
CANCELLATION IN
PRIMELY GENERATED REFINEMENT MONOIDS

GARY BROOKFIELD

Abstract. We prove that any primely generated refinement monoid M has

separative cancellation, and even strong separative cancellation provided M

has no nonzero idempotents. A form of multiplicative cancellation also holds:
na ≤ nb implies a ≤ b for a, b ∈ M and n ∈ {1, 2, 3, . . . }. In addition, M is

a semilattice in the sense that, given c1, c2 ∈ M , there is an element d ∈ M
such that c1, c2 ≤ d and, for all a ∈ M , c1, c2 ≤ a implies d ≤ a. Finally, we

prove that any finitely generated refinement monoid is primely generated; in

fact, this holds for any refinement monoid with a set of generators satisfying
the descending chain condition.

1. Introduction

In recent years there has been an increasing recognition that certain questions
arising in module theory can be usefully reformulated and generalized as questions
about the cancellation properties of refinement monoids. Before giving examples
of this we define the relevant monoid properties: A commutative monoid M has
refinement (2.2) if the equation a1 + a2 = b1 + b2 in M implies the existence of
c11, c12, c21, c22 ∈ M such that a1 = c11 + c12, a2 = c21 + c22, b1 = c11 + c21, and
b2 = c12 + c22. There are many cancellation properties that we will discuss in this
paper. Two of these are separativity: (∀a, b ∈ M) (2a = a+ b = 2b =⇒ a = b);
and strong separativity: (∀a, b ∈M) (2a = a+ b =⇒ a = b).

The clearest example of this use of refinement monoids in module theory appears
in the work of P. Ara, K. R. Goodearl, K. C. O’Meara and E. Pardo [1] on exchange
rings: For a ring R let R-Proj be the category of finitely generated projective left
R-modules, and for P ∈ R-Proj, let 〈P 〉 be the isomorphism class containing P .
Let V (R) be the set of isomorphism classes with operation + induced from the
direct sum, that is, 〈P1〉+ 〈P2〉 = 〈P1⊕P2〉 for all P1, P2 ∈ V (R). Then V (R) is an
commutative monoid. If R is an exchange ring (see [1, Section 1] for the definition),
then V (R) has refinement. Examples of exchange rings are (Von Neumann) regular
rings, semiregular rings, and C∗-algebras of real rank 0.

Many important open questions about exchange rings have been reduced to the
single (unresolved) question: Is V (R) separative? Thus a module theoretic problem
has been reduced to a question about cancellation in refinement monoids.

To discuss the second example of a refinement monoid arising in module theory,
we need more definitions: For a monoid M , let ≤ be the preorder (2.1) on M
defined by a ≤ b if and only if there exists c ∈M such that a+ c = b. An element
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p ∈ M is prime (2.6) if for all a1, a2 ∈ M , p ≤ a1 + a2 implies p ≤ a1 or p ≤ a2.
A monoid is primely generated if each of its elements is a sum of primes.

The second example comes from the study of the extensional structure of module
categories [2], [3], [4]. The monoid in question, M(S), is defined for any Serre
subcategory S of left R-modules, and has the universal property that any map
from S to a commutative monoid which respects short exact sequences, factors
through M(S). As a consequence of the Schreier refinement theorem, M(S) is a
refinement monoid. For the details of this construction see, in particular, Section
3 of [3].

Suppose R is commutative Noetherian (or more generally, fully bounded Noe-
therian), and R-Noeth is the Serre subcategory consisting of all Noetherian R-
modules. Then M(R-Noeth) is a primely generated refinement monoid. (In fact,
in this case, M(R-Noeth) is Artinian (6.1) [2, 19.6].)

The module theory part of this claim about M(R-Noeth) will be developed in
a subsequent paper. The purpose of the current paper is to show that refinement
monoids which are primely generated have a lot of structure regardless of how they
arise.

We will prove, for example, that a primely generated refinement monoid M is
separative, and is strongly separative if 2e = e in M implies that e = 0 (4.5). Also,
M has the multiplicative cancellation property (5.11(5)) that na ≤ nb implies a ≤ b
for all a, b ∈ M and n ∈ N = {1, 2, 3, . . . }. In addition, M is a semilattice (5.16)
in the sense that, given c1, c2 ∈M , there is an element d ∈M such that c1, c2 ≤ d
and, for all a ∈ M , c1, c2 ≤ a implies d ≤ a. These cancellation properties are
summarized in 5.19.

We will also show that, if M is cancellative, it has a very simple structure: It
must be the direct product of an Abelian group and a free commutative monoid
(5.14). Other properties of such monoids appear in Sections 4 and 5.

In Section 6 of the paper we show that any refinement monoid whose generators
satisfy the descending chain condition relative to the preorder ≤ is primely gener-
ated (6.7). In particular, this means that any finitely generated refinement monoid
is primely generated, and hence has all of the properties described above.

It should be pointed out that, in general, refinement monoids need not have
any of these cancellation properties. This is a consequence of the fact that any
commutative monoid can be embedded in a refinement monoid [11], [6, 5.1], [19].
Thus, for example, the non-separative non-refinement monoid {0, 1,∞} of 3.2(2)
can be embedded in a refinement monoid which is not separative. From the results
of this paper such a non-separative refinement monoid cannot be finitely generated,
or more generally, be primely generated. For the question about exchange rings,
this provides in a sense a “lower bound” on the complexity of any V (R) which is
not separative.

The author thanks Ken Goodearl and Fred Wehrung for their helpful comments
during the preparation of this paper.

2. Definitions

All monoids and semigroups in this paper will be commutative, so we will write
+ for the operation and 0 for the identity element unless this conflicts with existing
notation. We refer the reader to [13] and [14] for the standard concepts of monoid
theory.
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We collect here some notation we will need:

Notation 2.1. Let M be a monoid and a, b ∈M .
• a ≤ b ⇐⇒ ∃ c ∈M such that a+ c = b
• a� b ⇐⇒ a+ b ≤ b
• a ≡ b ⇐⇒ a ≤ b and b ≤ a
• {≡ a} = {c ∈M | c ≡ a}
• a ∝ b ⇐⇒ ∃ n ∈ N such that a ≤ nb
• {∝ a} = {c ∈M | c ∝ a}
• a � b ⇐⇒ b ∝ a ∝ b
• {� a} = {c ∈M | c � a}

The relation ≤ is a preorder on M . (This would not be true if M were merely a
semigroup. Without an identity element, ≤ need not be reflexive.) For the monoid
(Z+,+), the set of nonnegative integers, this preorder coincides with the usual
order. For the monoid (Z,+) we have m ≤ n for all m,n ∈ Z. So, for Z, the
preorder ≤ is not the same as the usual order on the integers.

The relation� is transitive, ∝ is a preorder, and ≡ and � are congruences. The
set {∝ a} is a submonoid and {� a} is a subsemigroup of M .
Definition 2.2. Let M be a monoid.

(1) M has refinement [17], [6], [7], [18] if for all a1, a2, b1, b2 ∈ M with a1 +
a2 = b1 + b2, there exist c11, c12, c21, c22 ∈M such that

a1 = c11 + c12 a2 = c21 + c22

b1 = c11 + c21 b2 = c12 + c22.

(2) M has decomposition if for all a, b1, b2 ∈M with a ≤ b1 + b2 there exist
a1, a2 ∈M such that a1 ≤ b1, a2 ≤ b2 and a = a1 + a2.

It is easy to check that for a monoid M ,

M has refinement =⇒ M has decomposition.

Example 3.2(2) shows that the converse is not true.
A simple induction shows that the refinement property extends to equations

involving sums of more than two elements: If a1 +a2 + . . .+am = b1 + b2 + . . .+ bn
in a refinement monoid, then there are cij such that ai =

∑
j cij and bj =

∑
i cij .

It is convenient to record refinements using matrices. The refinement of a1+a2 =
b1 + b2 from the definition would be written

( b1 b2
a1 c11 c12

a2 c21 c22

)
.

This means that the sum of the entries in each row (column) equals the entry
labeling the row (column).
Definition 2.3. Let M be a semigroup.

(1) M is cancellative if for all a, b, c ∈M , a+ c = b+ c implies a = b.
(2) M is strongly separative [1], [3, 2.3] if for all a, b ∈ M , 2a = a + b

implies a = b.
(3) M is separative [5, Chapter 4.3] if for all a, b ∈ M , 2a = a + b = 2b

implies a = b.
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Obviously, for a semigroup M we have the implications

M cancellative =⇒ M strongly separative =⇒ M separative.

We should mention one simple but extremely useful fact which will be used
without comment throughout this paper: If a, b, c, d are elements of a monoid M
such that a+ c = b+ c and c ≤ d, then a+ d = b+ d. In particular, if c ≤ a then
2a = a+ b, and if c ≤ a, b then 2a = a+ b = 2b.

The next two lemmas give conditions which are equivalent to separativity and
strong separativity. The proofs are easy.

Lemma 2.4. [1, 2.1], [2, 8.10] For a decomposition monoid M , the following are
equivalent:

(1) M is separative.
(2) (∀a, b, c ∈M) ((a+ c = b+ c and c ∝ a, b) =⇒ a = b)
(3) (∀a ∈M) ({� a} is cancellative)
(4) (∀a, b ∈M)(∀m,n ∈ N) ((ma = mb and na = nb) =⇒

(ka = kb where k = gcd(m,n)))
(5) (∀a, b, c ∈M)(∀n ∈ N) (a+ nc = b+ nc =⇒ a+ c = b+ c)
(6) (∀a, b, c ∈M) ((a+ c = b+ c and c ≤ a, b) =⇒ a = b)

Items 1-4 of this lemma are, in fact, equivalent even when M does not have
decomposition.

Lemma 2.5. [3, 2.3] For a monoid M , the following are equivalent:

(1) M is strongly separative.
(2) (∀a, b, c ∈M) ((a+ c = b+ c and c ≤ a) =⇒ a = b)
(3) (∀a, b, c ∈M)(∀n ∈ N) (a+ (n+ 1)c = b+ nc =⇒ a+ c = b)

Definition 2.6. Let M be a monoid and p ∈M .

(1) p is prime if for all a1, a2 ∈M , p ≤ a1 + a2 implies p ≤ a1 or p ≤ a2.
(2) p is proper if p 6≤ 0.
(3) p is regular if 2p ≤ p (equivalently, 2p ≡ p or p� p).
(4) p is idempotent if 2p = p.
(5) p is free if for all m,n ∈ N, mp ≤ np implies m ≤ n.

An element a ∈ M is primely generated if it is the sum of prime elements
of M . The monoid itself is primely generated if all its elements are primely
generated.

Notice that, by this definition, any element p ≤ 0 is prime. Also, if p ≡ q, then
p is prime (regular, free, proper) if and only if q is prime (regular, free, proper).
Evidently, a free element is not regular and vice versa, but, in general, a monoid
may have elements which are neither as in 3.2(2).

Every idempotent is regular, and every regular element is associated with a
unique idempotent by the following lemma.

Lemma 2.7. If q is a regular element in a monoid, then there is a unique idem-
potent e in {≡ q}, and {≡ q} = {≡ e} is an Abelian group with identity e.

Proof. Since 2q ≤ q, there is some s ∈ M such that 2q + s = q. Set e = q + s. It
is then routine to confirm that e is the unique idempotent in {≡ q} and that the
remaining claims are true. �
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We see from this lemma that every regular element in a monoid is associated
with an Abelian group. We will actually be able to associate a group with any
element of any monoid as follows.
Definition 2.8. Let u be an element of a monoid M . Define a congruence ∼u on
M by

a ∼u b ⇐⇒ u+ a = u+ b

for a, b ∈ M . We will write [a]u for the ∼u-congruence class containing a ∈ M .
Define Gu = {[a]u | a � u}. One can easily show that Gu is the set of all units
(invertible elements) of the quotient monoid M/∼u and so is an Abelian group.

The following facts about Gu are easy to check:
Lemma 2.9. Let u, v, e be elements of a monoid M .

(1) If v ≡ u, then ∼v and ∼u coincide. In particular, Gu = Gv.
(2) The map Ω: Gu → {≡ u} defined by Ω([x]u) = u+ x is a bijection (but not

in general a homomorphism). If we define the operation 2u on {≡ u} by
a 2u b = u+ x+ y where a = u+ x and b = u+ y, then the set {≡ u} with
operation 2u is a group isomorphic to Gu, with identity u.

(3) If e ∈ M is an idempotent, then the operation 2e coincides with + on
{≡ e}, and the map Ω: Ge → {≡ e} is a group isomorphism.

From 2, we see that we could have defined Gu to be ({≡ u}, 2u, u). The
advantage of this is that the elements of the group are then elements of M , rather
than congruence classes. The disadvantage is that if v ≡ u, then we have Gu = Gv
as sets, but the operations 2u and 2v are, in general, different.

3. Examples

This section provides some examples and special cases of monoids having some
of the properties defined previously, and also illustrates the complex relationships
between these properties.
Example 3.1. Let Z∗ be the set of nonzero integers with multiplication as monoid
operation. Z∗ is a cancellative refinement monoid for which 1 is the identity el-
ement. (Here we must deviate from our convention of additive notation.) The
monoid preorder ≤ becomes divisibility: (a ≤ b ⇐⇒ a | b). The only regular
elements are 1 and −1. All other elements are free. 1 is the only idempotent. The
numbers ±1,±2,±3,±5,±7, . . . are the prime elements. For every element a ∈ Z∗
we have Ga ∼= Z/2Z.
Example 3.2.

(1) We will write {0,∞} for the monoid such that ∞ +∞ = ∞. This is a
primely generated refinement monoid which is separative but not strongly
separative.

(2) The monoid {0, 1,∞}, where 1 + 1 = 1 +∞ = ∞ +∞ = ∞, has decom-
position but not refinement since the equation 1 + 1 = ∞ +∞ cannot be
refined. The defining equation shows that this monoid is not separative.
The elements 0 and 1 are prime, so this monoid is primely generated. The
element 1 is neither free nor regular.

The following result is well known. Since its simple proof does not appear else-
where in print (except perhaps in [8, 2.1] where it is applied to partially ordered
Abelian groups) we include it here.
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Theorem 3.3. Let M be a cancellative monoid. Then M has decomposition if
and only if it has refinement.

Proof. Suppose that M has decomposition and there are a1, a2, b1, b2 ∈M such that
a1 +a2 = b1 +b2. Since a1 ≤ b1 +b2, there are c11, c12 ∈M such that a1 = c11 +c12,
c11 ≤ b1 and c12 ≤ b2. From the inequalities there are c21, c22 such that b1 = c11+c21

and b2 = c12+c22. Now we have a1+a2 = b1+b2 = c11+c21+c12+c22 = a1+c21+c22,
so cancellation of a1 gives a2 = c21 + c22. Thus we have constructed a refinement
of the original equation. �

Example 3.4. Let (M,+, 0) be an Abelian group. It is easy to see that a ≤ b
for all a, b ∈ M , and so, in particular, all elements of M are regular primes. This
monoid is trivially a decomposition monoid. Since M is cancellative, it is also a
refinement monoid. For any element a ∈M , Ga ∼= M .

The above example shows that any theorem that applies to primely generated
refinement monoids also applies to Abelian groups. Thus, for example, we will not
get cancellation of the form 2a = 2b =⇒ a = b for primely generated refinement
monoids, since this is not true for Abelian groups. The fact that Abelian groups
have refinement is also a trivial consequence of the next theorem:
Theorem 3.5. Let M be a monoid such that (∀a, b ∈M) (a ≤ b or b ≤ a). Then
M is separative if and only if M has refinement.

Proof. Suppose M is separative and we have a1 + a2 = b1 + b2 in M . Using the
hypothesis on ≤ we can, without loss of generality, assume that a1 ≤ a2, b1, b2. In
particular, b1 = a1 + x1 for some x1 ∈ M . Thus we have the equation a2 + a1 =
(b2+x1)+a1 with a1 ≤ a2, b2+x1. This implies that 2a2 = a2+(b2+x1) = 2(b2+x1).
Since M is separative, we have a2 = b2 + x1 and then

( b1 b2
a1 a1 0
a2 x1 b2

)
is a refinement of the original equation.

For the converse, we show that ((a + c = b + c and c ≤ a, b) =⇒ a = b) for
a, b, c ∈ M . Since M has refinement, this property is equivalent to separativity
(2.4).

We make a refinement of the equation a+ c = b+ c:

( b c

a d1 a1

c b1 c1

)
Without loss of generality, we can assume a1 ≤ b1 and hence b1 = a1 + x1 for some
x1 ∈ M . We now have c = c1 + b1 = c1 + a1 + x1 = c + x1, and, since c ≤ a, this
implies a = a+ x1. Finally b = d1 + b1 = d1 + a1 + x1 = a+ x1 = a. �

The monoids Z+ and R+ (the nonnegative real numbers) are totally ordered by
≤ and are cancellative, so by the theorem they are refinement monoids.

We now consider examples of monoids which are, in a sense, as far from cancella-
tive as possible: A poset L is a semilattice if for each pair of elements, a, b ∈ L,
the supremum a ∨ b exists. A semilattice L which has a minimum element 0 is
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called a 0-semilattice. In this case, (L,∨, 0) is a monoid in which all elements are
idempotent.

Conversely [12, 1.3.2], if M is a monoid in which all elements are idempotent,
then

(∀a, b ∈M) (a ≤ b ⇐⇒ a+ b = b ⇐⇒ a� b),

and (M,≤) is a 0-semilattice with minimum element 0 in which + and ∨ coincide.
Though 0-semilattices are not cancellative or strongly separative, they are trivially
separative.

The following result is well known [7], [9], but since its proof does not appear
elsewhere in print we include it here.
Theorem 3.6. Let M be a 0-semilattice. Then M has decomposition if and only
if it has refinement.

Proof. Suppose that M has decomposition and there are a1, a2, b1, b2 ∈ M such
that a1 + a2 = b1 + b2. Since a1, a2 ≤ b1 + b2, there are c11, c12, c21, c22 ∈ M such
that a1 = c11 + c12, a2 = c21 + c22, c11, c21 ≤ b1 and c12, c22 ≤ b2. Similarly, there
are d11, d12, d21, d22 ∈M such that b1 = d11 +d21, b2 = d12 +d22, d11, d12 ≤ a1 and
d21, d22 ≤ a2. It is then easy to check that

( b1 b2
a1 c11 + d11 c12 + d12

a2 c21 + d21 c22 + d22

)
is a refinement of the original equation.

We confirm this for a1: We have a1 ≤ a1 + d11 + d12 = c11 + d11 + c12 + d12 ≤
4a1 = a1. Since ≤ is a partial order, this implies c11 + d11 + c12 + d12 = a1. �

In semilattice theory the decomposition property is called distributivity because
a lattice (L,∨,∧) is distributive if and only if the semilattice (L,∨) has decom-
position. See [10, p. 99]. An element a in a semilattice (L,∨) is irreducible if
a = b1 ∨ b2 implies a = b1 or a = b2 for all b1, b2 ∈ L. One easily checks that in a
decomposition 0-semilattice, an element is irreducible if and only if it is prime. The
monoid {0,∞} is a simple example of a primely generated refinement 0-semilattice.

4. Cancellation I

In this section we consider the cancellation properties of a primely generated
refinement monoid M . We have seen that M could be a 0-semilattice and hence
far from cancellative. We will also see that, if M is cancellative, then M has a
very special structure (5.14). So it is perhaps surprising that an arbitrary primely
generated refinement monoid has any cancellation properties at all.

To make clear what properties are possible, suppose that we have the equation
a+ c = b+ c in M , and hence also a refinement matrix

( b c

a d1 a1

c b1 c1

)
Consider the following conditions that the entries of the matrix might satisfy:

A. a1 = b1 = 0
B. c = c1
C. c ≡ c1
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Trivially A =⇒ B =⇒ C. Condition A occurs if and only if c cancels from the
original equation to give a = b. For cancellative monoids B is equivalent to A, but
B is attainable for 0-semilattices too: Given the refinement matrix as above, we
have c1 ≤ c, and so c1 +c = c and a1 +c = a1 +c1 +c = 2c = c. Similarly b1 +c = c.
Consequently the entry c1 in the refinement matrix can simply be replaced by c to
yield a refinement matrix satisfying B.

Thus B is a good candidate for a cancellation rule which allows M to be a 0-
semilattice. What actually occurs for primely generated refinement monoids is C
as the next theorem shows.
Theorem 4.1. Let M be a refinement monoid, a, b, c ∈M with c primely gener-
ated. If a+ c = b+ c, then there is a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c ≤ c1.

Proof. Let C be the class of all elements c ∈M such that a+ c = b+ c implies the
existence of a refinement as above. Clearly 0 ∈ C. We will show that if c ∈ C and
p ∈M is prime, then c+ p ∈ C.

Suppose we have a+ c+ p = b+ c+ p for some c ∈ C and prime p. Since c ∈ C,
there is a refinement

( b+ p c

a+ p d′ a′

c b′ c1

)
with c ≤ c1. Refining the equation b + p = d′ + b′ and then refining the resulting
equation involving a+ p we get a new refinement matrix, still with c1 as an entry:


b p c

a d2 a2 a3

p b2 p1 p2

c b3 p3 c1


Note that p = b2 + p1 + p2 = a2 + p1 + p3. Now we consider two cases:
• If p ≤ p1 or p ≤ p2 or p ≤ p3, then c+ p ≤ c1 + p1 + p2 + p3 and

( b c+ p

a d2 a2 + a3

c+ p b2 + b3 c1 + p1 + p2 + p3

)
is a refinement of the form we seek.
• If p 6≤ p1 and p 6≤ p2 and p 6≤ p3, then since p is prime we must have p ≤ a2

and p ≤ b2. Hence a2 = p+ a4 and b2 = p+ b4 for some a4, b4 ∈M , and

( b c+ p

a d2 + p a3 + a4

c+ p b3 + b4 p+ c1 + p1 + p2 + p3

)
is a refinement of the form we seek.

We have shown therefore that c + p ∈ C, and by induction, that any primely
generated element is in C. �
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Corollary 4.2. Let M be a refinement monoid and a, b, b1, b2, c, c1, c2 ∈ M with
c, c1, c2 primely generated.

(1) a+ c ≤ b+ c =⇒ (∃a1 � c such that a ≤ b+ a1)
(2) a� c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 � c1 and a2 � c2)
(3) a ≡ c1 + c2 =⇒ (∃a1, a2 such that a = a1 + a2, a1 ≡ c1 and a2 ≡ c2)
(4) a ≡ c =⇒ a is primely generated
(5) c ≤ a ≤ c+ b1, c+ b2 =⇒ (∃b ≤ b1, b2 such that a ≡ c+ b)

Proof.

(1) There is some x ∈ M such that a + x + c = b + c, and then, from 4.1, a
refinement matrix

( b c

a+ x d1 a1

c b1 c1

)
with c ≤ c1. This implies a ≤ a+ x = d1 + a1 ≤ b+ a1 with a1 � c.

(2) We have a + c1 + c2 ≤ c1 + c2. Using 1, there is some a′2 � c2 such that
a+c1 ≤ c1 +a′2. Using 1 again, there is some a′1 � c1 such that a ≤ a′1 +a′2.
Decomposing this last inequality, there are a1 ≤ a′1 � c1 and a2 ≤ a′2 � c2
such that a = a1 + a2.

(3) We have c1 + c2 ≤ a so there is some u such that c1 + c2 + u = a ≤ c1 + c2.
Since u � c1 + c2, by 2, there are u1, u2 with u = u1 + u2, u1 � c1 and
u2 � c2. Set a1 = c1 + u1 ≡ c1 and a2 = c2 + u2 ≡ c2, then a = a1 + a2.

(4) Let c = p1 + p2 + . . .+ pN where p1, p2, . . . , pN are primes. Using 3 induc-
tively one sees that a can be written a = p′1 + p′2 + . . .+ p′N where p′i ≡ pi
for i = 1, 2, . . . , N . Thus a is primely generated.

(5) Let x be such that a = c+x. We then have c+x ≤ c+ b1, c+ b2 so from 1,
there are a1, a2 � c such that x ≤ b1 + a1, b2 + a2. Using decomposition,
there are b′ ≤ b1 and a3 ≤ a1 such that x = b′ + a3. Since b′ ≤ x ≤
b2 + a2, there are b ≤ b2 and a4 ≤ a2 such that b′ = b + a4. We now have
x = b + a3 + a4 with b ≤ b′ ≤ b1, b ≤ b2 and a3 + a4 ≤ a1 + a2 � c.
From the last inequality we get c ≡ c + a3 + a4. Adding b to this yields
b+ c ≡ b+ c+ a3 + a4 = c+ x = a.

�

Item 4 of this corollary will be strengthened in 5.18(3).
The cancellation property of item 1,

(a+ c ≤ b+ c =⇒ (∃a1 � c such that a ≤ b+ a1)),

is called pseudo-cancellation by F. Wehrung [18], [19], [20]. Note that claims 2,3
and 5 of this corollary follow from it and decomposition.

We next consider the cancellation of a from the equation 2a = a+ b in a monoid
M . If the monoid has nonzero idempotents, 2a = a + b need not imply a = b. To
see this, suppose e = 2e ∈M is an idempotent and b ∈M is any element such that
e 6≤ b, then setting a = b + e we get 2a = a + b but a 6= b. The next theorem is a
generalization of the fact that, for a primely generated refinement monoid, this is
the only way that cancellation fails for the equation 2a = a+ b.
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Theorem 4.3. Let M be a refinement monoid and a, b, c, d ∈ M with c primely
generated. If a + d = b + d and d ∝ c ∝ a, then there is a primely generated
idempotent e ∈M such that a = b+ e.

Proof. Since d ∝ c, there is some n ∈ N such that d ≤ nc. From a + d = b + d
we then get a + nc = b + nc. Since nc is primely generated and nc ∝ a, we have
reduced our task to proving the following special case: If a + c = b + c with c
primely generated and c ∝ a, then there is a primely generated idempotent e such
that a = b+ e.

Let C be the class of all elements c ∈M such that a+ c = b+ c and c ∝ a implies
the existence of a primely generated idempotent e ∈ M with a = b + e. Clearly
0 ∈ C. We will show that if c ∈ C and p ∈M is prime, then c+ p ∈ C.

Suppose we have a+ c+ p = b+ c+ p with c+ p ∝ a for some c ∈ C and prime
p. Since c ∈ C and c ∝ a ≤ a + p, there is a primely generated idempotent e ∈ M
with a+ p = b+ p+ e. From 4.1, there is a refinement matrix

( b+ e p

a d1 a1

p b1 p1

)
with p ≤ p1.

Since p ≤ p + c ∝ a = d1 + a1 and p is prime, we have p ≤ d1 + a1 and hence
two cases to consider:

• If p ≤ d1, then p1 ≤ p ≤ d1, and the equation a1 + p1 = b1 + p1 implies
a1 + d1 = b1 + d1, that is, a = b+ e.
• If p ≤ a1, then 2p ≤ a1 + p1 = p, so p is regular. By 2.7, there is some

idempotent f ≡ p. We have p ≤ f , and so a + p = b + e + p implies
a + f = b + e + f . Also f ≤ p ≤ a, and so f = 2f implies a = f + a.
Consequently a = b + e + f . The element f is prime and so e + f is a
primely generated idempotent.

We have shown therefore that c + p ∈ C, and by induction, that any primely
generated element is in C. �

Corollary 4.4. Let M be a refinement monoid, a, b, c, d ∈ M with c primely
generated and n,m ∈ N. Then

(1) (a+ d = b+ d and d ∝ c ∝ a, b) =⇒ a = b
(2) (d ∈ {� c} and a+ nd = b+ nd) =⇒ a+ d = b+ d
(3) {� c} is cancellative
(4) (a, b ∈ {� c} and ma = mb and na = nb) =⇒

(ka = kb where k = gcd(m,n))

Proof.
(1) From the theorem we have a = b + e and b = a + f for some idempotents

e, f ∈M . In particular, e ≤ a ≤ b, so from e+e = e we get b+e = b. Thus
a = b+ e = b.

(2) We have (n− 1)d ∝ c ∝ a+ d, b+ d so this follows from 1.
(3) If a, b, d ∈ {� c} such that a+ d = b+ d, then d ∝ c ∝ a, b and so, from 1,

we get a = b.
(4) Without loss of generality, we can assume m ≥ n and m = hn + r for

suitable h, r ∈ Z+ with r < n. By the Euclidean algorithm for calculating
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the gcd of m and n, it suffices to show that na = nb and ma = mb imply
ra = rb.

If r = 0 there is nothing to prove, so we assume r ≥ 1. Then ma = mb
implies hna+ ra = hnb+ rb and, since na = nb, hna+ ra = hna+ rb. We
also have hna ∝ c ∝ ra, rb, so, from 1, ra = rb. �

Theorem 4.5. Any primely generated refinement monoid M is separative. If, in
addition, M has no proper idempotents, it is strongly separative.

Proof. If 2a = a + b = 2b for elements a, b ∈ M , then we have a + a = b + a with
a ∝ a, b. Using 4.4(1) we can cancel the a to get a = b.

Suppose now that M has no proper idempotents and we have 2a = a + b for
some a, b ∈M . Since a ∝ a, 4.3 provides an idempotent e such that a = b+ e. By
hypothesis we have e = 0, so a = b. �

We will see in 5.9 that it suffices to check that there are no proper regular prime
elements for M to be strongly separative.

There exist separative refinement monoids with no proper idempotents which
are not strongly separative. An example of such a monoid is obtained by removing
the element (∞, 0) from the monoid {0,∞}×R+. See [2, 9.7] for discussion of this
example.

5. Cancellation II

If a is a primely generated element of a refinement monoid M , there will, in
general, be many ways of expressing a as a sum of primes. In this section, by
being more precise about which expressions are possible for a, we will gain further
information about the structure of the monoid.

We will often find it convenient to work with the quotient monoid M/≡ for which
the preorder ≤ is, in fact, a partial order, and so we establish some notation that
will be in effect throughout this section:
Notation 5.1. Let M be a monoid. We will write M = M/≡. If a, b, c, p, q, . . .
are elements of M , we will write ā, b̄, c̄, p̄, q̄, . . . for the corresponding elements of
M . P will be set of all proper prime elements of M . The element 0 is the only
nonproper prime in M so we write P0 for the set of all primes of M .

It is easy to confirm that M is partially ordered by ≤ and that, for a, b ∈M , we
have:

• a ≤ b ⇐⇒ ā ≤ b̄
• a� b ⇐⇒ ā� b̄ ⇐⇒ ā+ b̄ = b̄
• a ≡ b ⇐⇒ ā = b̄ ⇐⇒ ā ≡ b̄
• a ∝ b ⇐⇒ ā ∝ b̄
• a � b ⇐⇒ ā � b̄
• a is prime (proper,regular, free) ⇐⇒ ā is prime (proper,idempotent, free)
• a primely generated =⇒ ā primely generated
• M primely generated =⇒ M primely generated

It is an interesting open question whether there is a refinement monoid M such
that M does not have refinement. At least in the special case under discussion this
does not occur:
Theorem 5.2. If M is a primely generated refinement monoid then so is M .
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Proof. We have already noted that M is primely generated, so we need only show
refinement.

Suppose ā1 + ā2 = b̄1 + b̄2 in M , then a1 + a2 ≡ b1 + b2. From 4.2(3), there are
a′1, a

′
2 such that, a1 ≡ a′1, a2 ≡ a′2 and a′1 + a′2 = b1 + b2. We make a refinement of

this equation:

( b1 b2
a′1 c11 c12

a′2 c21 c22

)
Since ā1 = ā′1 and ā2 = ā′2,

( b̄1 b̄2
ā1 c̄11 c̄12

ā2 c̄21 c̄22

)
is a refinement of the original equation. �

A primely generated refinement monoid for which ≤ is a partial order, such
as M , is called primitive by R. S. Pierce. Pierce [15] showed how an arbitrary
primitive monoid can be described by generators and relations. F. Wehrung [20,
Ch. 6] showed, as a consequence, that any primitive monoid embeds into a direct
product of copies of the monoid Z∞, where Z∞ = Z

+ ∪ {∞} with n+∞ =∞ for
all n ∈ Z+ and ∞+∞ =∞. Thus certain cancellation properties of Z∞ are easily
proved to be properties of primitive monoids.

Similarly, some properties of a primely generated refinement monoid M are best
seen as immediate consequences of the corresponding property of the primitive
monoid M or of Z∞. For example, Z∞, and hence primitive monoids, have multi-
plicative cancellation: (na = nb =⇒ a = b) for n ∈ N and a, b in the monoid. As
a consequence, in M , we have (na ≡ nb =⇒ a ≡ b). See 5.11.

Nonetheless there are some cancellation properties of primely generated refine-
ment monoids which cannot be proved this way. Separativity is an example: The
separativity of M does not follow directly from the separativity of Z∞ and M .

In this section we take a more direct route than Pierce and Wehrung from M
to Z∞ by defining a homomorphism φp: M → Z

∞ for each proper prime element
p ∈M .
Definition 5.3. For any element p of a monoid M , define φp: M → Z

∞ by

φp(a) = sup{n ∈ Z+ | np ≤ a}

for all a ∈M .
Among the simpler properties of φp are the following:
• φp(a) = 0 if and only if p 6≤ a.
• If a ≤ b, then φp(a) ≤ φp(b).
• If a ≡ b and q ≡ p, then φp(a) = φq(b).
• φp(a) = φp̄(ā).

Since, if p ≡ q, we have φp = φq, we can label φp as φp̄. This causes no ambiguity:
φp̄ is a map from either M or M such that φp(a) = φp̄(a) = φp̄(ā) for all a ∈M .
Theorem 5.4. If M is a refinement monoid and p ∈ M is a proper prime, then
φp is a monoid homomorphism.
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Proof. Since p 6≤ 0 we have φp(0) = 0, so we need to show only that φp(a1 + a2) =
φp(a1) + φp(a2) for all a1, a2 ∈M .

If n1, n2 ∈ Z+ such that n1p ≤ a1 and n2p ≤ a2, then (n1 + n2)p ≤ a1 + a2,
so n1 + n2 ≤ φp(a1 + a2). Taking the supremum over all such n1 and n2 gives
φp(a1) + φp(a2) ≤ φp(a1 + a2).

To show the opposite inequality, suppose np ≤ a1 + a2 for some n ∈ Z+. Then
there is some b ∈M such that np+ b = a1 + a2 and we get the refinement matrix

( b p p . . . p

a1 b1 x1 x2 . . . xn
a2 b2 y1 y2 . . . yn

)
Since p is prime, for each i, we have either p ≤ xi or p ≤ yi. So there are some
n1, n2 ∈ Z+ such that n = n1 + n2, n1p ≤ a1 and n2p ≤ a2. Thus n ≤ φp(a1) +
φp(a2), and taking the supremum over all such n we get φp(a1 + a2) ≤ φp(a1) +
φp(a2). �

Remark: This theorem remains true if the hypothesis on M , that it has refine-
ment, is replaced by strong separativity. See [4, 3.3].
Theorem 5.5. If p and q are primes in a refinement monoid, then φp(q) ∈
{0, 1,∞} and

(1) φp(q) =∞ ⇐⇒ p� q
(2) φp(q) = 1 ⇐⇒ (p ≡ q and p is free)
(3) φp(q) = 0 ⇐⇒ p 6≤ q

Proof. If p ≤ 0 then φp(q) = ∞ and the claim is trivially true. So it remains to
consider the case where p 6≤ 0 and hence φp is a homomorphism:

(1) Notice that if φp(q) ≥ 2 then 2p ≤ q, so there is some x ∈ M such that
2p + x = q. Since q is prime we have either q ≤ x or q ≤ p. In either case
we get q ≤ p + x and so q + p ≤ 2p + x = q, that is, p � q. Conversely,
if p � q, then a simple induction shows that np + q ≤ q for all n ∈ N, so
φp(q) =∞.

(2) If φp(q) = 1 then p ≤ q, so there is some x ∈M such that p+ x = q. Since
q is prime we have either q ≤ x or q ≤ p. The first case implies p� q and
hence, from 1, φp(q) =∞, so we must be in the second case, that is p ≡ q.
To show freeness, suppose mp ≤ np for some m,n ∈ N, then mq ≤ np ≤ nq,
and so m = φp(mq) ≤ φp(nq) = n.

Conversely, if q ≡ p and p is free, then for any n ∈ N, we have np ≤
q ⇐⇒ np ≤ p ⇐⇒ n ≤ 1. Thus φp(q) = 1.

(3) This we have already noted.
Finally we note that the argument of 1 shows that φp(q) ∈ {0, 1,∞}. �

One important thing to notice here is that, in contrast to 3.2(2), a prime element
p in a refinement monoid is either free or regular: Either φp(p) = ∞ and hence p
is regular, or φp(p) = 1 and p is free. We will soon show (5.9) that this dichotomy
extends also to primely generated elements.
Definition 5.6. Let M be a monoid. For a ∈M , define

Γa = {p̄ ∈ P0 | p̄ ≤ ā} = {p̄ ∈ P0 | φp̄(ā) > 0}.

Then the support of a, Supp a, is the set of maximal elements of Γa.
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Clearly Supp a is incomparable, meaning that, for all p̄1, p̄2 ∈ Supp a, p̄1 ≤ p̄2

implies p̄1 = p̄2. If the monoid has refinement then for p̄1, p̄2 ∈ Supp a, we have
from 5.5 that

φp̄1(p̄2) =


0 if p̄1 6= p̄2

1 if p̄1 = p̄2 is free
∞ if p̄1 = p̄2 is regular

Lemma 5.7. Let M be a refinement monoid, a, b ∈M and p̄ ∈ P.

(1) a � b =⇒ Γa = Γb =⇒ Supp a = Supp b
(2) φp̄(a) ∈ N =⇒ p̄ ∈ Supp a

Proof.

(1) This follows very easily from the fact that if, for some prime p̄, we have
p̄ ≤ ā ∝ b̄, then p̄ ≤ b̄.

(2) Since φp̄(a) 6= 0, we have p̄ ≤ ā and hence p̄ ∈ Γa. Now suppose we have
q̄ ∈ Γa such that p̄ ≤ q̄. Then q̄ ≤ ā and φp̄(q̄) ≤ φp̄(ā) ∈ N, so that
φp̄(q̄) < ∞. From 5.5 we must have φp̄(q̄) = 1 and so p̄ = q̄. Thus p̄ is
maximal in Γa. �

Theorem 5.8. Let c be a primely generated element of a refinement monoid M .
Then Supp c is finite and writing Supp c = {p̄1, p̄2, . . . , p̄K , q̄1, q̄2, . . . , q̄L} with p̄i
free and q̄i idempotent we get

c̄ = n1p̄1 + n2p̄2 + . . .+ nK p̄K + q̄1 + q̄2 + . . .+ q̄L

where ni = φp̄i(c) ∈ N for i = 1, 2, . . . ,K.

Proof. Suppose c̄ = p̄′1 + p̄′2 + . . . + p̄′N for some primes p̄′1, p̄
′
2, . . . , p̄

′
N ∈ P0. Set

Λ = {p̄′1, p̄′2, . . . , p̄′N}. Clearly Λ ⊆ Γc, and further, if p̄ ∈ Γc then p̄ ≤ c̄ =
p̄′1 + p̄′2 + . . . + p̄′N and, since p̄ is prime, there is some p̄′ ∈ Λ such that p̄ ≤ p̄′.
Since every element of Γc is less than or equal to some element of Λ and vice versa,
it follows that Γc and Λ have the same set of maximal elements. Since Λ is finite,
Supp c is finite.

Next we show that the nonmaximal elements of Λ contribute nothing to the sum
c̄ = p̄′1 + p̄′2 + . . . + p̄′N . Indeed, if p̄′ ∈ Λ is nonmaximal, there is some maximal
p̄′′ ∈ Λ such that p̄′ ≤ p̄′′, and hence p̄′+ b̄ = p̄′′ for some b̄ ∈M . Since p̄′′ is prime,
and p̄′′ 6= p̄′, we must have p̄′′ = b̄. Thus p̄′′ = p̄′′ + p̄′, and p̄′ can be removed from
the sum. Therefore c̄ is a sum of elements of Supp c:

c̄ = n1p̄1 + n2p̄2 + . . .+ nK p̄K + q̄1 + q̄2 + . . .+ q̄L

for some n1, n2, . . . , nK ∈ N.
Since the set Supp c is incomparable, applying the homomorphism φp̄i to the

above equation yields ni = φp̄i(c) ∈ N for i = 1, 2, . . . ,K. �

The proof of this theorem shows that if X = {p̄1, p̄2, . . . , p̄K , q̄1, q̄2, . . . , q̄L} is
an incomparable set of primes in M such that c̄ = n1p̄1 +n2p̄2 + . . .+nK p̄K + q̄1 +
q̄2 + . . .+ q̄L for some n1, n2, . . . , nK ∈ N, then X = Supp c.

Translating this into a theorem about M rather than M we have the following: If
c is a primely generated element of a refinement monoidM , there is an incomparable
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set of primes {p1, p2, . . . , pK , q1, q2, . . . , qL} ⊆ M with pi free and qi regular such
that

c ≡ n1p1 + n2p2 + . . .+ nKpK + q1 + q2 + . . .+ qL

and ni = φpi(c) ∈ N for i = 1, 2, . . . ,K. The primes {p1, p2, . . . , pK , q1, q2, . . . , qL}
are unique up to ≡-congruence.

Notice that we do not claim that c = n1p1 +n2p2 + . . .+nKpK+q1 +q2 + . . .+qL.
This would be too much to hope for even in the simplest of monoids. For example,
let M = Z

∗ as in 3.1. The element −4 is primely generated (as is any element),
and can be written as −4 = (−2)(2) (multiplicative notation), but here −2 and 2
are ≡-congruent primes, that is, {−2, 2} is not incomparable. On the other hand
we do have −4 ≡ 22 which is an expression of the form provided by this theorem.
Corollary 5.9. Let c be a primely generated element in a refinement monoid.
Then c is either free or regular.

Proof. Let c̄ = n1p̄1 + n2p̄2 + . . . + nK p̄K + q̄1 + q̄2 + . . . + q̄L with ni, p̄i, q̄i as in
5.8. If K = 0, then c̄ = q̄1 + q̄2 + . . . + q̄L is idempotent and hence c is regular.
Otherwise, given mc ≤ nc for some m,n ∈ N, we apply the monoid homomorphism
φp̄1 to the inequality to get mn1 ≤ nn1, and so m ≤ n. Hence c is free. �

Notice that c is regular if and only if it is a sum of regular primes. Thus we can
make a slight improvement in 4.5: If M is a primely generated refinement monoid
with no proper regular primes, then M is strongly separative.

It is convenient to combine all the homomorphisms φp̄ for p̄ ∈ P into a single
homomorphism. Thus, we define Φ: M → (Z∞)P by

Φ(a) = (φp̄(a))p̄∈P
for a ∈M .
Theorem 5.10. Let c be a primely generated element in a refinement monoid M .
Then for all a ∈M

c ≤ a ⇐⇒ Φ(c) ≤ Φ(a) ⇐⇒ (∀p̄ ∈ Supp c) (φp̄(c) ≤ φp̄(a)).

Proof. The implications

c ≤ a =⇒ Φ(c) ≤ Φ(a) =⇒ (∀p̄ ∈ Supp c) (φp̄(c) ≤ φp̄(a))

are trivial so we prove that, if φp̄(c) ≤ φp̄(a) for all p̄ ∈ Supp c, then c ≤ a.
Let c̄ = n1p̄1 +n2p̄2 + . . .+nK p̄K+ q̄1 + q̄2 + . . .+ q̄L with ni, p̄i, q̄i as in 5.8. Since

p̄1 ∈ Supp c, we have n1 = φp̄1(c̄) ≤ φp̄1(ā), and so n1p̄1 ≤ ā and there is some
ā1 ∈M such that ā = n1p̄1 + ā1. Applying the homomorphism φp̄2 to this equation
gives φp̄2(ā1) = φp̄2(ā). Since n2 = φp̄2(c̄) ≤ φp̄2(ā) = φp̄2(ā1), we get n2p̄2 ≤ ā1,
and hence ā = n1p̄1 +n2p̄2 + ā2 for some ā2 ∈M . This process can be repeated for
the remaining free primes and, with obvious modification, for the idempotent primes
in Supp c to give the inequality n1p̄1 + n2p̄2 + . . .+ nK p̄K + q̄1 + q̄2 + . . .+ q̄L ≤ ā.
Thus c̄ ≤ ā and c ≤ a. �

Corollary 5.11. Let M be a primely generated refinement monoid and a, b ∈M .
(1) a ≡ b ⇐⇒ Φ(a) = Φ(b)
(2) M embeds via Φ in the monoid (Z∞)P.
(3) ((∀n ∈ N)(na ≤ b)) =⇒ a� b
(4) ((∀n ∈ N)(na ≤ (n+ 1)b)) =⇒ a ≤ b
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(5) (∀n ∈ N) (na ≤ nb =⇒ a ≤ b)
(6) (∀n ∈ N) (na ≡ nb =⇒ a ≡ b)

Proof. Claims 1 and 2 follow immediately from the theorem. The other claims are
true aboutM because they are true about Z∞. For example, we prove 5: If na ≤ nb,
then for all p̄ ∈ P we have nφp̄(a) ≤ nφp̄(b). In Z∞, this implies φp̄(a) ≤ φp̄(b).
Therefore Φ(a) ≤ Φ(b), and so, from the theorem, a ≤ b. �

See 6.2 for a cancellative refinement monoid which does not have the property
of item 3: ((∀n ∈ N) (na ≤ b)) =⇒ a� b.

The cancellation property of item 5, (na ≤ nb =⇒ a ≤ b), is called unper-
foration by F. Wehrung [20, 6.15] who proved it for primitive monoids. For such
monoids it implies also multiplicative cancellation: (na = nb =⇒ a = b).

The following example shows that a cancellative refinement monoid need not be
unperforated.
Example 5.12. [2, 11.17] Let M be the submonoid obtained by deleting the element
(0, 1) from the cancellative monoid R+ × Z2. (We write Z2 = {0, 1} for the two
element group.)
M is a refinement monoid. Easily checked is that for (r1, x1), (r2, x2) ∈M

(r1, x1) ≤ (r2, x2) ⇐⇒ (r1 = r2 and x1 = x2) or r1 < r2.

Set a = (1, 0) and b = (1, 1). Then we have 2a = 2b but a 6≤ b.
The refinement monoid {0,∞} is not cancellative but is unperforated. So these

examples show the independence of the two types of cancellation.
As we have already noted, we do not expect multiplicative cancellation to occur

in primely generated refinement monoids because it does not occur in the special
case of Abelian groups. For an Abelian group G, let

τ(G) = {a ∈ G | ∃n ∈ N such that na = 0},
the torsion subgroup. Then it is easy to see that G has multiplicative cancellation
if and only if τ(G) = 0. This result extends very easily to primely generated
refinement monoids.
Theorem 5.13. Let M be a primely generated refinement monoid. Then M has
multiplicative cancellation if and only if τ(Ga) = 0 for all a ∈M .

Proof. Suppose that na = nb for some a, b ∈ M and n ∈ N, and that τ(Ga) = 0.
From 5.11(6) and na = nb we get a ≡ b, so there is some x� a such that b = a+x,
and hence na = na + nx. Using 4.4(2) we can cancel (n − 1)a from this to get
a = a+ nx, that is, n[x]a = 0 in Ga. Since τ(Ga) = 0, this implies [x]a = 0, and so
b = a+ x = a.

Conversely, suppose M has multiplicative cancellation and a ∈ M . If we have
n[x]a = 0 in Ga for some x� a and n ∈ N, then a = a+ nx and so na = n(a+ x).
Using multiplicative cancellation, we get a = a + x, and hence [x]a = 0. Thus
τ(Ga) = 0 �

As mentioned in the introduction, a cancellative primely generated refinement
monoidM is the direct product of an Abelian group and a free commutative monoid.
In the proof of this fact, the full strength of cancellation is not actually needed.
What suffices is the rule (∀c, x ∈ M) (c + x = c =⇒ x = 0). Monoids with this
property are called stably finite.
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We remind the reader that from 2.8, G0 is the group of all invertible elements
of M , that is, G0 = {x ∈ M | x ≤ 0}. Since [x]0 = {x} for all x ∈ M , we drop the
notation [x]0.

Theorem 5.14. Let M be a stably finite primely generated refinement monoid.
Then M is isomorphic to the free commutative monoid on P and M ∼= M ×G0. In
particular, M is cancellative.

Proof. First we note the following simple fact: If c, x, y ∈ M such that c + x =
c+ y ≤ c, then there is some z ∈M such that c+ x+ z = c+ y + z = c. Since M
is stably finite, this implies x + z = y + z = 0, that is, x, y, z ∈ G0. Since G0 is a
group, it follows that x = y.

Thus we have the following:

(1) If x� c for c, x ∈M , then x ∈ G0. If x̄� c̄ for c̄, x̄ ∈M , then x̄ = 0.
(2) All regular elements of M are in G0. The only regular element of M is 0.

In particular P contains only free primes.
(3) From 5.5 and 1, if p̄ ∈ P, then φp̄(q̄) ∈ {0, 1} for all primes q̄ ∈ M . Hence

φp̄(c̄) <∞ for all c̄ ∈M .
(4) If a ≡ b for a, b ∈M , then a = b+ x for some unique x ∈ G0.

If 0 6= c̄ ∈ M then, using 5.8, and 2, we have c̄ = n1p̄1 + n2p̄2 + . . .+ nK p̄K for
some p̄1, p̄2, . . . , p̄K ∈ P with ni = φp̄i(c̄) for i = 1, 2, . . . ,K. In fact, since φp̄(c̄) is
nonzero for only a finite number of primes p̄ ∈ P, we can write c̄ =

∑
p̄∈P φp̄(c̄)p̄ for

all c̄ ∈M . Thus M is isomorphic to the free commutative monoid on the set P.
Let P′ ⊆ M be a set of representatives of the elements of P. Then for c ∈ M

we have c ≡
∑
p∈P′ φp(c)p and hence, by 4, c =

∑
p∈P′ φp(c)p + x where x ∈ G0 is

uniquely determined. It is then easy to check that the map Λ: M →M×G0 defined
by Λ(c) = (c̄, x) where x ∈ G0 is determined as above, is a monoid isomorphism.
Since M and G0 are cancellative, so is M . �

The simplest example of this theorem is the monoid M = Z
∗ of 3.1. This monoid

is a cancellative primely generated refinement monoid. We have G0 = {1,−1}
and we can choose P′ = {2, 3, 5, 7, 11, . . . }. Then any element c ∈ M can be
expressed uniquely in the form c = pn1

1 pn2
2 . . . pnKK x (multiplicative notation) with

p1, p2, . . . , pK distinct elements of P′, n1, n2, . . . nK ∈ N and x ∈ G0.

We now set into place the context in which the remaining theorems of this
section will be proved. This will involve notation which depends on a choice of
representatives X of the elements of Supp c where c is a fixed primely generated
element in a refinement monoid M .

Specifically, let X = {p1, p2, . . . , pK , q1, q2, . . . , qL} ⊆ M be such that Supp c =
{p̄1, p̄2, . . . , p̄K , q̄1, q̄2, . . . , q̄L} with p̄i free and q̄i idempotent as in 5.8. From 2.7,
we can assume that q1, q2, . . . , qL are idempotents. It is easy to check that {∝ c} =
{∝ (p1 + p2 + . . .+ pK + q1 + q2, . . .+ qL)}.

Our goal is to define a homomorphism ΨX : {∝ Φ(c)} → {∝ c} which serves
almost as a one-sided inverse for Φ restricted to {� c}. To do so we will need to
make the convention that if q ∈ M is an idempotent, then ∞q = q. With this
convention, the map µ 7→ µq from Z

∞ to M is a homomorphism.
Suppose we have γ = (γp̄)p̄∈P ∈ (Z∞)P such that γ ∝ Φ(c). Then for all p ∈ X

we have γp̄ ∝ φp̄(c). In particular, for i = 1, 2, . . . ,K, we have γp̄i ∝ φp̄i(c) ∈ N,
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and so γp̄i < ∞. Consequently, with the above convention on the idempotents
{q1, q2, . . . , qL}, we can define a homomorphism ΨX : {∝ Φ(c)} →M by

ΨX(γ) =
∑
p∈X

γp̄p.

If a ∝ c then Φ(a) ∝ Φ(c), and to shorten our notation we will write

a∗ = ΨX(Φ(a)) =
∑
p∈X

φp̄(a) p.

Notice that, by construction and 5.8, we have c ≡ c∗.
We check that the image of ΨX is contained in {∝ c}: Suppose γ ∝ Φ(c).

Then applying the homomorphism ΨX yields ΨX(γ) ∝ ΨX(Φ(c)) = c∗ ≡ c. Thus
ΨX(γ) ∝ c.

The next lemma says that ΨX is a one-sided inverse for Φ when restricted to
{� Φ(c)}. This follows from the facts that Z∞ has only three �-congruence classes:
{0}, N and {∞}; and that φp̄(c) ∈ N for only a finite set of primes p̄ ∈ P.
Lemma 5.15. Let M be a refinement monoid with c ∈M and ΨX as above. Let
γ = (γp̄)p̄∈P ∈ (Z∞)P.

(1) γ � Φ(c) ⇐⇒ (∀p̄ ∈ P) (γp̄ � φp̄(c))
⇐⇒ (γp̄ ∈ N for p̄ ∈ {p̄1, p̄2, . . . , p̄K} and γp̄ = φp̄(c) otherwise)

(2) γ � Φ(c) =⇒ ΨX(γ) � c and Φ(ΨX(γ)) = γ
(3) Φ({� c}) = {� Φ(c)} ∼= N

K

Proof.
(1) If γ � Φ(c), we have γp̄ � φp̄(c) for all p̄ ∈ P. From 5.7(2), we see that

φp̄(c) ∈ N if and only if p̄ ∈ {p̄1, p̄2, . . . , p̄K}. Thus we have the conditions
γp̄ ∈ N for p̄ ∈ {p̄1, p̄2, . . . , p̄K} and γp̄ = φp̄(c) otherwise. Since φp̄(c) ∈ N
for only a finite set of primes p̄ ∈ P, one readily confirms that any γ ∈ (Z∞)P

satisfying these conditions also satisfies γ � Φ(c).
(2) Applying the homomorphism ΨX to γ � Φ(c) yields ΨX(γ) � c∗ ≡ c.

Thus ΨX(γ) � c. From this we have φp̄(ΨX(γ)) � φp̄(c) for all p̄ ∈ P.
For all primes p̄ 6∈ {p̄1, p̄2, . . . , p̄K} we have φp̄(c) ∈ {0,∞} and hence,
with 1, φp̄(ΨX(γ)) = φp̄(c) = γp̄. For all primes p̄ ∈ {p̄1, p̄2, . . . , p̄K}, a
direct calculation from the definition of ΨX(γ) gives φp̄(ΨX(γ)) = γp̄. Thus
Φ(ΨX(γ)) = γ.

(3) Since Φ is a homomorphism, we have Φ({� c}) ⊆ {� Φ(c)}. The opposite
inclusion is clear from 2. The claim that {� Φ(c)} ∼= N

K follows from
1. �

Notice that Z∞ is a semilattice with µ ∨ ν = max{µ, ν} for µ, ν ∈ Z∞. It is
easy to check that µ ∨ ν � µ + ν for all µ, ν ∈ Z∞. This fact enables us to show
that a primely generated refinement monoid is also a semilattice (with appropriate
accommodation of the fact that M is preordered rather than partially ordered):
Theorem 5.16. Let M be a refinement monoid. Then, given primely generated
elements c1, c2 ∈ M , there exists a primely generated element d ∈ M such that
c1, c2 ≤ d and, for all a ∈M , c1, c2 ≤ a implies d ≤ a.

Proof. Let γ = Φ(c1) ∨ Φ(c2). For each p̄ ∈ P we have

γp̄ = φp̄(c1) ∨ φp̄(c2) � φp̄(c1) + φp̄(c2) = φp̄(c1 + c2).
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The element c = c1 + c2 is primely generated so, from 5.15(1), we get γ � Φ(c).
From 5.15(2), there is a primely generated element d = ΨX(γ) such that Φ(d) =
γ = Φ(c1) ∨ Φ(c2). We have Φ(c1),Φ(c2) ≤ Φ(d) so, from 5.10, c1, c2 ≤ d.

If c1, c2 ≤ a, then Φ(c1),Φ(c2) ≤ Φ(a), so that Φ(d) = Φ(c1) ∨ Φ(c2) ≤ Φ(a).
From 5.10 we get d ≤ a. �

If M is a primely generated refinement monoid, then M is a primely generated
refinement monoid which is partially ordered by ≤, so M is a semilattice in the usual
sense: Given c̄1, c̄2 ∈M , there exists d̄ = c̄1 ∨ c̄2. In contrast to 0-semilattices, the
operations ∨ and + may be different.
Corollary 5.17. Let M be a refinement monoid. Then, given a, b1, b2, c ∈M with
a and c primely generated such that a ≤ c + b1, c + b2, there exists b ≤ b1, b2 such
that a ≤ c+ b.

Proof. We have a, c ≤ c+b1, c+b2 with a, c primely generated, so from the theorem,
there is an element d ∈ M such that a, c ≤ d ≤ c + b1, c + b2. Applying 4.2(5) to
the inequalities c ≤ d ≤ c + b1, c + b2, we get some b ≤ b1, b2 such that d ≡ b + c.
Since a ≤ d, we have also a ≤ b+ c �

The property discussed in this corollary,

(a ≤ c+ b1, c+ b2 =⇒ ∃b ≤ b1, b2 such that a ≤ c+ b, )

is called the interval axiom by F. Wehrung who proved it for primitive monoids
[20, 6.16].

One of the most surprising things about a primely generated element c in a
refinement monoid is that it has considerable influence on elements in {� c}. For
example, the next theorem shows that all of these neighboring elements must be
primely generated. Here we use the definitions and conventions established for 5.15.
Theorem 5.18. Let c be a primely generated element in a refinement monoid M .

(1) If a � c, then ∼a and ∼c coincide. In particular, Ga = Gc and for all
x ∈M , x� a if and only if x� c.

(2) a � c =⇒ a∗ ≡ a and Φ(a∗) = Φ(a)
(3) a � c =⇒ a is primely generated
(4) {� c} ∼= N

K ×Gc where K is the number of free primes in Supp c.

Proof.
(1) Suppose x ∼a y, that is, a+ x = a+ y. We have c+ a+ x = c+ a+ y with

a ∝ c ∝ c+ x, c+ y, and so, from 4.4(1), c+ x = c+ y. Thus x ∼c y.
Conversely, if x ∼c y, that is, c+ x = c+ y, then c+ a+ x = c+ a+ y

with c ∝ c ∝ a+ x, a+ y and so, from 4.4(1), a+ x = a+ y. Thus x ∼a y.
(2) Since a � c, there are b ∈M and m ∈ N such that a+b = mc. Adding c to b

and 1 to m if necessary, we can assume that b � c. Thus Φ(a),Φ(b) � Φ(c).
From 5.15(2) we have a∗, b∗ � c with Φ(a) = Φ(a∗) and Φ(b) = Φ(b∗), and
hence, from 5.10, a∗ ≤ a and b∗ ≤ b. Since Φ and ΨX are homomorphisms,
we have a∗ + b∗ = mc∗ ≡ mc, and so

a+mc ≤ a+ a∗ + b∗ ≤ a+ a∗ + b = a∗ +mc

with mc ∝ c ∝ a, a∗. Using 4.4(1) we can cancel mc from this inequality
to give a ≤ a∗. Thus a ≡ a∗ as claimed.

(3) Since a ≡ a∗ and a∗ is primely generated, the claim follows from 4.2(4).
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(4) Let S = Φ({� c}). From 5.15(3), we have S ∼= N
K , so it suffices to show

that {� c} ∼= S × Gc. Let τ : S × Gc → {� c} be defined by τ(γ, [x]c) =
ΨX(γ) +x, and σ: {� c} → S×Gc be defined by σ(a) = (Φ(a), [x]c) where
x is determined by a = a∗+ x. Using 1, 2 and 5.15, the reader can confirm
that these maps are well defined inverse semigroup homomorphisms. �

In the next theorem we summarize all the cancellation properties of primely
generated refinement monoids that we have proved:

Theorem 5.19. Let M be a primely generated refinement monoid.

P1. (∀a, b, c ∈M) (a+ c = b+ c =⇒ (∃ refinement

( b c

a d1 a1

c b1 c1

)
with c ≤ c1))

P2. (∀a, b, c ∈ M) (a + c ≤ b + c =⇒ (∃a1 � c such that a ≤ b + a1))
–pseudo-cancellation

P3. (∀a, c1, c2 ∈M) (a� c1 + c2 =⇒
(∃a1, a2 such that a = a1 + a2, a1 � c1 and a2 � c2))

P4. (∀a, c1, c2 ∈M) (a ≡ c1 + c2 =⇒
(∃a1, a2 such that a = a1 + a2, a1 ≡ c1 and a2 ≡ c2))

P5. (∀a, b1, b2, c ∈ M) (c ≤ a ≤ c + b1, c + b2 =⇒ (∃b ≤ b1, b2 such that a ≡
c+ b))

T. (∀a, b, c ∈M) ((a+ c = b+ c and c ∝ a) =⇒
(∃e such that 2e = e and a = b+ e))

S1. (∀a, b ∈M) ((2a = a+ b = 2b) =⇒ a = b) –separativity
S2. (∀a, b, c ∈M) ((a+ c = b+ c and c ∝ a, b) =⇒ a = b)
S3. (∀a ∈M) ({� a} is cancellative)
S4. (∀a, b ∈M)(∀m,n ∈ N) ((ma = mb and na = nb) =⇒

(ka = kb where k = gcd(m,n)))
S5. (∀a, b, c ∈M)(∀n ∈ N) (a+ nc = b+ nc =⇒ a+ c = b+ c)
S6. (∀a, b, c ∈M) ((a+ c = b+ c and c ≤ a, b) =⇒ a = b)
Z1. (∀a, b ∈M) (((∀n ∈ N)(na ≤ b)) =⇒ a� b)
Z2. (∀a, b ∈M) (((∀n ∈ N)(na ≤ (n+ 1)b)) =⇒ a ≤ b)
Z3. (∀a, b ∈M)(∀n ∈ N) (na ≤ nb =⇒ a ≤ b) –unperforation
Z4. (∀a, b ∈M)(∀n ∈ N) (na ≡ nb =⇒ a ≡ b)
U1. (∀c1, c2 ∈ M) (∃d such that c1, c2 ≤ d and (∀a ∈ M) (c1, c2 ≤ a =⇒ d ≤

a)) –semilattice property
U2. (∀a, b1, b2, c ∈M) ((a ≤ c+b1, c+b2) =⇒ (∃b ≤ b1, b2 such that a ≤ c+b))

–interval axiom

Proof. P1 is from 4.1. P2-5 are from 4.2. T is from 4.3. S1 is from 4.5. S2-5 are
from 4.4 or from S1 and 2.4. Z1-4 are from 5.11. U1 is from 5.16. U2 is from
5.17. �

There are of course many connections among these properties. For example, we
have seen in the proof of 4.2 that, for decomposition monoids, P1 implies P2, and
that P2 implies P3-5. From the proof of 4.5 we see that T implies S1. By 2.4,
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S1-4 are equivalent even without refinement, and S5-6 are equivalent to S1-4 in
decomposition monoids.

We end this section by proving one other connection:
Theorem 5.20. Let M be a refinement monoid. Then

P1 ⇐⇒ P2 (pseudo-cancellation) =⇒ S1-6 (separativity).

Proof. The implication P1 =⇒ P2 is proved exactly as 4.2(1), so we prove only
that P2 =⇒ P1:

Suppose M has pseudo-cancellation (P2) and we have a + c = b + c for some
a, b, c ∈M . We make a refinement of this equation:

( b c

a d1 a1

c b1 c1

)
We have a1 +c1 = b1 +c1 so, using P2, there is some x1 � c1 such that a1 ≤ b1 +x1.
Decomposing this inequality we get a′ ≤ b1 and x′ ≤ x1 � c1 such that a1 = a′+x′.
Since a′ ≤ b1, there is some y′ ∈ M such that b1 = a′ + y′. this gives us the
refinement matrix

( b c

a d1 + a′ x′

c y′ c1 + a′

)
and, since x′ � c1, we also have c = c1 + a1 = c1 + a′ + x′ ≤ c1 + a′ as required.

We show next that P1 implies S6. Since M has refinement, S6 is equivalent to
S1-5.

Suppose then that we have a+ c = b+ c in M with c ≤ a, b. From P1, there is
a refinement matrix

( b c

a d1 a1

c b1 c1

)
with c ≤ c1. Since c ≤ a, b, there are a2, b2 ∈M such that a = a2 +c and b = b2 +c.
Thus a2 + c+ b1 = a+ b1 = d1 + a1 + b1 = b+ a1 = b2 + c+ a1, and since c ≤ c1,
we get a2 + c1 + b1 = b2 + c1 + a1. But c1 + b1 = c1 + a1 = c and so a2 + c = b2 + c,
that is, a = b. �

6. Artinian Refinement Monoids

The purpose of this section is to show that refinement monoids which satisfy
certain descending chain conditions are primely generated. This provides a large
class of refinement monoids to which the cancellation results of the previous sections
can be applied. Since ≤ is a preorder, not a partial order on monoids, we have to
extend the usual definitions used for partially ordered sets as follows:
Definition 6.1. Let L be a preordered set and X ⊆ L. Then an element x ∈ X
is minimal in X if for all y ∈ X, y ≤ x implies that x ≤ y. A maximal element
of X is, of course, defined dually.

The subset X is Artinian if every nonempty subset of X has a minimal element.
The equivalent chain condition definition is that X is Artinian if and only if for
every decreasing sequence a0 ≥ a1 ≥ a2 ≥ . . . in X, there is some N ∈ N such that
an ≥ aN for all n ∈ Z+.
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If I is a submonoid of M then the preorder of I as a subset of M may be
different than its preorder as an independent monoid. Thus a submonoid of an
Artinian monoid may not be Artinian.

Example 6.2. [2, 14.2] Let I be the submonoid of the Artinian monoid M = Z
+×Z

obtained by removing the set {(0,m) | m ∈ N}. I is a cancellative refinement
monoid. Set c = (0,−1) and am = (1,m) for m ∈ Z+. One can easily check that
a0 ≥ a1 ≥ a2 ≥ . . . has no minimal element so that the monoid I is not Artinian.

Note also that a0 = an +nc for n ∈ Z+. Thus nc ≤ a0 for all n ∈ N but c 6� a0.

Conversely, a submonoid I which is Artinian with its minimum preorder may
not be an Artinian subset of M .

Example 6.3. The preorder ≤ on R+ is the same as the usual order on real
numbers, so R+ is not Artinian. Let I = {0}∪[1,∞) ⊆ R+. Then I is a submonoid
which is not an Artinian subset of R+. Nonetheless, with its own preorder, I is an
Artinian monoid.

The motivation for our discussion of Artinian monoids is the following:

Theorem 6.4. Any Artinian decomposition monoid is primely generated.

Proof. Let M be an Artinian decomposition monoid and let D be the set of elements
of M which are not primely generated. If D is not empty it has a minimal element
p. We will show that p is prime, contradicting p ∈ D.

Suppose p ≤ a1 + a2 for some a1, a2 ∈ M , then there are p1, p2 ∈ M such that
p1 ≤ a1, p2 ≤ a2 and p = p1 + p2. Either p1 or p2 must be in D otherwise p
would be a sum of primes. But the minimality of p in D then implies that either
p ≤ p1 ≤ a1 or p ≤ p2 ≤ a2, thus p is prime. �

We will show in 6.7 that a decomposition monoid is Artinian if and only if it
has a set of generators which form an Artinian subset. To do so, it is convenient
to reformulate the Artinian property in terms of decreasing functions from Z

+ into
the monoid:

Definition 6.5. Let K,L be preordered sets. A function f : K → L is decreasing
if for all x, y ∈ K, x ≤ y implies f(x) ≥ f(y). We will say a decreasing function f
converges if the image of f has a minimal element, and diverges otherwise.

If f, g: K → L are two functions we will write f ≤ g if f(x) ≤ g(x) for all x ∈ K.
The relation ≤ is, in general, a preorder on functions.

Evidently, a monoid M is Artinian if and only if every decreasing function
f : Z+ →M converges.

Lemma 6.6. Let M be a decomposition monoid and f : Z+ → M a divergent
decreasing function. Suppose f(n) = x1 + x2 + . . . + xk for some n ∈ Z+, k ∈ N
and x1, x2, . . . , xk ∈M . Then there is a divergent decreasing function f ′: Z+ →M
such that

(1) f ′(n) ∈ {x1, x2, . . . , xk}
(2) f ′ ≤ f

Proof. We define functions f1, f2, . . . , fk: Z+ →M such that for all m ≥ n, f(m) =
f1(m) + f2(m) + . . .+ fk(m):

For all m ≤ n and i ∈ {1, 2, . . . , k}, set fi(m) = xi. Notice that f(n) =
f1(n) + f2(n) + . . .+ fk(n).
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To define these functions for m > n we proceed inductively. Assume then that
f1(m), f2(m), . . . , fk(m) have been defined. We have f(m+ 1) ≤ f(m) = f1(m) +
f2(m) + . . .+ fk(m), so using the decomposition property, we can define fi(m+ 1)
for i ∈ {1, 2, . . . , k} so that fi(m+ 1) ≤ fi(m) and

f(m+ 1) = f1(m+ 1) + f2(m+ 1) + . . .+ fk(m+ 1).

It is easy to see that each of the functions f1, f2, . . . , fk is decreasing and satisfies
1 and 2. If all of these functions converge, then there is some N ∈ N such that
fi(m) ≥ fi(N) for all m ≥ N and i ∈ {1, 2, . . . , k}, and hence f(m) ≥ f(N) for
m ≥ max{n,N}. This contradicts our hypothesis that f diverges.

Therefore there must be some index i ∈ {1, 2, . . . , k} such that fi diverges. Set
f ′ = fi. �

Theorem 6.7. Let M be a decomposition monoid with a set of generators X ⊆M .
If X is Artinian then M is Artinian.

Proof. We prove the contrapositive by assuming that there is a divergent decreasing
function f : Z+ → M , and showing this leads to a divergent decreasing function
g: Z+ → X.

Using induction we will construct a sequence of divergent decreasing functions
f ≥ f0 ≥ f1 ≥ . . . such that fm(m) ∈ X for all m ∈ Z+:

Since X generates M , there are x1, x2, . . . , xk ∈ X such that f(0) = x1 + x2 +
. . . + xk. The lemma then provides a divergent decreasing function f0 such that
f0(0) ∈ X and f ≥ f0. Suppose now that fm has been defined as required. Then
fm(m+ 1) is a finite sum of elements of X and so using the lemma as before, there
is a divergent decreasing function fm+1 ≤ fm such that fm+1(m+ 1) ∈ X.

Define the function g: Z+ → X by g(m) = fm(m) for m ∈ Z+. Then g is
decreasing: If m ≤ n in Z+ then g(m) = fm(m) ≥ fn(m) ≥ fn(n) = g(n).

Suppose g converges, that is, for some N ∈ Z+ we have g(n) ≥ g(N) for all
n ≥ N . Then for all n ≥ N we get fN (n) ≥ fn(n) = g(n) ≥ g(N) = fN (N), that
is, fN converges. This is a contradiction and so g must diverge. �

As an immediate consequence of this theorem and 6.4 we get
Corollary 6.8. Let M be a refinement monoid with a set of generators X ⊆ M .
If X is Artinian, then M is primely generated. In particular, any finitely generated
refinement monoid is primely generated.

This corollary provides a large class of primely generated refinement monoids,
and hence a large class of monoids having the cancellation properties described in
the previous two sections.
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