k− 2, we also have f(x2k+1) ≥ 2k2 + 2, completing the proof for odd paths.

We now show that rn(P2k) ≥ 2(k2 − k) + 1. Let f be a distance labeling

of P2k. Let x1, x2, · · · , x2k be the ordering of the vertices of P2k such that

f(xi) < f(xi+1) for all i. Then

f(x2k) ≥
2k−1
∑

i=1

[2k − d(xi, xi+1)]

= 2k(2k − 1) −
2k−1
∑

i=1

d(xi, xi+1).

Similarly, in the summation
∑2k−1

i=1 d(xi, xi+1), each j ∈ {1, 2, · · · , 2k}

occurs as twice as ±j, except for two values which each occurs only once.

Moreover, 2k − 1 of the terms are positive and 2k − 1 of them are negative.

Thus to maximize the summation subject to the constraint, each number in

{1, 2, · · · , k − 1} occurs twice as negative terms, and each number in {k +

2, k+3, · · · , 2k} occurs twice as positive terms, while k and k+1 occurs once,

respectively, as a negative term and a positive term. Hence, we have

2k−1
∑

i=1

d(xi, xi+1) ≤ 2(k2 − 1) + 1,

implying

f(x2k) ≥ 2k(2k − 1) − 2(k2 − 1) − 1 ≥ 2k(k − 1) + 1.

3 The Radio Number for Cycles

Let Cn denote the cycle on n vertices. Chartrand et al. [3] proved the

following bounds for rn(Cn):
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Theorem 4 [3] For k ≥ 3,

rn(Cn) ≤
{

k2, if n = 2k + 1;
k2 − k + 1, if n = 2k.

Moreover, rn(Cn) ≥ 3⌈n
2
− 1⌉ − 1, for n ≥ 6.

In this section, we completely determine the radio number for cycles. For

any integer n ≥ 3, let

φ(n) =
{

k + 1, if n = 4k + 1;
k + 2, if n = 4k + r for some r = 0, 2, 3.

Theorem 5 Let Cn be the n-vertex cycle, n ≥ 3. Then

rn(Cn) =

{

n−2
2

φ(n) + 1, if n ≡ 0, 2 (mod 4);
n−1

2
φ(n), if n ≡ 1, 3 (mod 4).

First we prove that the desired numbers in Theorem 5 are lower bounds

for rn(Cn). Assume V (Cn) = {v0, v1, v2, · · · , vn−1}, where vi ∼ vi+1 and

vn−1 ∼ v0. Let f be a distance labeling for Cn. We order the vertices of

V (Cn) by x0, x1, x2, · · · , xn−1 with f(xi) < f(xi+1).

Denote d = diam(Cn). Then d = ⌊n/2⌋. For i = 0, 1, 2, · · · , n − 2, set

di = d(xi, xi+1) and fi = f(xi+1) − f(xi).

By definition, fi ≥ d − di + 1 for all i.

To proceed the proof of Theorem 5, we need the following two results.

Lemma 6 For any 0 ≤ i ≤ n − 3, fi + fi+1 ≥ φ(n).

Proof. Assume to the contrary that for some i, fi + fi+1 ≤ φ(n) − 1. Then

fi, fi+1 ≤ φ(n) − 2. So, we have di ≥ d − fi + 1 ≥ d − φ(n) + 3 and

di+1 ≥ d − φ(n) + 3, implying that di, di+1 > d/2. Therefore, d(xi, xi+2) is
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equal to either |di − di+1| or n− (di + di+1). In the former case, d(xi, xi+2) ≤

d − (d − φ(n) + 3) = φ(n) − 3, implying that

fi + fi+1 = f(xi+2) − f(xi) ≥ d − (φ(n) − 3) + 1 ≥ φ(n),

contrary to our assumption.

If it is the latter case, then by definition all of the following hold:

f(xi+1) − f(xi) ≥ d − di + 1,

f(xi+2) − f(xi+1) ≥ d − di+1 + 1,

f(xi+2) − f(xi) ≥ d − (n − di − di+1) + 1.

Hence, 2(f(xi+2)−f(xi)) ≥ 3d−n+3. Easy calculation shows that fi+fi+1 =

f(xi+2) − f(xi) ≥ φ(n), a contradiction.

Corollary 7 For any integer n ≥ 3,

rn(Cn) ≥

{

n−2
2

φ(n) + 1, if n ≡ 0, 2 (mod 4);
n−1

2
φ(n), if n ≡ 1, 3 (mod 4).

Proof. If n = 4k or n = 4k+2, by Lemma 6, the span of a distance labeling

f for Cn is:

f(xn−1) =
n−2
∑

i=0

fi =
(n−4)/2

∑

i=0

(f2i + f2i+1) + fn−2 ≥
n − 2

2
φ(n) + 1.

If n = 4k + 1 or n = 4k + 3, by Lemma 6, the span of a distance labeling f

for Cn is:

f(xn−1) =
n−2
∑

i=0

fi =
(n−3)/2

∑

i=0

(f2i + f2i+1) ≥
n − 1

2
φ(n).
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To complete the proof of Theorem 5, it remains to find distance labelings

for Cn with spans equal to the desired numbers. We consider four cases. For

each case, we present a distance labeling f of Cn, achieving the bound.

In each of the four cases, the labeling is generated by two sequences, the

distance gap sequence

D = (d0, d1, d2, d3, · · · , dn−2)

and the color gap sequence

F = (f0, f1, f2, · · · fn−2).

The distance gap sequence, in which each di ≤ d is a positive integer, is

used to generate an ordering of the vertices of Cn. Let τ : {0, 1, · · · , n−1} →

{0, 1, · · · , n − 1} be defined as τ(0) = 0 and

τ(i + 1) = τ(i) + di (mod n).

We will show that for each of the distance sequences given below, the corre-

sponding τ is a permutation. Let xi = vτ(i) for i = 0, 1, 2 · · · , n − 1. Then

x0, x1, · · · , xn−1 is an ordering of the vertices of Cn. Since 1 ≤ di ≤ d for each

i, we have d(xi, xi+1) = di.

The color gap sequence is used to assign labels to the vertices of Cn. Let

f be the labeling defined by f(x0) = 0, and for i ≥ 1,

f(xi+1) = f(xi) + fi.

Since fi = f(xi+1) − f(xi) and d(xi, xi+1) = di, to show that f is indeed a

distance labeling, it suffices to prove that all the following hold, for any i:

1) τ is a permutation,

2) fi ≥ d − di + 1,
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3) fi + fi+1 ≥ d − d(xi, xi+2) + 1,

4) fi + fi+1 + fi+2 ≥ d − d(xi, xi+3) + 1,

5) fi + fi+1 + fi+2 + fi+3 ≥ d.

For all the labelings given below, 5) is trivial, 2) is obvious, 3) and 4) are

also easy to verify. In all the cases, we sketch a proof for 1), and leave it to

the readers to verify 2) to 5).

Case 1. n = 4k In this case, d = 2k. The distance gap sequence D is given

by:

di =











2k, if i is even;
k, if i ≡ 1 (mod 4);
k + 1, if i ≡ 3 (mod 4).

The color gap sequence F is given by:

fi =
{

1, if i is even;
k + 1, if i is odd.

Then we have, for i = 0, 1, 2, · · · , k − 1,

τ(4i) = 2ik + i (mod n),
τ(4i + 1) = (2i + 2)k + i (mod n),
τ(4i + 2) = (2i + 3)k + i (mod n),
τ(4i + 3) = (2i + 1)k + i (mod n).

We prove that τ is a permutation. Assume to the contrary that τ(4i+j) =

τ(4i′ + j′) for some i, i′ ∈ {0, 1, 2, · · · , k − 1} and j, j′ ∈ {0, 1, 2, 3} with

4i + j < 4i′ + j′. Then, clearly i < i′ and

(2i + t)k + i ≡ (2i′ + t′)k + i′ (mod n) for some t, t′ = 0, 1, 2, 3.

Therefore, we have 2(i′−i)k+(t′−t)k ≡ i−i′ (mod n), which is impossible,

as 0 < i′ − i < k and 2(i′ − i)k + (t′ − t)k ≡ sk (mod n) for some integer s.

The span of f is equal to f0 + f1 + f2 + · · ·+ fn−2 = (k + 2)(2k − 1) + 1.
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Case 2. n = 4k + 2 In this case, d = 2k + 1. The distance gap sequence D

is defined by:

di =
{

2k + 1, if i is even;
k + 1, if i is odd.

The color gap sequence F is defined by

fi =
{

1, if i is even;
k + 1, if i is odd.

Hence, for i = 0, 1, · · · , 2k, we have

τ(2i) = i(3k + 2) (mod n),
τ(2i + 1) = i(3k + 2) + 2k + 1 (mod n).

We show that τ is a permutation. Note that (n, k) ≤ 2 and 3k + 2 ≡ −k

(mod n). Thus, (i− i′)(3k + 2) ≡ k(i′ − i) 6≡ 0 (mod n) if 0 < i− i′ < n/2.

This implies that τ(2i) 6= τ(2i′) and τ(2i + 1) 6= τ(2i′ + 1) if i 6= i′.

If τ(2i) = τ(2i′ + 1), then similarly, we get (i − i′)k ≡ 2k + 1 = n/2

(mod n). Since gcd(n/2, k) = 1 and |i − i′| ≤ 2k < n/2, this is impossible.

The span of f is f0 + f1 + · · ·+ fn−2 = 2k(k + 2) + 1.

Case 3. n = 4k + 1 In this case, d = 2k. The distance gap sequence D is

defined by:

d4i = d4i+2 = 2k − i and d4i+1 = d4i+3 = k + 1 + i.

The color gap sequence F is defined by

fi = d − di + 1 = 2k − di + 1.

Then, the mapping τ on the vertices of Cn has

τ(2i) = i(3k + 1) (mod n)
= −ik (mod n), 0 ≤ i ≤ 2k;

τ(4i + 1) = 2i(3k + 1) + 2k − i (mod n)
= 2(i + 1)k (mod n), 0 ≤ i ≤ k − 1;

τ(4i + 3) = (2i + 1)(3k + 1) + 2k − i (mod n)
= (2i + 1)k (mod n), 0 ≤ i ≤ k − 1.
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We show that τ is indeed a permutation. Let

S = {−i : 0 ≤ i ≤ 2k} ∪ {2(i + 1) : 0 ≤ i ≤ k − 1}

∪{2i + 1 : 0 ≤ i ≤ k − 1}

= {−2k,−(2k − 1), · · · , 0, 1, · · · , 2k}.

By the definition of τ , for any 0 ≤ j ≤ 4k we have τ(j) = ajk (mod n)

for some aj ∈ S, and aj 6= aj′, if j 6= j′. Thus to prove τ(j) 6= τ(j′) for

j 6= j′, it suffices to show that for any distinct elements a, a′ of S, ak 6= a′k

(mod n). This is obvious, as gcd(n, k) = 1 (mod n) and for any two distinct

elements a, a′ of S, 0 < |a − a′| < n. So (a − a′)k 6≡ 0 (mod n), and hence

τ is a permutation.

Using the fact that d2i + d2i+1 = 3k + 1 for any i, the span of f is

f0 + f1 + f2 + · · ·+ fn−2 = (4k)(2k) − (d0 + d1 + · · · + dn−2) + 4k

= 8k2 − 2k(3k + 1) + 4k

= 2k(k + 1).

Case 4. n = 4k + 3 In this case, d = 2k + 1. The distance gap sequence D

is defined by

d4i = d4i+2 = 2k + 1 − i, d4i+1 = k + 1 + i, d4i+3 = k + 2 + i.

The coloring gap sequence F is

fi =
{

d − di + 1 = 2k − di + 2, i 6≡ 3 (mod 4);
d − di + 2 = 2k − di + 3, otherwise.
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Then the mapping τ on the vertices of Cn has

τ(4i) = i(6k + 5) (mod n)
= 2i(k + 1) (mod n), 0 ≤ i ≤ k;

τ(4i + 1) = 2i(k + 1) + 2k + 1 − i (mod n)
= (i + 1)(2k + 1) (mod n)
= −2(i + 1)(k + 1) (mod n), 0 ≤ i ≤ k;

τ(4i + 2) = (i + 1)(2k + 1) + k + 1 + i (mod n)
= (i + 1)(2k + 2) + k (mod n)
= 2(i + 1)(k + 1) − 3(k + 1) (mod n)
= (2i − 1)(k + 1) (mod n), 0 ≤ i ≤ k;

τ(4i + 3) = 2i(k + 1) + 3k + 2 + 2k + 1 − i (mod n)
= i(2k + 1) + k (mod n)
= −i(2k + 2) − 3(k + 1) (mod n)
= −(2i + 3)(k + 1) (mod n), 0 ≤ i ≤ k − 1.

Now we prove that τ is a permutation. Let

S = {2i : 0 ≤ i ≤ k} ∪ {−2(i + 1) : 0 ≤ i ≤ k}

∪{2i − 1 : 0 ≤ i ≤ k} ∪ {−(2i + 3) : 0 ≤ i ≤ k − 1}

= {−(2k + 2),−(2k + 1), · · · , 0, 1, · · · , 2k}.

By the definition of τ , for any 0 ≤ j ≤ 4k + 2, we have τ(j) = aj(k + 1)

(mod n) for some aj ∈ S, and aj 6= aj′ if j 6= j′. Thus, to prove τ(j) 6=

τ(j′) for j 6= j′, it suffices to show that for any distinct elements a, a′ of S,

a(k + 1) 6= a′(k + 1) (mod n). This is obvious, as (n, k + 1) = 1 (mod n)

and for any two distinct elements a, a′ of S, 0 < |a − a′| < n. Hence, τ is a

permutation.

The span of f is

f0 + f1 + · · ·+ fn−2 = 2k(4k + 2) − (d0 + d1 + · · · + dn−2) + 2(4k + 2) + k
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= 2k(4k + 2) − [k(6k + 5) + 3k + 2] + 9k + 4

= (k + 2)(2k + 1).

This completes the proof of Theorem 5.
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