Avoidance of Partially Ordered Patterns in Compositions

Silvia Heubach

Department of Mathematics California State University Los Angeles

joint work with

Sergey Kitaev and Toufik Mansour

Background

- Permutations avoiding a permutation pattern
- Permutations avoiding more general patterns or set of patterns
- Words avoiding more general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs

\Rightarrow Compositions avoiding POPs

Things to come ...

- Definitions
- Recursion for generating function of POP-avoiding compositions
- Results for shuffle patterns and **multi-patterns**
- Result on maximum number of non-overlapping POPs in a composition

Notation and Definitions

- $\mathbb{N} =$ set of all positive integers
- $\mathbf{A} = \{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_k}\} \;\; \mathrm{ordered \; subset \; of \; } \mathbb{N}$
- $\sigma = \sigma_1 \sigma_2 \dots \sigma_m =$ composition of $\mathbf{n} \in \mathbb{N}$ with *m* parts where $\sum_{i=1}^{m} \sigma_i = \mathbf{n}$
- $[k] = \{1, 2, \dots, k\}; [k]^n =$ set of all words of length n over [k]
- Generalized pattern $\tau = \text{word in } [\ell]^k$ that contains each letter from $[\ell]$, possibly with repetitions and dashes
- **Classical pattern** = pattern with no adjacency requirement
- **Consecutive** or **segmented pattern** = pattern with no dashes

1234 1-23-4 1-2-3-4

Notation and Definitions

- $\mathbf{C_n^A}(\mathbf{C_{n;m}^A})$ = the set of all compositions of n with parts in A (m parts in A)
- $\sigma \in C_n^A (C_{n;m}^A)$ contains τ if σ contains a subsequence isomorphic to τ . Otherwise, σ avoids τ and we write $\sigma \in \mathbf{C_n^A}(\tau) \ (\sigma \in \mathbf{C_{n;m}^A}(\tau))$

241874 contains five occurrences of 1-32241874 avoids 312

- A **POP** τ is a word consisting of letters from a partially ordered alphabet T
- If letters a and b are incomparable in a POP τ , then the relative size of the letters in σ corresponding to a and b is unimportant in an occurrence of τ in σ .

Note that comparable letters have the same number of primes.

Example

- Let $\mathcal{T} = \{1', 1'', 2''\}$ with the only relation 1'' < 2''. Then 113425 contains three occurrences of 1'1''2'' and seven occurrences of 1'-1''2''
 - 113425, 113425, 113425
 - $-11\ 3\ 425,\ 1134\ 25,\ 1\ 134\ 25,\ 11\ 34\ 25$

More Definitions and Notation

A composition σ quasi-avoids a consecutive pattern τ if σ has exactly one occurrence of τ and the occurrence consists of the |τ| rightmost parts in σ

4112234 quasi-avoids 1123

 $\mathbf{5223411}$ and $\mathbf{1123346}$ do not quasi-avoid $\mathbf{1123}$

• Generating functions

$$- \mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}) = \sum_{\mathbf{n} \ge \mathbf{0}} |\mathbf{C}_{\mathbf{n}}^{\mathbf{A}}(\tau)| \mathbf{x}^{\mathbf{n}}$$

$$- \mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x};\mathbf{m}) = \sum_{n \ge 0} |C_{n;m}^{A}(\tau)| x^{n}$$

$$- \mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \sum_{m \ge 0} C_{\tau}^{A}(x;m) y^{m} = \sum_{n,m \ge 0} |C_{n;m}^{A}(\tau)| x^{n} y^{m}$$

 $- \mathbf{D}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y}) = \text{gf for the number of compositions in } C_{n;m}^{A} \text{ that}$ quasi-avoid τ

General Results

Lemma 1: Let τ be a consecutive pattern. Then

$$\mathbf{D}^{\mathbf{A}}_{ au}(\mathbf{x},\mathbf{y}) = \mathbf{1} + \mathbf{C}^{\mathbf{A}}_{ au}(\mathbf{x},\mathbf{y}) \left(\mathbf{y}\sum_{\mathbf{a}\in\mathbf{A}}\mathbf{x}^{\mathbf{a}} - \mathbf{1}
ight).$$

Theorem 2: Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

$$\mathbf{C}^{\mathbf{A}}_{\tau}(\mathbf{x},\mathbf{y}) = \mathbf{C}^{\mathbf{A}}_{\tau_{\mathbf{0}}}(\mathbf{x},\mathbf{y}) + \mathbf{D}^{\mathbf{A}}_{\tau_{\mathbf{0}}}(\mathbf{x},\mathbf{y})\mathbf{C}^{\mathbf{A}}_{\phi}(\mathbf{x},\mathbf{y}).$$

We will apply this results for two types of patterns: shuffle patterns and **multi-patterns**.

<u>Proof of Theorem 2:</u> To show:

$$\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x},\mathbf{y}) = \mathbf{C}_{\tau_{\mathbf{0}}}^{\mathbf{A}}(\mathbf{x},\mathbf{y}) + \mathbf{D}_{\tau_{\mathbf{0}}}^{\mathbf{A}}(\mathbf{x},\mathbf{y})\mathbf{C}_{\phi}^{\mathbf{A}}(\mathbf{x},\mathbf{y}).$$

Two possible cases:

- σ avoids $\tau_0 \Rightarrow C^A_{\tau_0}(x, y)$
- σ does not avoid $\tau_0 \Rightarrow \sigma = \sigma_1 \sigma_2 \sigma_3$ where
 - $\sigma_1\sigma_2$ quasi-avoids the pattern τ_0
 - $-\sigma_2$ is order isomorphic to τ_0
 - $-\sigma_3$ must avoid ϕ

$$\Rightarrow D^A_{\tau_0}(x,y)C^A_{\phi}(x,y)$$

Multi-patterns

Let $\{\tau_0, \tau_1, \ldots, \tau_s\}$ be a set of consecutive patterns.

- $\tau = \tau_1 \tau_2 \cdots \tau_s$ is a **multi-pattern** if each letter of τ_i is incomparable with any letter of τ_j for $i \neq j$
- Simplest non-trivial multi-pattern is $\Phi = 1' 1''2''$.

In this case we can derive the generating function directly:

- First letter can be any of the k letters in A
- All other letters have to be in non-increasing order

$$\begin{split} \mathbf{C}_{\mathbf{1}'-\mathbf{1}''\mathbf{2}''}^{\mathbf{A}}(\mathbf{x},\mathbf{y}) &= \mathbf{1} + \left(\mathbf{y}\sum_{\mathbf{a}\in\mathbf{A}}\mathbf{x}^{\mathbf{a}}\right)\prod_{\mathbf{a}\in\mathbf{A}}\left(\sum_{\mathbf{i}\geq\mathbf{0}}(\mathbf{x}^{\mathbf{a}}\mathbf{y})^{\mathbf{i}}\right) \\ &= \mathbf{1} + \frac{\mathbf{y}\sum_{\mathbf{a}\in\mathbf{A}}\mathbf{x}^{\mathbf{a}}}{\prod_{\mathbf{a}\in\mathbf{A}}(\mathbf{1}-\mathbf{x}^{\mathbf{a}}\mathbf{y})}. \end{split}$$

General Results for Multi-Patterns

Theorem 3: let $\tau = \tau_1 - \tau_2 - \cdots - \tau_s$ be a multi-pattern. Then

$$\mathbf{C}^{\mathbf{A}}_{\tau}(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{j}=1}^{\mathbf{s}} \mathbf{C}^{\mathbf{A}}_{\tau_{\mathbf{j}}}(\mathbf{x},\mathbf{y}) \prod_{\mathbf{i}=1}^{\mathbf{j}-1} \left[\left(\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{x}^{\mathbf{a}} - \mathbf{1} \right) \mathbf{C}^{\mathbf{A}}_{\tau_{\mathbf{i}}}(\mathbf{x},\mathbf{y}) + \mathbf{1} \right].$$

Example:

Let $\tau = \tau_1 - \tau_2 - \dots - \tau_s$ be a multi-pattern such that τ_j is equal to either 12 or 21, for $j = 1, 2, \dots, s$. Since $C_{12}^A(x, y) = C_{21}^A(x, y) = \frac{1}{\prod_{a \in A} (1 - x^a y)}$, we get $\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{1} - \left(\mathbf{1} + \frac{\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{x}^{\mathbf{a}} - \mathbf{1}}{\prod_{\mathbf{a} \in \mathbf{A}} (1 - \mathbf{x}^{\mathbf{a}} y)}\right)^{\mathbf{s}}}{\mathbf{1} - \mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{x}^{\mathbf{a}}}.$

Equivalence of Patterns

- **Reversal map** $R(\sigma) = R(\sigma_1 \sigma_2 \dots \sigma_k) = \sigma_k \sigma_{k-1} \dots \sigma_1$
- Reversal map R and identity map I are called **trivial** bijections of $C_{n;m}^A$ to itself
- τ_1 and τ_2 are **equivalent**, denoted by $\tau_1 \equiv \tau_2$, if $|C_{n;m}^A(\tau_1)| = |C_{n;m}^A(\tau_2)|$ for all A, m and n.
- $\tau \equiv R(\tau)$ for any pattern τ
- $\{\tau, R(\tau)\} =$ symmetry class of τ

Results for Families of Multi-Patterns

Theorem 4: Let $\tau = \tau_0 - \tau_1$ and $\phi = f_1(\tau_0) - f_2(\tau_1)$, where f_1 and f_2 are any of the trivial bijections. Then $\tau \equiv \phi$.

Theorem 5: Suppose we have multi-patterns $\tau = \tau_1 - \tau_2 - \cdots - \tau_s$ and $\phi = \phi_1 - \phi_2 - \cdots - \phi_s$, where $\tau_1 \tau_2 \dots \tau_s$ is a permutation of $\phi_1 \phi_2 \dots \phi_s$. Then $\tau \equiv \phi$.

Results for Families of Multi-Patterns

<u>Proof of Theorem 4</u>: Show that $\tau = \tau_0 - \tau_1 \equiv \tau_0 - f(\tau_1)$. If σ avoids τ , then either

- σ has no occurrence of τ_0 , so σ also avoids τ_0 - $f(\tau_1)$
- σ can be written as $\sigma = \sigma_1 \sigma_2 \sigma_3$, where $\sigma_1 \sigma_2$ has exactly one occurrence of τ_0 , namely σ_2 . Then σ_3 must avoid τ_1 , so $f(\sigma_3)$ avoids $f(\tau_1)$ and $\sigma_f = \sigma_1 \sigma_2 f(\sigma_3)$ avoids $\tau_0 - f(\tau_1)$.
- Converse also true \Rightarrow bijection between class of compositions avoiding τ and those avoiding τ_0 - $f(\tau_1)$.
- This result and properties of trivial bijections finish proof.

<u>Proof of Theorem 5</u>: By induction.

Non-Overlapping Occurrences of POPs

- Two occurrences of a pattern τ overlap if they contain any of the same parts of σ
- τ -nlap (σ) = maximum number of non-overlapping occurrences of a consecutive pattern τ
- **descent** = 21 occurs at position *i* if $\sigma_i > \sigma_{i+1}$
- Two descents at positions i and j overlap if j = i + 1
- MND = maximum number of non-overlapping descents MND(333 211) = 1 MND(133 21111 43 211) = 3
- Results on statistic τ -nlap(σ) exist for permutations and words

Non-Overlapping Occurrences of POPs

Theorem 6: Let τ be a consecutive pattern. Then

$$\sum_{\mathbf{n},\mathbf{m}\geq\mathbf{0}}\sum_{\boldsymbol{\sigma}\in\mathbf{C}_{\mathbf{n};\mathbf{m}}^{\mathbf{A}}}\mathbf{t}^{\boldsymbol{\tau}\cdot\mathbf{n}lap(\boldsymbol{\sigma})}\mathbf{x}^{\mathbf{n}}\mathbf{y}^{\mathbf{m}} = \frac{\mathbf{C}_{\boldsymbol{\tau}}^{\mathbf{A}}(\mathbf{x},\mathbf{y})}{1-\mathbf{t}\left[\left(\mathbf{y}\sum_{\mathbf{a}\in\mathbf{A}}\mathbf{x}^{\mathbf{a}}-1\right)\mathbf{C}_{\boldsymbol{\tau}}^{\mathbf{A}}(\mathbf{x},\mathbf{y})+1\right]},$$

where τ -nlap(σ) is the maximum number of non-overlapping occurrences of τ in σ .

Remark: We only need to know the gf for the number of compositions avoiding τ .

<u>Proof</u>: Fix s and let $\Phi_s = \tau - \tau - \cdots - \tau$ with s copies of τ

- σ avoids $\Phi_s \Rightarrow \sigma$ has at most s-1 non-overlapping occurrences of τ
- Compute $C^{A}_{\Phi_{s+1}}(x, y)$ from general theorem for multi patterns
- gf for number of compositions with exactly s non-overlapping copies of τ is given by $C_{\Phi_{s+1}}^A(x,y) C_{\Phi_s}^A(x,y)$
- Sum over s

Example:

• Apply theorem to descent pattern

•
$$C_{12}^A(x,y) = \frac{1}{\prod_{a \in A} (1-x^a y)}$$

• distribution of MND is given by

$$\sum_{\mathbf{n},\mathbf{m}\geq\mathbf{0}}\sum_{\boldsymbol{\sigma}\in\mathbf{C}_{\mathbf{n};\mathbf{m}}^{\mathbf{A}}}\mathbf{t}^{\mathbf{12}\text{-}nlap(\boldsymbol{\sigma})}\mathbf{x}^{\mathbf{n}}\mathbf{y}^{\mathbf{m}}$$

$$= \frac{1}{\prod_{\mathbf{a}\in\mathbf{A}}(1-\mathbf{x}^{\mathbf{a}}\mathbf{y}) + \mathbf{t}\left(1-\mathbf{y}\sum_{\mathbf{a}\in\mathbf{A}}\mathbf{x}^{\mathbf{a}} - \prod_{\mathbf{a}\in\mathbf{A}}(1-\mathbf{x}^{\mathbf{a}}\mathbf{y})\right)}.$$

• For $A = \{1, 2\}$, distribution of *MND* on the set of compositions of *n* with parts in *A* is given by

$$\frac{1}{(1-x)(1-x^2)-x^3t} = \sum_{s\geq 0} \frac{x^{3s}}{(1-x)^{2s+2}(1+x)^{s+1}}t^s.$$

Preprint available from my web site at sheubac@calstatela.edu

also at ArXiv (http://www.arxiv.org/pdf/math.CO/0610030)

to appear in "Pure Mathematics and Applications"

Thanks!