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Abstract. We show that if R is a left Noetherian ring, then

lenR[x] = ω ⊗ lenR.

Here, for a Noetherian left module A, lenA is its ordinal valued length
as defined by Gulliksen [1], and ⊗ is the natural product on ordinal
numbers.

1. Introduction

One of the most studied themes of ring theory is that of the relationship
between a ring R and R[x], the ring of polynomials over R. One important
example of this is the following: If R is a left Noetherian ring then so is
R[x], and the left Krull dimensions of these rings are related by the equation
KdimR[x] = KdimR+1. For the definitions and the proofs of these claims
see [2, Ch. 13], [3] or [4, Ch. 6].

The size of a Noetherian module A is rather coarsely characterized by
its Krull dimension, KdimA. A more precise measure is its ordinal valued
length, lenA. This was first defined by Gulliksen [1], and is a generalization
of both Krull dimension and length in the usual sense. Specifically, if A has
finite length, then lenA has the usual meaning, and if lenA is written in
normal form, lenA = ωγ1 + ωγ2 + · · ·+ ωγn , where γ1 ≥ γ2 ≥ · · · ≥ γn are
ordinals, then KdimA = γ1. The advantage of the ordinal valued length
over Krull dimension is seen in the following cancellation result which is
trivial to prove using the ordinal length: If A, B and C are Noetherian
modules such that A⊕ C ∼= B ⊕ C, then lenA = lenB, and, in particular,
KdimA = KdimB. For the proof of these claims and further information
about the ordinal valued length, see [1] or [5].

The main theorem (3.1) of this paper says that if R is a left Noetherian
ring, then

lenR[x] = ω ⊗ (lenR).

Since the Krull dimensions of these modules are encoded in their lengths,
the equation KdimR[x] = KdimR+ 1 follows as a corollary.
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For a Noetherian module A, lenA is really a measure of the size of L◦(A),
the lattice of submodules of A ordered by reverse inclusion. This lattice
is Artinian, and the main theorem is a relatively easy consequence of a
theorem about Artinian partially ordered sets which we prove in Section 2.
Specifically, let K and L be partially ordered sets, ⇓K the set of lower sets
of K ordered by inclusion, and dec(K,L) the set of decreasing functions
from K to L. If ⇓K and L are Artinian, then dec(K,L) is Artinian. If, in
addition L is a modular lattice, or ⇓L is Artinian, or L contains a chain of
length lenL, then

len(dec(K,L)) = (len⇓K)⊗ (lenL).

As an corollary we have an easier proof of an old result: If ⇓K and ⇓L are
Artinian, then

len(⇓(K × L)) = (len⇓K)⊗ (len⇓L).

2. Artinian Partially Ordered Sets

Let Ord be the class of ordinal numbers, ω the smallest infinite ordinal,
Z

+ = {0, 1, 2, . . . } and N={1,2,3, . . . }. Any nonzero ordinal α can be
expressed uniquely in normal form, α = ωγ1 + ωγ2 + · · · + ωγn , where
γ1 ≥ γ2 ≥ · · · ≥ γn are ordinals. Since ωγn = ωγ + ωγ + . . .+ ωγ (n times)
when n ∈ N, it is possible to collect together terms in the normal form
which have identical exponents. Thus α can also be written uniquely in the
form α = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn where now γ1 > γ2 > · · · > γn and
n1, n2, . . . , nn ∈ N.

The natural sum ⊕ and natural product ⊗ of two ordinals are defined
essentially by operating on these normal forms as if they were polynomials
over a commutative ring. Thus, for example (ωω +ω3 +ω+1)⊕ (ω3 +ω) =
ωω +ω32 +ω2 + 1 and (ωω +ω3 +ω+ 1)⊗ (ω3 +ω) = ωω+3 +ωω+1 +ω6 +
ω42 + ω3 + ω2 + ω.

More formally
Definition 2.1. Let α and β be nonzero ordinals. With suitable re-labeling,
the normal forms for these ordinals can be written using the same strictly
decreasing set of exponents γ1 > γ2 > · · · > γn. Thus α = ωγ1m1+ωγ2m2+
· · ·+ωγnmn and β = ωγ1n1 +ωγ2n2 + · · ·+ωγnnn where ni,mi ∈ Z+. Then
the natural sum and natural product of α and β are defined by

α⊕ β =
∑
i

ωγi(mi + ni) α⊗ β =
⊕
ij

ωγi⊕γjminj .

In addition, we define 0 ⊕ α = α ⊕ 0 = α, and 0 ⊗ α = α ⊗ 0 = 0 for any
α ∈ Ord.
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The operations ⊕ and ⊗ are associative, commutative and cancellative:
(α ⊕ γ = β ⊕ γ =⇒ α = β) and (α ⊗ γ = β ⊗ γ =⇒ α = β). The
distributive law also holds: γ ⊗ (α⊕ β) = (γ ⊗α)⊕ (γ ⊗ β). If α and β are
finite ordinals then α ⊕ β = α + β and α ⊗ β = αβ and these operations
coincide with the usual addition and multiplication of natural numbers. For
further information on the natural sum and product see [6, p. 107], [7], or
[8, XIV - 28].

For our discussion of partially ordered sets we use the following notation:
Let L be a partially ordered set and x, y ∈ L. Then

{≤ x} = {z ∈ L | z ≤ x} {6≥ x} = {z ∈ L | z 6≥ x}
[x, y] = {z ∈ L | x ≤ z ≤ y}

When it exists, the maximum (minimum) element of L will be labelled >
(⊥).

A partially ordered set which satisfies the descending chain condition is
called well-founded by many and Artinian by some. The latter name
has the advantage of having an obvious dual for partially ordered sets which
satisfy the ascending chain condition, namely Noetherian.

A totally ordered set which is Artinian is well ordered. The size of a
well ordered set is very conveniently characterized by its order type which
is an ordinal number. The next lemma is used to provide an analogous
ordinal valued measure of the size of any Artinian partially ordered set.

Lemma 2.2. [5, Sect. 2][9, 3.2] Let L be an Artinian partially ordered
set. Then there is a unique function λL: L → Ord satisfying the following
equivalent conditions:

(1) λL is strictly increasing, and, if λ: L → Ord is a strictly increasing
function, then λL(x) ≤ λ(x) for all x ∈ L.

(2) λL is strictly increasing and for any x ∈ L and α ∈ Ord with
α ≤ λL(x), there is some y ≤ x such that α = λL(y).

(3) For all x ∈ L, λL(x) = sup{λL(y) + 1 | y < x}.
The ordinal λL(x) has various names in the literature: the rank, height

[9],[10] or length [5] of x.
The image λL(L) is an initial segment of Ord so it is natural to define

the rank, height or length of L to be the ordinal type of λL(L). This is
done for example in [9]. In this paper we define the length of L only if L
has a maximum element:

Definition 2.3. An Artinian partially ordered set L is bounded if it
has a maximum element >. In this case, we define the length of L by
lenL = λL(>).
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The following properties are basic:

Lemma 2.4. Let L and K be bounded Artinian partially ordered sets.

(1) The order type of λL(L) is lenL+ 1.
(2) If σ: K → L is strictly increasing, then lenK ≤ lenL.
(3) If x ∈ L, then len{≤ x} = λL(x) and len{≤ x}+ len[x,>] ≤ lenL.
(4) K×L is a bounded Artinian partially ordered set, and for all (x, y)

in K × L, we have λK×L(x, y) = λK(x)⊕ λL(y). In particular,

len(K × L) = (lenK)⊕ (lenL).

Proof. The proofs of 1-3 are easy [5, 2.6], and in any case, 2 follows easily
from 2.2(1). For 4, see [9, 4-7.2], [5, 2.9] or [11]. �

If α ∈ Ord, then λ{≤α} is the identity map on {≤ α}, and so, in partic-
ular, len{≤ α} = α. This, together with 2.4(4), provides a useful charac-
terization of the natural sum: If α, β ∈ Ord, then

α⊕ β = len({≤ α} × {≤ β}).

For example, if γ < α⊕ β, then from 2.2(2) there must be some (α′, β′) <
(α, β) such that γ = α′ ⊕ β′. We will use this fact in proving Lemma 2.6.

A nonzero ordinal α is decomposable if there are ordinals β1, β2 < α
such that β1 + β2 = α, otherwise α is indecomposable. Using normal
forms it is easy to show the following:

Lemma 2.5. For nonzero α ∈ Ord the following are equivalent:

(1) α is indecomposable
(2) (∀β1, β2 ∈ Ord) (β1, β2 < α =⇒ β1 + β2 < α)
(3) (∀β1, β2 ∈ Ord) (β1, β2 < α =⇒ β1 ⊕ β2 < α)
(4) α = ωγ for some γ ∈ Ord

Lemma 2.6. If α and β are indecomposable ordinals, then

α⊗ β = sup{α′ ⊗ β′ | (α′, β′) < (α, β)}.

Proof. Let α = ωδ and β = ωε. Then α ⊗ β = ωδ⊕ε is a limit ordinal, so
α⊗ β = sup{µ | µ < α⊗ β}. To prove the claim it suffices to show that for
any µ < α⊗ β, there is some (α′, β′) < (α, β) such that µ ≤ α′ ⊗ β′.

If the normal form for µ has leading term ωγ and n terms, we have
µ ≤ ωγn and also γ < δ⊕ε. From above, γ = δ′⊕ε′ for some (δ′, ε′) < (δ, ε).
We have two cases: If δ′ < δ, then set α′ = ωδ

′
n < ωδ = α and β′ = ωε

′ ≤
ωε = β. If ε′ < ε, then set β′ = ωε

′
n < ωε = β and α′ = ωδ

′ ≤ ωδ = α. In
either case we have (α′, β′) < (α, β) and µ ≤ ωγn = α′ ⊗ β′. �
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We next consider the special case of modular lattices. A lattice is a
partially ordered set L such that every pair of elements, x, y ∈ L, has a
supremum, x ∨ y, and an infimum, x ∧ y. A lattice L is modular if

x1 ≤ x2 =⇒ (x1 ∨ y) ∧ x2 = x1 ∨ (y ∧ x2)

for all x1, x2, y ∈ L. Any Artinian lattice has a least element ⊥, and, if
bounded, has a maximum element >. A bounded Artinian modular lattice
L is critical if lenL = ωγ for some γ ∈ Ord. A critical series for a
bounded Artinian modular lattice L, is a sequence ⊥ = z0 < z1 < · · · <
zn = > in L such that len[zi−1, zi] = ωγi for all i, and γ1 ≥ γ2 ≥ · · · ≥ γn.

The most important property of a bounded Artinian modular lattice L
is that if x ∈ L then lenL is controlled by len[⊥, x] and len[x,>]:
Lemma 2.7. [5, 3.2(1)] Let x be an element of a bounded Artinian modular
lattice L. Then

len[⊥, x] + len[x,>] ≤ lenL ≤ len[⊥, x]⊕ len[x,>].

The first inequality is just 2.4(3). Consideration of when these inequali-
ties are, in fact, equalities gives the following lemma:
Lemma 2.8. [5, 3.8] Let L be a bounded Artinian modular lattice. Then
the following are equivalent

(1) lenL = ωγ1 + ωγ2 + · · ·+ ωγn in normal form.
(2) L has a critical series ⊥ = z0 < z1 < · · · < zn = > with len[zi−1, zi] =

ωγi for i = 1, 2, . . . , n.
Definition 2.9. Let L be a partially ordered set. A lower set of L is a
subset D ⊆ L such that

x ≤ y ∈ D =⇒ x ∈ D
for all x, y ∈ L. We write ⇓L for the set of lower sets of L ordered by
inclusion. ⇓L has minimum element ⊥ = ∅ and maximum element > = L.
Since the union and intersection of a set of lower sets are also lower sets,
⇓L is a complete distributive lattice. In particular, ⇓L is a modular lattice
[12, I and V].

Note that for any x ∈ L, both {≤ x} and {6≥ x} are lower sets of L.
The following is standard. See for example [13, 2.21], [14], [15], [16, 1.4].

Lemma 2.10. Let L be a partially ordered set. Then the following are
equivalent:

(1) ⇓L is Artinian.
(2) For every infinite sequence (an)n∈N in L there are i < j such that

ai ≤ aj.
(3) L is Artinian and contains no infinite antichains.
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(4) Every nonempty subset of L has a nonzero finite number of minimal
elements.

(5) Every infinite subset of L contains an infinite strictly increasing
sequence.

(6) Every infinite sequence in L contains an infinite increasing subse-
quence.

A partially ordered set satisfying the conditions of this lemma is often
called a well partial ordering in the literature. Notice that from 3 and 5 of
this lemma, if L is Artinian, Noetherian and contains no infinite antichains,
then L is finite.
Definition 2.11. Let K and L be partially ordered sets. We will write
dec(K,L) for the set of decreasing functions from K to L ordered in the
usual way: σ1 ≤ σ2 if σ1(x) ≤ σ2(x) for all x ∈ K.

Of course, dec(K,L) is a partially ordered set. It is easy to see that
dec(K,L) is bounded (a lattice, a modular lattice) if L is bounded (a lattice,
a modular lattice).
Lemma 2.12. Let K and L be partially ordered sets.

(1) ⇓(K × L) ∼= dec(K,⇓L) ∼= dec(L,⇓K).
(2) If ⇓K and ⇓L are Artinian, then ⇓(K × L) is Artinian.
(3) If ⇓K and L are Artinian and σ ∈ dec(K,L), then σ(K) is finite.
(4) If ⇓K and L are Artinian, then dec(K,L) is Artinian.

Proof.
(1) We define maps Φ: ⇓(K×L)→ dec(K,⇓L) and Ψ: dec(K,⇓L)→
⇓(K × L) as follows: For D ∈ ⇓(K × L), let

Φ(D)(x) = {y ∈ L | (x, y) ∈ D}

for x ∈ K. For σ ∈ dec(K,⇓L), let

Ψ(σ) = {(x, y) ∈ K × L | y ∈ σ(x)}.

It is routine to check that Φ and Ψ are inverse order isomorphisms.
(2) This easily follows from 2.10(6): Any infinite sequence in K × L

has a subsequence in which the first entries are increasing. Then
this subsequence has a subsequence in which the second entries are
increasing too.

(3) Applying 2.10(2) toK we see that for any infinite sequence (σ(an))n∈N
in σ(K) there are i < j such that σ(ai) ≥ σ(aj). Thus from the
dual version of 2.10(2 and 3), σ(K) is Noetherian and contains no
infinite antichains. Being a subset of L, σ(K) is also Artinian. As
we noted above, this implies σ(K) is finite.
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(4) Let σ1 ≥ σ2 ≥ . . . be a decreasing sequence of functions in dec(K,L).
Define σ: N×K → L by σ(n, x) = σn(x). It is easy to confirm that
σ is a decreasing function. Since ⇓N and ⇓K are Artinian, so is
⇓(N × K) and hence, from 3, Y = σ(N × K) is finite. For y ∈ Y ,
define Uy = σ−1(y). Then Uy is a nonempty subset of N × K and
so has a finite set of minimal elements Xy. Set X = ∪y∈YXy, a
finite subset of N×K.

Now choose N greater than any n′ ∈ N such (n′, x′) ∈ X for
some x′ ∈ K. We will show that σn = σN for all n ≥ N . Let
x ∈ K and y = σn(x) ∈ Y . Then (n, x) ∈ Uy, so there is some
(n′, x′) ∈ Xy such that (n′, x′) ≤ (n, x). In particular, x′ ≤ x. We
now have (n′, x′) ≤ (N,x) ≤ (n, x), and since σ is decreasing,

y = σ(n, x) ≤ σ(N,x) ≤ σ(n′, x′) = y.

Thus σn(x) = σN (x).
�

It is worth noticing that the converses of 2 and 4 are almost always true:
⇓K embeds in ⇓(K × L) via the map D 7→ D × L. Therefore if ⇓(K × L)
is Artinian, then so are ⇓K and, by symmetry, ⇓L. The lattice L embeds
in dec(K,L) as the set of constant maps, so if dec(K,L) is Artinian, then
L is too.

If L is an antichain, then dec(K,L) is an antichain (and hence is Artinian)
for any K whatsoever. If L is not an antichain, containing elements y1 < y2

say, then ⇓K embeds in dec(K,L) via the map D 7→ σD where

σD(x) =

{
y2 if x ∈ D
y1 if x 6∈ D

for x ∈ K. Thus if L is not an antichain and dec(K,L) is Artinian, then
⇓K is Artinian.
Theorem 2.13. Let K be a partially ordered set such that ⇓K is Artinian,
and L a bounded Artinian modular lattice. Then

len(dec(K,L)) = (len⇓K)⊗ (lenL).

Proof. Notice that ⇓K, L and dec(K,L) are bounded Artinian modular
lattices, so 2.8 applies to each. Proof is by induction on the pair of ordinals
(len⇓K, lenL) = (α, β) in Ord×Ord. The induction starts with the case
(len⇓K, lenL) = (1, 0) where L, K and dec(K,L) contain one element each.
Since len dec(K,L) = 0, the claim is trivially true.

For the induction step we have two cases:
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• Suppose that at least one of the ordinals α or β is decomposable.
Let α = ωγ1 +ωγ2 + · · ·+ωγm in normal form, and ∅ = D0 < D1 <
· · · < Dm = K be a critical series for ⇓K. Let β = ωδ1 +ωδ2 + · · ·+
ωδn in normal form, and ⊥ = z0 < z1 < · · · < zn = > be a critical
series for L.

Let F be the set of functions in dec(K,L) which are constant
on the sets D1 \ D0, D2 \ D1, . . . , Dm \ Dm−1 and whose image
is in {z0, z1, . . . , zn}. These functions are best described using a
diagram as below. For simplicity we have chosen m = 3 and n = 2.

L

z2

OO

ωγ1⊕δ2 ωγ2⊕δ2 ωγ3⊕δ2

z1

ωγ1⊕δ1 ωγ2⊕δ1 ωγ3⊕δ1

z0

D1 \D0 D2 \D1

//

D3 \D2

⇓K

For example, the solid line is the graph of the function σ ∈ F
defined by

σ(x) =

{
z2 if x ∈ D1

z1 if x ∈ D3 \D1.

The (i, j) entry in the diagram is ωγi⊕δj .
We will prove that for any σ ∈ F, len[⊥, σ] is the natural sum

of all the entries in the diagram which lie below the graph of
σ. In particular, since > ∈ dec(K,L) is in F, this implies that
len(dec(K,L)) is the natural sum of all the entries in the diagram,
that is, len(dec(K,L)) = α⊗ β.

The proof of this claim is by a further induction, this time on
the number of squares below the graph of σ ∈ F. If the number
squares is zero then σ = ⊥ ∈ dec(K,L) and so len[⊥, σ] = 0.

Now suppose the number of squares below the graph of σ is not
zero. Pick one of these squares whose entry ωγi⊕δj is minimum.
Since the entries in the squares are decreasing from left to right
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and from bottom to top, this square can, in addition, be chosen so
that its right and top edges are on the graph of σ.

Let σ′ ∈ F be the function whose graph is the same as that
of σ except that the right and top edges of the chosen square are
replaced by the left and bottom edges. Thus, σ′ has one less square
under its graph than σ and σ′ < σ.

It is easy to see that [σ′, σ] is isomorphic to dec(Di\Di−1, [zj−1, zj ]).
Moreover, ⇓(Di \Di−1) ∼= [Di−1, Di] ⊆ ⇓K, and hence

len⇓(Di \Di−1) = len[Di−1, Di] = ωγi .

Since (ωγi , ωδj ) < (α, β) we have

len[σ′, σ] = len dec(Di \Di−1, [zj−1, zj ])

= (len⇓(Di \Di−1)⊗ (len[zj−1, zj ])

= ωγi ⊗ ωδj = ωγi⊕δj ,

which is the entry in the diagram representing the difference of the
two graphs.

By induction, len[⊥, σ′] is the natural sum of all the entries in the
diagram which lie below the graph of σ′. Since ωγi⊕δj is less than
or equal to these entries, we have len[⊥, σ′] + ωγi⊕δj = len[⊥, σ′]⊕
ωγi⊕δj , and hence len[⊥, σ′]+len[σ′, σ] = len[⊥, σ′]⊕len[σ′, σ]. But,
applying 2.7 to the lattice [⊥, σ], we also have

len[⊥, σ′] + len[σ′, σ] ≤ len[⊥, σ] ≤ len[⊥, σ′]⊕ len[σ′, σ].

Hence these inequalities are equalities and len[⊥, σ] = len[⊥, σ′] ⊕
len[σ′, σ] is the natural sum of all the entries in the diagram which
lie below the graph of σ.
• Suppose that both α and β are indecomposable. We will show

first that α ⊗ β ≤ len(dec(K,L)). From 2.6 it suffices to show
α′ ⊗ β′ ≤ len(dec(K,L)) for all (α′, β′) < (α, β):

From 2.2(2) there are D ∈ ⇓K such that λ⇓K(D) = α′, and
x ∈ L such that λL(x) = β′. By induction and 2.4(3) we have
len(dec(D, [⊥, x]) = α′ ⊗ β′. Since dec(D, [⊥, x]) is contained in
dec(K,L) we have α′ ⊗ β′ ≤ len(dec(K,L)) as required.

For the opposite inequality, it suffices to show that for any σ ∈
dec(K,L) with σ < >, we have len[⊥, σ] < α⊗ β.

Since σ < >, there is some x ∈ K such that σ(x) 6= > in L. Set
β′ = λL(σ(x)) < β and D = {6≥ x} ∈ ⇓K. Since x 6∈ D we have
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α′ = λ⇓K(D) < α. Define σ′ ∈ dec(K,L) by

σ′(y) =

{
> if y ∈ D
σ(x) if y 6∈ D

and notice that σ ≤ σ′ < >. We calculate a bound for len[⊥, σ′]
using the sequence ⊥ < σ′′ < σ′ where σ′′ is the constant func-
tion on K with image σ(x). We have [⊥, σ′′] = dec(K, [⊥, σ(x)])
and so len[⊥, σ′′] = α ⊗ β′. The interval [σ′′, σ′] is easily seen
to be isomorphic with dec(D, [σ(x),>]). Hence len[σ′′, σ′] = β′ ⊗
(len[σ(x),>]) ≤ β′ ⊗ α. Applying 2.7 to the lattice [⊥, σ′] we get
len[⊥, σ′] ≤ len[⊥, σ′′]⊕ len[σ′′, σ′]. Thus finally,

len[⊥, σ] ≤ len[⊥, σ′] ≤ len[⊥, σ′′]⊕ len[σ′′, σ′]

≤ (α⊗ β′)⊕ (β′ ⊗ α) < α⊗ β

Since α⊗ β is indecomposable and α⊗ β′, β′ ⊗ α < α⊗ β, the last
inequality follows from 2.5.

�

Corollary 2.14. Let K be a partially ordered set such that ⇓K is Artinian,
and L a bounded Artinian partially ordered set. Then

len(dec(K,L)) ≤ (len⇓K)⊗ (lenL)

with equality in the following situations:
(1) L is a modular lattice.
(2) L contains a chain of length lenL.
(3) ⇓L is Artinian.
(4) lenL is finite.

Proof. It is easy to see that the strictly increasing map λL: L → {≤ lenL}
induces a strictly increasing map from dec(K,L) to dec(K, {≤ lenL}). Since
{≤ lenL} is trivially a modular lattice, we have from 2.4(2) and 2.13 that
len(dec(K,L)) ≤ len(dec(K, {≤ lenL}) = (len⇓K)⊗ (lenL).

(1) From 2.13.
(2) A strictly increasing map from {≤ lenL} to L induces a strictly

increasing map from dec(K, {≤ lenL}) to dec(K,L). Thus, from
2.4(2) and 2.13, len(dec(K,L)) ≥ len(dec(K, {≤ lenL}) = (len⇓K)⊗
(lenL).

(3) For any ordinal α ∈ λL(L), the inverse image λ−1
L (α) is an an-

tichain, so by 2.10(3) is finite. It then follows from [9, 4-4.5] that
L contains a chain of length lenL. The claim then follows from 2.
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(4) If lenL is finite, then L contains a chain of length lenL, and the
claim follows from 2.

�

Corollary 2.15. Let K and L be partially ordered sets such that ⇓K and
⇓L are Artinian. Then

len(⇓(K × L)) = len(⇓K)⊗ len(⇓L).

Proof. This follows directly from 2.12(1) and 2.13. �

This corollary is also a simple consequence (as pointed out in [9] and [10,
5.4]) of a theorem of De Jongh and Parikh [17, 3.5].

It is easy to check that for α ∈ Ord, we have ⇓{< α} ∼= {≤ α} and
hence len(⇓{< α}) = α. Thus, from 2.15, we have another characterization
of the natural product of ordinals: If α, β ∈ Ord, then

α⊗ β = len⇓({< α} × {< β}).
This parallels the characterization of the natural sum:

α⊕ β = len({≤ α} × {≤ β}).

3. Noetherian Modules and Polynomial Rings

Let A be a Noetherian left module over a ring R and L(A) the lattice
of submodules of A (ordered by inclusion). Then the dual of this lattice,
L◦(A), is a bounded modular Artinian lattice. In particular, using 2.3 we
can define the length of A by lenA = len(L◦(A)). For a discussion of the
basic properties of this measure of the size of Noetherian modules see [1]
and [5].

If R is a left Noetherian ring, then so is R[x], the polynomial ring over
R. Thinking of R and R[x] as left modules over themselves we define lenR
and lenR[x] as above.

The main theorem of this paper, which follows, relates these two lengths.
Its proof is a version of the usual proof of the Hilbert Basis Theorem:
Theorem 3.1. If R is a left Noetherian ring, then

lenR[x] = ω ⊗ lenR.

Proof. We define a map Φ: L◦(R[x]) → dec(Z+,L◦(R)) as follows: For a
left ideal I of R[x], let

Φ(I)(n) = {an | a0 + a1x+ . . .+ anx
n ∈ I}

for n ∈ Z+. It is routine to check that Φ(I)(n) is a left ideal of R, and that
Φ(I)(0) ≤ Φ(I)(1) ≤ Φ(I)(2) . . ., that is, Φ(I) ∈ dec(Z+,L◦(R)).
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We now show that Φ is a strictly increasing function: Since it is clear
that Φ is increasing it suffices to show that if J ≤ I ≤ R[x] are such that
Φ(I) = Φ(J), then I = J .

Suppose not. Let f = a0 + a1x+ . . .+ anx
n be a polynomial of smallest

degree in I \ J . Since an ∈ Φ(I)(n) = Φ(J)(n), there is some polynomial
g ∈ J ≤ I having anxn as its leading term. Since both f and g are in I,
so is f − g. The degree of f − g is less than n, so by the minimality of n,
f − g ∈ J . But this implies f ∈ J , which is contrary to assumption.

Applying 2.4(2) to the map Φ and using 2.13 we get

lenR[x] = lenL◦(R[x]) ≤ len(dec(Z+,L◦(R)))

= (len⇓Z+)⊗ (lenL◦(R)) = ω ⊗ lenR.

To prove the opposite inequality we define a map Ψ: dec(Z+,L◦(R))→
L◦(R[x]). For σ ∈ dec(Z+,L◦(R)), let

Ψ(σ) = {a0 + a1x+ . . .+ anx
n | n ∈ Z+ and ai ∈ σ(i) for all i ≤ n}.

It is routine to check that, since σ is decreasing, Ψ(σ) ∈ L◦(R[x]). Since Ψ
is strictly increasing, we can apply 2.4(2) and 2.13 as above to get lenR[x] ≥
ω ⊗ (lenR). �

As mentioned in the introduction, the Krull dimensions of R and R[x]
are encoded in their lengths as the degree of the normal forms. With a small
amount of ordinal arithmetic, the reader can easily show that KdimR[x] =
KdimR+ 1 follows from 3.1.

Of course, we have R[x1, x2, . . . , xn] ∼= R[x1][x2] . . . [xn] and so

Corollary 3.2. If R is a left Noetherian ring, then

lenR[x1, x2, . . . , xn] = ωn ⊗ lenR.

4. Conjecture and Speculation

The polynomial rings R[x] and R[x1, x2, . . . , xn] are examples of monoid
rings. These are constructed as follows:

Let R be a ring, and M a commutative monoid, whose operation we
will write additively. Then the monoid ring R[M ] is the set of functions
from M to R which have finite support, that is f : M → R is in R[M ] if
f(m) = 0 for all but a finite number of elements m ∈ M . Addition and
multiplication of elements of R[M ] are defined by (f+g)(m) = f(m)+g(m)
and (fg)(m) =

∑
m1+m2=m f(m1)g(m2) for f, g ∈ R[M ]. It is routine to

check that R[M ] with these operations is a ring.
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If M = Z
+ with addition as monoid operation, then R[M ] ∼= R[x],

and if M = (Z+)n = Z
+ × Z+ × . . . × Z+ (n factors), then R[M ] ∼=

R[x1, x2, . . . , xn].
In view of 3.1 and 3.2, it is natural to speculate that there ought to be

a class of monoids such that, if R is left Noetherian, then so is R[M ] and

lenR[M ] = l(M)⊗ (lenR)(1)

where l(M) is some ordinal valued measure of the size of M . Evidently,
l(Z+) = ω and l((Z+)n) = ωn. In general, for any monoid M of this type,
l(M) = len k[M ] where k is any field.

Is l(M) the length of some Artinian partially ordered set? Certainly any
commutative monoid M has a preorder defined by a ≤ b if a+c = b for some
c ∈M . This is called the algebraic preorder or the minimal preorder
on M . Both Z+ and (Z+)n are in fact partially ordered by ≤, and it seems
that the same must be true of any M satisfying (1). For example, let M
be the cyclic group with three elements. Then a ≤ b ≤ a for any a, b ∈ M
so ≤ is not a partial order on M . For the field of complex numbers C we
have C[M ] ∼= C

3 and hence lenC[M ] = 3, and for the field of real numbers
R we have R[M ] ∼= C×R and hence lenR[M ] = 2. Thus M cannot satisfy
(1).

One half of the proof of 3.1 generalizes easily to monoid rings if (M,≤)
is partially ordered:
Lemma 4.1. Let R be a nontrivial ring and M a commutative monoid
such that ≤ is a partial order. If R[M ] is left Noetherian, then R is left
Noetherian, ⇓M is Artinian and

lenR[M ] ≥ (len⇓M)⊗ (lenR).

Proof. The ring R is the image of R[M ] under the ring homomorphism
f 7→

∑
m∈M f(m). Hence, if R[M ] is left Noetherian, then so is R.

For a lower set D ⊆ M , let ID = {f ∈ R[M ] | f(D) = {0}}. It is easy
to check that ID is a left ideal of R[M ] and that the map D 7→ ID is an
embedding of ⇓M in L◦(R[M ]). Since L◦(R[M ]) is Artinian, so is ⇓M .

Following the pattern in 3.1, we define Ψ: dec(M,L◦(R)) → L◦(R[M ])
by

Ψ(σ) = {f ∈ R[M ] | f(m) ∈ σ(m) for all m ∈M}
for σ ∈ dec(M,L◦(R)). As in 3.1, Ψ is strictly increasing, so from 2.4(2)
and 2.13 we get

lenR[M ] ≥ (len⇓M)⊗ (lenR).

�
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This suggests that l(M) from (1) might be the length of the Artinian par-
tially ordered set ⇓M . Indeed len(⇓Z+) = ω and, from 2.15, len(⇓(Z+)n) =
ωn, so we have

lenR[M ] = (len⇓M)⊗ (lenR)(2)

when M is Z+ or (Z+)n.
The other half of the proof of 3.1 makes use of the fact that Z+ is

cancellative and well ordered. It follows then from this proof that (2) is
true of any cancellative commutative monoid M such that (M,≤) is well
ordered. Unfortunately an easy exercise shows that the only such monoids
are Z+ and the trivial monoid {0}.

Of course the example M = (Z+)n shows that (2) may be true for
monoids which are not totally ordered. There are also examples of noncan-
cellative monoids for which (2) is true:

Example 4.2. Let M be a finite monoid such that ≤ is a total order,
M = {m1,m2,m3, . . . ,mn} say, in increasing order. Then m1 = 0 and
mi + mn = mn for all i, so M is cancellative only if it is trivial. We also
have len⇓M = |M | = n.

For a left ideal I ∈ L◦(R[M ]) define a map Φ(I) from M to L◦(R) by

Φ(I)(m) = {f(m) | f ∈ I and f(m′) = 0 for all m′ > m}

for m ∈ M . We have no reason to expect that Φ(I) is a decreasing map,
but we can certainly consider Φ as a map from L◦(R[M ]) to (L◦(R))n.
Moreover, the same argument used in 3.1 shows that Φ is strictly increasing.
From 2.4(2, 4) and 2.13, we then get

lenR[M ] = lenL◦(R[M ])

≤ len(L◦(R))n

= lenL◦(R)⊕ lenL◦(R)⊕ . . .⊕ lenL◦(R) (n times )

= (len⇓M)⊗ lenR

The opposite inequality is directly from 4.1.

This example also suggests that lenR[M ] depends only on the order
induced by the monoid operation, and that other details of the monoid
operation are irrelevant.

The above discussion leads one to conjecture that (2) is true for all
monoids M such that ≤ is a partial order. More precisely,

Conjecture 4.3. Let R be a nontrivial ring and M a commutative monoid
such that ≤ is a partial order. Then R[M ] is left Noetherian if and only if
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R is left Noetherian and ⇓M is Artinian. Moreover, in this circumstance,

lenR[M ] = (len⇓M)⊗ (lenR).
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