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Abstract. Let R be a unitary ring and (M,≤) a strictly ordered monoid.
We show that, if (M,≤) is positively ordered, then the generalized power

series ring R[[M,≤]] is left Noetherian, if and only if, R is left Noetherian
and M is finitely generated, if and only if, R is left Noetherian and R[[M,≤]]
is a homomorphic image of the power series ring R[[x1, x2, . . . , xn]] for some

n ∈ N.

1. Introduction

Let R be a unitary ring, (M,≤) a strictly ordered commutative monoid and
R[[M,≤]] the corresponding generalized power series ring. There are many ques-
tions one could ask about how the properties of R[[M,≤]] are determined by the
properties of R and M . One of the hardest seems to be the question of when
R[[M,≤]] is Noetherian. Partial answers and special cases are discussed in [6], [10]
and [11]. Some examples: If R[[M,≤]] is left Noetherian, then R must be too [6,
5.2(i)]. If R[[M,≤]] is left Noetherian and M is cancellative, then M is the sum
of a finitely generated monoid and an Abelian group [6, 5.2(ii)] [10]. If (M,≤) is
narrow, cancellative and torsion free, M is the sum of a finitely generated monoid
and an Abelian group, and R is left Noetherian, then R[[M,≤]] is Noetherian [6,
5.5] [10].

In this paper we deal with the case that (M,≤) is positively ordered. In this
circumstance the partial order ≤ is closely tied to the algebraic structure of the
monoid, and so we are able give a complete answer: R[[M,≤]] is left Noetherian if
and only if R is left Noetherian and M is finitely generated.

The condition on M , that it is finitely generated, seems to say nothing about the
partial order ≤. Indeed it turns out that the existence of a positive strict partial
order on M means that, if R[[M,≤]] is left Noetherian, then R[[M,≤]] is simply
the set of all functions from M to R, that is, the particular partial order ≤ does not
determine R[[M,≤]]. This in turn implies that R[[M,≤]] is a homomorphic image
of the (usual) power series ring R[[x1, x2, . . . , xn]] for some n ∈ N.

It is interesting to contrast the main theorem with Gilmer’s theorem that, given
a ring R and a monoid M , the monoid ring R[M ] is left Noetherian if and only
if R is left Noetherian and M is finitely generated [2, 7.7] (see also [1]). Neither
theorem is a special case or generalization of the other, but some of the techniques
used in Gilmer’s proof are also used in this paper.
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2. Ordered Sets

Let (L,≤) be a partially ordered set. Then L is Artinian (Noetherian) if
every nonempty subset of L has a minimal (maximal) element, or equivalently, L
satisfies the descending (ascending) chain condition. An antichain of L is a subset
A ⊆ L such that x ≤ y implies x = y for all x, y ∈ A. L is narrow if every antichain
of L is finite. If K is a subset of L, then K is Artinian (Noetherian, narrow) if L
is Artinian (Noetherian, narrow). A lower set of L is a subset I ⊆ L such that
x ≤ y ∈ I implies x ∈ I for all x, y ∈ L. We write ⇓L for the set of lower sets of L
ordered by inclusion.

Lemma 2.1. Let σ : K → L be an increasing map between partially ordered sets.

(1) If σ is strictly increasing and L is Artinian (Noetherian), then K is Artinian
(Noetherian).

(2) If σ is surjective and ⇓K is Artinian (Noetherian), then ⇓L is Artinian
(Noetherian).

Proof. (1) Routine.
(2) Since σ is increasing, if I ∈ ⇓L, then σ−1(I) ∈ ⇓K. Since σ is surjective,

σ−1 is a strictly increasing map from ⇓L to ⇓K, and the claim follows
from (1).

�

The following two lemmas are standard. See for example [3], [5], [8, 1.4].

Lemma 2.2. Let L be a partially ordered set. Then the following are equivalent:

(1) ⇓L is Artinian.
(2) For every infinite sequence (an)n∈N in L there are i < j such that ai ≤ aj.
(3) L is Artinian and narrow.

Lemma 2.3. Let K and L be partially ordered sets. If ⇓K and ⇓L are Artinian,
then ⇓(K × L) is Artinian.

Here and elsewhere in this paper, the order on a product K × L is defined by
(x, y) ≤ (x′y′) if x ≤ x′ and y ≤ y′.

3. Ordered Monoids

All monoids in this paper are commutative with monoid operation +. If X and
Y are subsets of a monoid M , then X + Y = {x + y | x ∈ X and y ∈ Y }. In
particular, X + Y = ∅ if X = ∅ or Y = ∅. If Y is a subset of M , we will write 〈Y 〉
for the submonoid of M that Y generates.

Any monoid M has the algebraic or natural preorder defined by a � b if
a+ c = b for some c ∈M . In general, a � b � a does not imply a = b, so � is not
always a partial order on M . In this paper the symbol � will always be used for
the algebraic preorder of a monoid.

A monoid F is free with basis ∅ 6= B ⊆ F if any map from B to a monoid M
extends uniquely to a monoid homomorphism from F to M . In this circumstance,
F ∼= F

(B), the direct sum of copies of F indexed by B where F is the set of non-
negative integers with addition as monoid operation. Any set B is contained as a
basis in a free monoid, in particular, any monoid is a homomorphic image of a free
monoid.
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If a free monoid F has a finite basis B with |B| = n ∈ N, then F ∼= F
n ∼=

F× F× . . .× F (n times). Of course, a monoid M is finitely generated if and only
if there is a surjective monoid homomorphism σ : Fn →M for some n ∈ N.

The algebraic preorder on any free monoid is a partial order. The algebraic pre-
order on F coincides with the usual order of the integers. The algebraic preorder on
F
n is the product order. The lower sets of (F,�) are ∅, F and the sets {0, 1, . . . , N}

for N ∈ F and so ⇓(F,�) is Artinian. From 2.3, ⇓(Fn,�) is Artinian for n ∈ N.
Thus for any free monoid F with finite basis, (F �), and ⇓(F,�) are Artinian.

An ordered monoid is pair (M,≤) where M is a monoid and ≤ is a partial
order on M such that the addition map + : M × M → M is increasing with
respect to ≤, or, equivalently, a ≤ b implies a + c ≤ b + c for all a, b, c ∈ M . If
(M,≤) and (N,≤) are ordered monoids, then a strict monoid homomorphism
σ : (M,≤) → (N,≤) is a monoid homomorphism σ : M → N which is strictly
increasing with respect to the partial orders ≤.

A strictly ordered monoid is pair (M,≤) where M is a monoid and ≤ is
a partial order on M such that the addition map + : M × M → M is strictly
increasing with respect to ≤, or, equivalently, a < b implies a + c < b + c for all
a, b, c ∈M . If (M,≤) is an ordered monoid, then M is strictly ordered if and only
if a ≤ b and a+ c = b+ c imply a = b for all a, b, c ∈M .

An ordered monoid (M,≤) is positively ordered if 0 ≤ a for all a ∈M . In this
circumstance, a � b implies a ≤ b for all a, b ∈ M . For example, if the algebraic
order � on M happens to be a partial order, then (M,�) is a positively ordered
monoid.

If an ordered monoid is both positively ordered and strictly ordered, we will
say it is positive strictly ordered (rather than “strict positively ordered” which
would conflict with our definition of a strict monoid.)

In view of the next lemma we will say that a monoid M is strict if a+x+y = a
implies x = y = 0 for all a, x, y ∈M .

Lemma 3.1. If (M,≤) is a positive strictly ordered monoid, then M is strict.

Proof. Suppose a+ x+ y = a for some a, x, y in M . Then (a, 0) ≤ (a, x+ y) with
a + 0 = a + x + y. By strictness (a, 0) = (a, x + y). Thus x + y = 0. But then
we have (0, 0) ≤ (x, y) with 0 + 0 = x + y, so by strictness (0, 0) = (x, y), and
x = y = 0. �

It is easy to see that any free monoid is strict. More generally we have the
following:

Lemma 3.2. For a nontrivial monoid M the following are equivalent:

(1) M is strict.
(2) � is a partial order and a+ x = a implies x = 0 for all a, x ∈M .
(3) There is a surjective strict monoid homomorphism σ : (F,�)→ (M,�) for

some free monoid F .
(4) (M,�) is a strictly ordered monoid.

Proof. (1) ⇒ (2): If a � b � a in M , then there are x, y ∈ M such that a+ x = b
and b+ y = a. Then a = a+ x+ y, so by strictness, x = y = 0 and a = b. Thus �
is a partial order. The second claim is immediate.
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(2) ⇒ (3): There is certainly a monoid surjection σ : F → M for some free
monoid F . Without loss of generality we can assume that none of the basis elements
of F map to 0 under σ.

It is clear that σ is an increasing map from (F,�) to (M,�). To show it is
strictly increasing it remains to show that x � y and σ(x) = σ(y) imply x = y.

If x � y and σ(x) = σ(y), then x + z = y and σ(x) + σ(z) = σ(y) = σ(x)
for some z ∈ M . By assumption this implies σ(z) = 0. If z 6= 0, then there
is some basis element b of F such that z = b + w for some w ∈ F . But then
0 = σ(z) = σ(b) + σ(w), and we have 0 � σ(b) � 0. Since � is a partial order, this
implies σ(b) = 0, contrary to our choice of basis. So z = 0 and x = y.

(3) ⇒ (4): Since (M,�) is at least an ordered monoid and σ is surjective, it
suffices to show that, for all a, b, c ∈ F , σ(a) � σ(b) and σ(a) + σ(c) = σ(b) + σ(c)
imply σ(a) = σ(b).

If σ(a) � σ(b), then σ(b) = σ(a) + σ(d) for some d ∈ F , and, if σ(a) + σ(c) =
σ(b) + σ(c), then σ(a+ c) = σ(a+ d+ c). Since a+ c � a+ c+ d and σ is strictly
increasing, this implies a + c = a + c + d. But F is strict, so we have d = 0 and
hence σ(b) = σ(a) + σ(d) = σ(a).

(4) ⇒ (1): This follows directly from 3.1 since � is a positive order on M . �

Of course, if M is a finitely generated strict monoid, then the free monoid F
in (3) can be chosen to have finite basis and so there is a surjective strict monoid
homomorphism σ : (Fn,�)→ (M,�) for some n ∈ N.
Lemma 3.3. Let M be a strict monoid. Then ⇓(M,�) is Artinian if and only if
M is finitely generated.

Proof. Suppose ⇓(M,�) is Artinian. Let I ∈ ⇓(M,�) be minimal such that 0 ∈ I
and M = I + 〈Y 〉 for some finite set Y ⊆M . To prove the claim it suffices to show
that I = {0}.

Suppose not. Let 0 6= b ∈ I and set J = I ∩ {a ∈M | b 6� a}. It is easy to check
that J is a lower set of (M,�), J contains 0, and, since b 6∈ J , J is strictly smaller
than I. We will show that M = J + 〈Y, b〉, which contradicts the minimality of I.

Suppose to the contrary that M \ (J + 〈Y, b〉) is nonempty. Since (M,�) is
Artinian, there is some minimal element x in M \ (J + 〈Y, b〉). Since M = I + 〈Y 〉,
there are i ∈ I and y ∈ 〈Y 〉 such that x = i+y. The element i cannot be in J since
otherwise x ∈ J + 〈Y 〉. Thus b � i, and i = i′ + b for some i′ ∈ I. Set x′ = i′ + y.
Then x = x′ + b so x′ � x, and x′ 6∈ J + 〈Y, b〉 since otherwise the same would
be true of x. By the minimality of x we get x′ = x and so x′ = x′ + b. Since the
monoid is strict this implies b = 0 contrary to our assumption.

Conversely, if M is finitely generated, there is a monoid surjection σ : Fn → M
for some n ∈ N. Since σ is, in particular, an increasing map from (M,�) to (Fn,�),
the claim follows from 2.1(2) and the fact that ⇓(Fn,�) is Artinian. �

4. Generalized Power Series Rings

For a ring R and a commutative monoid M , let R[[M ]] be the set of all functions
from M to R. Addition of such functions is defined by (f + g)(x) = f(x) + g(x) for
x ∈M . R[[M ]] is a left R-module under the operation defined by (rf)(x) = rf(x)
for x ∈ M , r ∈ R and f ∈ R[[M ]]. We write Xa ∈ R[[M ]] for the function such
that Xa(a) = 1 and Xa(x) = 0 if x 6= a. Any element f ∈ R[[M ]] can then be
written in the form f =

∑
a∈M f(a)Xa.



NOETHERIAN GENERALIZED POWER SERIES RINGS 5

Multiplication of f, g ∈ R[[M ]] is defined by (fg)(x) =
∑
x1+x2=x f(x1)g(x2) for

x ∈M , if, for each x ∈M , the set

{(x1, x2) | x1 + x2 = x and f(x1) 6= 0 and g(x2) 6= 0}

is finite. For example, XaXb = Xa+b for all a, b ∈M .
It may be that fg is defined for all f, g ∈ R[[M ]], in which case R[[M ]] is a ring.

This happens, for example, if for each x ∈ M the set {(x1, x2) | x1 + x2 = x} is
finite. Thus R[[F]] and more generally R[[Fn]], for n ∈ N, are rings. These are called
rings of formal power series with coefficients in R, and are written R[[X]], and
R[[X1, X2, . . . , Xn]] respectively.

There seems to be no proof in the literature of the following well known result
except as a special case of a more general and hence more complicated theorem. See,
for example [11, 4.6] or [9]. For completeness, we give a proof which is essentially
that given in [4, 3.3] for the case that the ring R is commutative.

Theorem 4.1. If R is a left Noetherian ring, then so is R[[Fn]].

Proof. We prove first that S = R[[X]] = R[[F]] is left Noetherian, the n = 1 case.
For a left ideal I ≤ S and m ∈ F, let Im = {f(m) | f ∈ I ∩ SXm}. It is easy to see
that Im is a left ideal of R and hence there is a finite set Gm ⊆ I ∩SXm such that
{g(m) | g ∈ Gm} generates Im.

Since I0 ≤ I1 ≤ I2 ≤ . . ., there is some k ∈ F such that Im = Ik for all m ≥ k,
and so, without loss of generality, we can assume that

Gm = Xm−kGk = {Xm−kg | g ∈ Gk}

for m ≥ k. Set G = ∪m≤kGm, a finite set. We will show that G generates I, in
particular, I is finitely generated.

Suppose f ∈ I. Since f ∈ I ∩ SX0 = I, there is a linear combination g0 of
the elements of G0 with coefficients in R such that f − g0 ∈ I ∩ SX1. Then
there is a linear combination g1 of the elements of G1 with coefficients in R such
that f − g0 − g1 ∈ I ∩ SX2. Iterating this process produces an infinite sequence
g0, g1, g2, . . . in I such that for m ∈ F, f − g0 − g1 − . . .− gm ∈ I ∩ SXm+1 and gm
is an R-linear combination of the elements of Gm. Since gm ∈ SXm for each m,
this implies f =

∑
m∈F gm.

For m ≤ k we have Gm ⊆ G and for m > k, we have Gm ⊆ Xm−kG. Hence,
for each m ∈ F we can write gm =

∑
g∈G hmgg where for m ≤ k, hmg ∈ R and for

m > k, hmg ∈ RXm−k. If we now set hg =
∑
m∈F hmg ∈ S, then f =

∑
g∈G hgg as

required.
The general case, R[[Fn]], follows by induction from the n = 1 case, since

R[[Fn]] ∼= (R[[Fn−1]])[[F]], as may be easily checked. �

Given a ring R and a monoid M , it may be that fg is not defined for all f, g ∈
R[[M ]]. In this case one can restrict attention to certain subsets of R[[M ]] which
do form rings. An example of this is the generalized power series ring which is
constructed from a ring R and a strictly ordered monoid (M,≤) as follows: For a
function f ∈ R[[M ]], define the support of f by supp f = {a ∈ M | f(a) 6= 0}.
Then the generalized power series ring is

R[[M,≤]] = {f ∈ R[[M ]] | ⇓(supp f,≤) is Artinian},
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that is, R[[M,≤]] is the set of functions in R[[M ]] whose support is Artinian and
narrow in the ≤ partial order. See [7, 1.16] for the proof that, if f, g ∈ R[[M,≤]],
then fg is defined and fg ∈ R[[M,≤]].

If ⇓(M,≤) happens to be Artinian, then all subsets of M are Artinian and nar-
row, and so R[[M,≤]] = R[[M ]]. For example, ⇓(F,�) and ⇓(Fn,�) are Artinian,
and so R[[F,�]] = R[[F]] and R[[Fn,�]] = R[[Fn]].

The following is a special case of [7, 1.17].
Lemma 4.2. Let R be a ring and σ : (N,≤)→ (M,≤) a strict monoid homomor-
phism. Then σ induces a ring homomorphism σ? : R[[N,≤]] → R[[M,≤]]. If σ is
surjective, then so is σ?.

Proof. Since σ is strict, σ−1(x) is an antichain in (N,≤) for all x ∈ M . Thus, if
f ∈ R[[N,≤]], then σ−1(x) ∩ supp f is finite and we can define σ?(f) = f? where
f?(x) =

∑
y∈σ−1(x) f(y) for x ∈ M . It is then routine to check that σ? has the

required properties. �

It follows easily from the definitions that, if f, g ∈ R[[M,≤]], then

supp(f + g) ⊆ supp f ∪ supp g

and

supp(fg) ⊆ supp f + supp g.

Theorem 4.3. Let R be a ring, and (M,≤) a positive strictly ordered monoid.
Then R[[M,≤]] is left Noetherian if and only if R is left Noetherian and M is finitely
generated. Moreover, in this circumstance, ⇓(M,≤) is Artinian, and R[[M,≤]] =
R[[M ]] is a homomorphic image of the ring R[[Fn]] for some n ∈ N.

Proof. If M is trivial, then R[[M,≤]] ∼= R and the claim is obvious. So we will
henceforth assume that M is nontrivial. Note that, from 3.1 and 3.2, M is strict
and � is a partial order on M .

Suppose S = R[[M,≤]] is left Noetherian.
(1) R is left Noetherian: [6, 5.2(i)] [10, 3.1(i)] For a left ideal I ⊆ R define

IS = {f ∈ S | f(x) ∈ I for all x ∈M}.
It is routine to check that IS is a left ideal of S and that the map I 7→ IS
from the set of ideals of R to the set of ideals of S is strictly increasing. By
2.1(1), R is left Noetherian.

(2) ⇓(M,�) is Artinian: By 2.2 it suffices to show that for any infinite sequence
(an)n∈N in M there are i < j in N such that ai � aj .

Since S is left Noetherian and

SXa1 ⊆ SXa1 + SXa2 ⊆ SXa1 + SXa2 + SXa3 ⊆ . . . ,
there is some j ∈ N such that Xaj ∈

∑
i<j SX

ai . Thus Xaj =
∑
i<j fiX

ai

for some f1, f2, . . . ∈ S and aj ∈ ∪i<j(ai + supp fi). This means that for
some i < j and t ∈ supp fi we have aj = ai + t, in particular, ai � aj .

(3) M is finitely generated : Since M is strict, this follows immediately from
(2) and 3.3.

Conversely, suppose that R is left Noetherian and M is finitely generated. From
3.2, there is a strict monoid surjection σ : (Fn,�)→ (M,�) for some n ∈ N. Since
≤ is a positive order, we have a � b =⇒ a ≤ b for all a, b ∈M . In other words, the
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identity map from (M,�) to (M,≤) is a strict monoid surjection. Composing these
two maps gives a strict monoid surjection from (Fn,�) to (M,≤), and so by 4.2,
R[[M,≤]] is a homomorphic image of the ring R[[Fn,�]] = R[[Fn]]. Since R[[Fn]]
is left Noetherian, so is R[[M,≤]].

Finally, if R[[M,≤]] is left Noetherian, then from above, ⇓(M,�) is Artinian.
Applying 2.1(2) to the identity map (M,�) to (M,≤) we get that ⇓(M,≤) is
Artinian. Thus all subsets of (M,≤) are Artinian and narrow and R[[M,≤]] =
R[[M ]]. �
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