Avoidance of Partially Ordered Patterns in Compositions

Silvia Heubach

Department of Mathematics
California State University Los Angeles
joint work with
Sergey Kitaev and Toufik Mansour

Background

- Permutations avoiding a permutation pattern
- Permutations avoiding more general patterns or set of patterns
- Words avoiding more general patterns or set of patterns

■ Compositions enumerated according to rises, levels and drops (=2-letter patterns)

- Compositions avoiding 3-letter patterns

■ Compositions enumerated according to segmented partially ordered (generalized) patterns $=$ POPs
\Rightarrow Compositions avoiding POPs

Things to come ...

- Definitions
- Recursion for generating function of POP-avoiding compositions
- Results for shuffle patterns and multi-patterns
- Result on maximum number of non-overlapping POPs in a composition

Notation and Definitions

- $\mathbb{N}=$ set of all positive integers
- $\mathbf{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{k}}\right\}$ ordered subset of \mathbb{N}
- $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m}=$ composition of $\mathbf{n} \in \mathbb{N}$ with m parts where $\sum_{\mathbf{i}=1}^{\mathbf{m}} \sigma_{\mathbf{i}}=\mathbf{n}$
- $[k]=\{1,2, \ldots, k\} ;[k]^{n}=$
set of all words of length \mathbf{n} over $[k]$
- Generalized pattern $\tau=$ word in $[\ell]^{k}$ that contains each letter from $[\ell]$, possibly with repetitions and dashes
- Classical pattern $=$ pattern with no adjacency requirement
- Consecutive or segmented pattern $=$ pattern with no dashes

$$
1-23-4
$$

$$
1-2-3-4
$$

Notation and Definitions

- $\mathbf{C}_{\mathbf{n}}^{\mathbf{A}}\left(\mathbf{C}_{\mathbf{n} ; \mathbf{m}}^{\mathbf{A}}\right)=$ the set of all compositions of n with parts in A (m parts in A)
- $\sigma \in C_{n}^{A}\left(C_{n ; m}^{A}\right)$ contains τ if σ contains a subsequence isomorphic to τ. Otherwise, σ avoids τ and we write $\sigma \in \mathbf{C}_{\mathbf{n}}^{\mathbf{A}}(\tau)\left(\sigma \in \mathbf{C}_{\mathbf{n} ; \mathbf{m}}^{\mathbf{A}}(\tau)\right)$

241874 contains five occurrences of 1-32
241874 avoids 312

- A $\mathbf{P O P} \tau$ is a word consisting of letters from a partially ordered alphabet \mathcal{T}
- If letters a and b are incomparable in a $\operatorname{POP} \tau$, then the relative size of the letters in σ corresponding to a and b is unimportant in an occurrence of τ in σ.

Note that comparable letters have the same number of primes.

Example

- Let $\mathcal{T}=\left\{1^{\prime}, 1^{\prime \prime}, 2^{\prime \prime}\right\}$ with the only relation $1^{\prime \prime}<2^{\prime \prime}$. Then 113425 contains three occurrences of $\mathbf{1}^{\prime} \mathbf{1}^{\prime \prime} \mathbf{2}^{\prime \prime}$ and seven occurrences of $\mathbf{1}^{\prime}-\mathbf{1}^{\prime \prime} \mathbf{2}^{\prime \prime}$
- 113425, 113425, 113425
- $113425,113425,113425,113425$

More Definitions and Notation

- A composition σ quasi-avoids a consecutive pattern τ if σ has exactly one occurrence of τ and the occurrence consists of the $|\tau|$ rightmost parts in σ

4112234 quasi-avoids 1123

5223411 and 1123346 do not quasi-avoid 1123

- Generating functions
$-\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x})=\sum_{\mathbf{n} \geq \mathbf{0}}\left|\mathbf{C}_{\mathbf{n}}^{\mathbf{A}}(\tau)\right| \mathbf{x}^{\mathbf{n}}$
$-\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x} ; \mathbf{m})=\sum_{n \geq 0}\left|C_{n ; m}^{A}(\tau)\right| x^{n}$
$-\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\sum_{m \geq 0} C_{\tau}^{A}(x ; m) y^{m}=\sum_{n, m \geq 0}\left|C_{n ; m}^{A}(\tau)\right| x^{n} y^{m}$
$-\mathbf{D}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\mathrm{gf}$ for the number of compositions in $C_{n ; m}^{A}$ that quasi-avoid τ

General Results

Lemma 1: Let τ be a consecutive pattern. Then

$$
\mathbf{D}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\mathbf{1}+\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathrm{y})\left(\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathrm{x}^{\mathbf{a}}-\mathbf{1}\right)
$$

Theorem 2: Suppose $\tau=\tau_{0}-\phi$, where ϕ is an arbitrary POP, and the letters of τ_{0} are incomparable to the letters of ϕ. Then for all $k \geq 1$, we have

$$
\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\mathbf{C}_{\tau_{0}}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})+\mathbf{D}_{\tau_{0}}^{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \mathbf{C}_{\phi}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})
$$

We will apply this results for two types of patterns: shuffle patterns and multi-patterns.

Proof of Theorem 2: To show:

$$
\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\mathbf{C}_{\tau_{\mathbf{0}}}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})+\mathbf{D}_{\tau_{\mathbf{0}}}^{\mathbf{A}}(\mathbf{x}, \mathbf{y}) \mathbf{C}_{\phi}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})
$$

Two possible cases:

- σ avoids $\tau_{0} \Rightarrow C_{\tau_{0}}^{A}(x, y)$
- σ does not avoid $\tau_{0} \Rightarrow \sigma=\sigma_{1} \sigma_{2} \sigma_{3}$ where
- $\sigma_{1} \sigma_{2}$ quasi-avoids the pattern τ_{0}
$-\sigma_{2}$ is order isomorphic to τ_{0}
- σ_{3} must avoid ϕ
$\Rightarrow D_{\tau_{0}}^{A}(x, y) C_{\phi}^{A}(x, y)$

Multi-patterns

Let $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{s}\right\}$ be a set of consecutive patterns.

- $\tau=\tau_{1}-\tau_{2^{-}} \cdots-\tau_{\mathbf{s}}$ is a multi-pattern if each letter of τ_{i} is incomparable with any letter of τ_{j} for $i \neq j$
- Simplest non-trivial multi-pattern is $\Phi=1^{\prime}-1^{\prime \prime} 2^{\prime \prime}$.

In this case we can derive the generating function directly:

- First letter can be any of the k letters in A
- All other letters have to be in non-increasing order

$$
\begin{aligned}
\mathbf{C}_{\mathbf{1}^{\prime}-\mathbf{1}^{\prime \prime} \mathbf{2}^{\prime \prime}}^{\mathbf{A}}(\mathbf{x}, \mathbf{y}) & =\mathbf{1}+\left(\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathrm{x}^{\mathbf{a}}\right) \prod_{\mathbf{a} \in \mathbf{A}}\left(\sum_{\mathbf{i} \geq \mathbf{0}}\left(\mathrm{x}^{\mathbf{a}} \mathbf{y}\right)^{\mathbf{i}}\right) \\
& =1+\frac{\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathrm{x}^{\mathbf{a}}}{\prod_{\mathbf{a} \in \mathbf{A}}\left(\mathbf{1}-\mathbf{x}^{\mathbf{a}} \mathbf{y}\right)} .
\end{aligned}
$$

General Results for Multi-Patterns

Theorem 3: let $\tau=\tau_{1}-\tau_{2} \cdots-\tau_{s}$ be a multi-pattern. Then

$$
\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})=\sum_{\mathbf{j}=1}^{\mathbf{s}} \mathbf{C}_{\tau_{\mathbf{j}}}^{\mathbf{A}}(\mathbf{x}, \mathrm{y}) \prod_{\mathbf{i}=1}^{\mathbf{j}-\mathbf{1}}\left[\left(\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathrm{x}^{\mathbf{a}-1}\right) \mathbf{C}_{\tau_{\mathbf{i}}}^{\mathbf{A}}(\mathbf{x}, \mathrm{y})+\mathbf{1}\right]
$$

Example:

Let $\tau=\tau_{1}-\tau_{2} \cdots-\tau_{s}$ be a multi-pattern such that τ_{j} is equal to either 12 or 21 , for $j=1,2, \ldots, s$. Since $C_{12}^{A}(x, y)=C_{21}^{A}(x, y)=\frac{1}{\prod_{a \in A}\left(1-x^{a} y\right)}$, we get

$$
\mathbf{C}_{\tau}^{\mathrm{A}}(\mathrm{x}, \mathrm{y})=\frac{1-\left(1+\frac{\mathbf{y} \sum_{\mathbf{a} \in \mathrm{A}} \mathrm{x}^{\mathbf{a}}-\mathbf{1}}{\prod_{\mathrm{a} \in \mathrm{~A}}\left(\mathbf{1}-\mathbf{x}^{\mathbf{a}} \mathbf{y}\right)}\right)^{\mathbf{s}}}{1-\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathrm{x}^{\mathbf{a}}}
$$

Equivalence of Patterns

- Reversal map $R(\sigma)=R\left(\sigma_{1} \sigma_{2} \ldots \sigma_{k}\right)=\sigma_{k} \sigma_{k-1} \ldots \sigma_{1}$
- Reversal map R and identity map I are called trivial bijections of $C_{n ; m}^{A}$ to itself
- τ_{1} and τ_{2} are equivalent, denoted by $\tau_{1} \equiv \tau_{2}$, if $\left|C_{n ; m}^{A}\left(\tau_{1}\right)\right|=\left|C_{n ; m}^{A}\left(\tau_{2}\right)\right|$ for all A, m and n.
- $\tau \equiv R(\tau)$ for any pattern τ
- $\{\tau, R(\tau)\}=$ symmetry class of τ

Results for Families of Multi-Patterns

Theorem 4: Let $\tau=\tau_{0}-\tau_{1}$ and $\phi=f_{1}\left(\tau_{0}\right)-f_{2}\left(\tau_{1}\right)$, where f_{1} and f_{2} are any of the trivial bijections. Then $\tau \equiv \phi$.

Theorem 5: Suppose we have multi-patterns $\tau=\tau_{1}-\tau_{2}-\cdots-\tau_{s}$ and $\phi=\phi_{1}-\phi_{2} \cdots-\phi_{s}$, where $\tau_{1} \tau_{2} \ldots \tau_{s}$ is a permutation of $\phi_{1} \phi_{2} \ldots \phi_{s}$. Then $\tau \equiv \phi$.

Results for Families of Multi-Patterns

Proof of Theorem 4: Show that $\tau=\tau_{0}-\tau_{1} \equiv \tau_{0}-f\left(\tau_{1}\right)$. If σ avoids τ, then either

- σ has no occurrence of τ_{0}, so σ also avoids $\tau_{0}-f\left(\tau_{1}\right)$
- σ can be written as $\sigma=\sigma_{1} \sigma_{2} \sigma_{3}$, where $\sigma_{1} \sigma_{2}$ has exactly one occurrence of τ_{0}, namely σ_{2}. Then σ_{3} must avoid τ_{1}, so $f\left(\sigma_{3}\right)$ avoids $f\left(\tau_{1}\right)$ and $\sigma_{f}=\sigma_{1} \sigma_{2} f\left(\sigma_{3}\right)$ avoids $\tau_{0}-f\left(\tau_{1}\right)$.
- Converse also true \Rightarrow bijection between class of compositions avoiding τ and those avoiding $\tau_{0^{-}} f\left(\tau_{1}\right)$.
- This result and properties of trivial bijections finish proof.

Proof of Theorem 5: By induction.

Non-Overlapping Occurrences of POPs

- Two occurrences of a pattern τ overlap if they contain any of the same parts of σ
- $\tau-\operatorname{nlap}(\sigma)=$ maximum number of non-overlapping occurrences of a consecutive pattern τ
- descent $=21$ occurs at position i if $\sigma_{i}>\sigma_{i+1}$
- Two descents at positions i and j overlap if $j=i+1$
- $\mathbf{M N D}=$ maximum number of non-overlapping descents
$\operatorname{MND}(333$ 211) $=1$ $\operatorname{MND}(1332111143$ 211) $=3$
- Results on statistic τ-nlap (σ) exist for permutations and words

Non-Overlapping Occurrences of POPs

Theorem 6: Let τ be a consecutive pattern. Then
$\sum_{\mathbf{n}, \mathbf{m} \geq \mathbf{0}} \sum_{\sigma \in \mathbf{C}_{\mathbf{n} ; \mathbf{m}}^{\mathrm{A}}} \mathbf{t}^{\tau-\operatorname{nlap}(\sigma)} \mathbf{x}^{\mathbf{n}} \mathbf{y}^{\mathbf{m}}=\frac{\mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})}{\mathbf{1 - t}\left[\left(\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{x}^{\mathbf{a}}-\mathbf{1}\right) \mathbf{C}_{\tau}^{\mathbf{A}}(\mathbf{x}, \mathbf{y})+\mathbf{1}\right]}$,
where τ-nlap (σ) is the maximum number of non-overlapping occurrences of τ in σ.

Remark: We only need to know the gf for the number of compositions avoiding τ.

Proof: Fix s and let $\Phi_{s}=\tau-\tau-\cdots-\tau$ with s copies of τ

- σ avoids $\Phi_{s} \Rightarrow \sigma$ has at most $s-1$ non-overlapping occurrences of τ
- Compute $C_{\Phi_{s+1}}^{A}(x, y)$ from general theorem for multi patterns
- gf for number of compositions with exactly s non-overlapping copies of τ is given by $C_{\Phi_{s+1}}^{A}(x, y)-C_{\Phi_{s}}^{A}(x, y)$
- Sum over s

Example:

- Apply theorem to descent pattern
- $C_{12}^{A}(x, y)=\frac{1}{\prod_{a \in A}\left(1-x^{a} y\right)}$
- distribution of $M N D$ is given by

$$
\begin{aligned}
\sum_{\mathbf{n}, \mathbf{m} \geq 0} & \sum_{\sigma \in \mathbf{C}_{\mathbf{n} ; \mathbf{m}}^{\mathrm{A}}} \mathrm{t}^{12-\operatorname{nlap}(\sigma)} \mathbf{x}^{\mathbf{n}} \mathbf{y}^{\mathbf{m}} \\
& =\frac{1}{\prod_{\mathbf{a} \in \mathbf{A}}\left(1-\mathbf{x}^{\mathbf{a}} \mathbf{y}\right)+\mathbf{t}\left(1-\mathbf{y} \sum_{\mathbf{a} \in \mathbf{A}} \mathbf{x}^{\mathbf{a}}-\prod_{\mathbf{a} \in \mathbf{A}}\left(1-\mathbf{x}^{\mathbf{a}} \mathbf{y}\right)\right)}
\end{aligned}
$$

- For $A=\{1,2\}$, distribution of $M N D$ on the set of compositions of n with parts in A is given by

$$
\frac{1}{(1-x)\left(1-x^{2}\right)-x^{3} t}=\sum_{s \geq 0} \frac{x^{3 s}}{(1-x)^{2 s+2}(1+x)^{s+1}} t^{s}
$$

Preprint available from my web site at sheubac@calstatela.edu
also at ArXiv (http://www.arxiv.org/pdf/math.CO/0610030)
to appear in "Pure Mathematics and Applications"

Thanks!

