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Background

• Permutations avoiding a permutation pattern

• Permutations avoiding more general patterns or set of

patterns

• Words avoiding more general patterns or set of patterns

Compositions enumerated according to rises, levels and drops

(= 2-letter patterns)

• Compositions avoiding 3-letter patterns

Compositions enumerated according to segmented partially

ordered (generalized) patterns = POPs

⇒ Compositions avoiding POPs
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Things to come ...

• Definitions

• Recursion for generating function of POP-avoiding

compositions

• Results for shuffle patterns and multi-patterns

• Result on maximum number of non-overlapping POPs in a

composition
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Notation and Definitions

• N = set of all positive integers

• A = {a1, a2, . . . , ak} ordered subset of N

• σ = σ1σ2 . . . σm = composition of n ∈ N with m parts where
∑m

i=1 σi = n

• [k] = {1, 2, . . . , k}; [k]n =

set of all words of length n over [k]

• Generalized pattern τ = word in [ℓ]k that contains each

letter from [ℓ], possibly with repetitions and dashes

• Classical pattern = pattern with no adjacency requirement

• Consecutive or segmented pattern = pattern with no

dashes

1234 1-23-4 1-2-3-4
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Notation and Definitions

• CA
n (CA

n;m) = the set of all compositions of n with parts in A

(m parts in A)

• σ ∈ CA
n (CA

n;m) contains τ if σ contains a subsequence

isomorphic to τ . Otherwise, σ avoids τ and we write

σ ∈ CA
n (τ) (σ ∈ CA

n;m(τ))

241874 contains five occurrences of 1-32

241874 avoids 312

• A POP τ is a word consisting of letters from a partially

ordered alphabet T

• If letters a and b are incomparable in a POP τ , then the

relative size of the letters in σ corresponding to a and b is

unimportant in an occurrence of τ in σ.
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Note that comparable letters have the same number of primes.

Example

• Let T = {1′, 1′′, 2′′} with the only relation 1′′ < 2′′. Then

113425 contains three occurrences of 1′1′′2′′ and seven

occurrences of 1′-1′′2′′

– 113425 , 113425, 113425

– 11 3 425, 1134 25, 1 134 25, 11 34 25
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More Definitions and Notation

• A composition σ quasi-avoids a consecutive pattern τ if σ

has exactly one occurrence of τ and the occurrence consists of

the |τ | rightmost parts in σ

4112234 quasi-avoids 1123

5223411 and 1123346 do not quasi-avoid 1123

• Generating functions

– CA
τ (x) =

∑

n≥0 |C
A
n (τ)|xn

– CA
τ (x;m) =

∑

n≥0 |C
A
n;m(τ)|xn

– CA
τ (x,y) =

∑

m≥0 CA
τ (x; m)ym =

∑

n,m≥0

|CA
n;m(τ)|xnym

– DA
τ (x,y) = gf for the number of compositions in CA

n;m that

quasi-avoid τ
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General Results

Lemma 1: Let τ be a consecutive pattern. Then

DA
τ (x,y) = 1 + CA

τ (x,y)

(

y
∑

a∈A

xa − 1

)

.

Theorem 2: Suppose τ = τ0-φ, where φ is an arbitrary POP, and

the letters of τ0 are incomparable to the letters of φ. Then for all

k ≥ 1, we have

CA
τ (x,y) = CA

τ0
(x,y) + DA

τ0
(x,y)CA

φ (x,y).

We will apply this results for two types of patterns: shuffle patterns

and multi-patterns.
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Proof of Theorem 2: To show:

CA
τ (x,y) = CA

τ0
(x,y) + DA

τ0
(x,y)CA

φ (x,y).

Two possible cases:

• σ avoids τ0 ⇒ CA
τ0

(x, y)

• σ does not avoid τ0 ⇒ σ = σ1σ2σ3 where

– σ1σ2 quasi-avoids the pattern τ0

– σ2 is order isomorphic to τ0

– σ3 must avoid φ

⇒ DA
τ0

(x, y)CA
φ (x, y)
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Multi-patterns

Let {τ0, τ1, . . . , τs} be a set of consecutive patterns.

• τ = τ1-τ2- · · · -τs is a multi-pattern if each letter of τi is

incomparable with any letter of τj for i 6= j

• Simplest non-trivial multi-pattern is Φ = 1′ − 1′′2′′.

In this case we can derive the generating function directly:

• First letter can be any of the k letters in A

• All other letters have to be in non-increasing order

CA
1′-1′′2′′(x,y) = 1 +

(

y
∑

a∈A xa
)
∏

a∈A

(

∑

i≥0(xay)i
)

= 1 +
y

P

a∈A xa

Q

a∈A(1−xay) .
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General Results for Multi-Patterns

Theorem 3: let τ = τ1-τ2- · · · -τs be a multi-pattern. Then

CA
τ (x,y) =

s
∑

j=1

CA
τj

(x,y)

j−1
∏

i=1

[(

y
∑

a∈A

xa − 1

)

CA
τi

(x,y) + 1

]

.

Example:

Let τ = τ1-τ2- · · · -τs be a multi-pattern such that τj is equal to

either 12 or 21, for j = 1, 2, . . . , s. Since

CA
12(x, y) = CA

21(x, y) = 1
Q

a∈A
(1−xay) , we get

CA
τ (x,y) =

1 −
(

1 +
y

P

a∈A xa−1
Q

a∈A(1−xay)

)s

1− y
∑

a∈A xa
.
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Equivalence of Patterns

• Reversal map R(σ) = R(σ1σ2 . . . σk) = σkσk−1 . . . σ1

• Reversal map R and identity map I are called trivial

bijections of CA
n;m to itself

• τ1 and τ2 are equivalent, denoted by τ1≡τ2, if

|CA
n;m(τ1)| = |CA

n;m(τ2)| for all A, m and n.

• τ≡R(τ) for any pattern τ

• {τ, R(τ)} = symmetry class of τ
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Results for Families of Multi-Patterns

Theorem 4: Let τ = τ0-τ1 and φ = f1(τ0)-f2(τ1), where f1 and f2

are any of the trivial bijections. Then τ ≡ φ.

Theorem 5: Suppose we have multi-patterns τ = τ1-τ2- · · · -τs and

φ = φ1-φ2- · · · -φs, where τ1τ2 . . . τs is a permutation of φ1φ2 . . . φs.

Then τ ≡ φ.
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Results for Families of Multi-Patterns

Proof of Theorem 4: Show that τ = τ0-τ1 ≡ τ0-f(τ1). If σ avoids τ ,

then either

• σ has no occurrence of τ0, so σ also avoids τ0-f(τ1)

• σ can be written as σ = σ1σ2σ3, where σ1σ2 has exactly one

occurrence of τ0, namely σ2. Then σ3 must avoid τ1, so f(σ3)

avoids f(τ1) and σf = σ1σ2f(σ3) avoids τ0-f(τ1).

• Converse also true ⇒ bijection between class of compositions

avoiding τ and those avoiding τ0-f(τ1).

• This result and properties of trivial bijections finish proof.

Proof of Theorem 5: By induction.
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Non-Overlapping Occurrences of POPs

• Two occurrences of a pattern τ overlap if they contain any of

the same parts of σ

• τ -nlap(σ) = maximum number of non-overlapping occurrences

of a consecutive pattern τ

• descent = 21 occurs at position i if σi > σi+1

• Two descents at positions i and j overlap if j = i + 1

• MND = maximum number of non-overlapping descents

MND(333 211) = 1

MND(133 21111 43 211) = 3

• Results on statistic τ -nlap(σ) exist for permutations and words
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Non-Overlapping Occurrences of POPs

Theorem 6: Let τ be a consecutive pattern. Then

∑

n,m≥0

∑

σ∈CA
n;m

tτ-nlap(σ)xnym =
CA

τ (x,y)

1− t
[(

y
∑

a∈A xa − 1
)

CA
τ (x,y) + 1

] ,

where τ -nlap(σ) is the maximum number of non-overlapping

occurrences of τ in σ.

Remark: We only need to know the gf for the number of

compositions avoiding τ .
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Proof: Fix s and let Φs = τ -τ - · · · -τ with s copies of τ

• σ avoids Φs ⇒ σ has at most s− 1 non-overlapping occurrences

of τ

• Compute CA
Φs+1

(x, y) from general theorem for multi patterns

• gf for number of compositions with exactly s non-overlapping

copies of τ is given by CA
Φs+1

(x, y) − CA
Φs

(x, y)

• Sum over s
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Example:

• Apply theorem to descent pattern

• CA
12(x, y) = 1

Q

a∈A
(1−xay)

• distribution of MND is given by

∑

n,m≥0

∑

σ∈CA
n;m

t12-nlap(σ)xnym

=
1

∏

a∈A(1 − xay) + t
(

1− y
∑

a∈A xa −
∏

a∈A(1− xay)
) .

• For A = {1, 2}, distribution of MND on the set of compositions

of n with parts in A is given by

1

(1− x)(1− x2) − x3t
=
∑

s≥0

x3s

(1− x)2s+2(1 + x)s+1
ts.
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