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Dynamics

Kinetics
Unbalanced Forces "

i

Kinematics

Kinematics - deals with motion alone apart from considerations of
force and mass.

Kinetics - relates unbalanced forces with changes in motion.

Kinematics of Particles

Rectilinear Motion of a Particle

.0 f Position coordinate
| ™ > (Rectilinear displacement): x = f(t) = x = x(¢)
| >
i Velocity: v = @ _ X
dt
dv d’x .

Acceleration: a=—=—>=1x
dr dt

Suppose v =v(x); apply “Chain Rule”:

dv _ dv dx dv

a=—— — a=—vV

dr dx dr dx

Determination of Motion of a Particle

Integrate differential relations:

dx =vdt
dv =adt
vdv =adx



Angular Motion of a Line

Rigid
body Angular position coordinate
moving (Angular displacement): 0= f(t)
in plane
: 0
Angular velocity: w=—=60
dt
+ 6 2 .
/ Angular acceleration: o = do = d—? =0
A N dt dt
R Reference
/7S
Differential relations:
do=wdt
dow=oadt
wdw=adb

Note analogy with rectilinear motion.
Two common cases:
1. Acceleration a = constant, or a = constant
2. Acceleration a= f(t), or a= f(1)

See motion equations in the 10.2 Handbook on pp. 117-118.

Curvilinear Motion of a Particle

Vectors will be denoted by upright boldface letters, e.g., r.
Vectors will be denoted by underlined letters in handwriting, e.g., r.

Scalar component of vector r will be denoted by italic r.



y v (tangent to path) Position vector: r =r(z)

(Vector function)
a P
. dr .
Velocity: v=—=r
Path dt
r
. v dr .
Acceleration: a=—=—-=F
dt dt
X
0
Rectangular Components
y
Position vector: r =xi+ yj+zk
i Velocity: v=xi+yj+zk
0 > X Acceleration: a = xi+ yj+ 7k
i
Kk . v, =X, etc.
We write: ~
5 a, =X, etc.

Application: See projectile motion in the 10.2 Handbook on p. 118.

Motion Relative to Translating Reference Axes

y y’

“Translating” means x’ -y’ axes
A move but remain parallel to
X -y axes.

ry=Ip+T,;

I, =Ig+T,

X Va=Vp+Vup

a, =a;+a,;



Tangential and Normal Components

|CP|= p =radius of curvature

Center of
curvature

_—

e, = unit vector tangent to path
e, = unit vector normal to path
pointing to C

s = directed distance along path

0
dr ds
=—=""¢e, =ve,
dt dt
dv dvr d’s v2 dv v2

=ae,+a¢€ =a +a,

Radial and Transverse Components

Polar coordinates of P: (r, 6)

unit vector in r direction

(¢
Il

(¢
<
I

unit vector perpendicular to r

in direction of increasing 60

r=re,
V=1"=ifer+r9e0
a=V=i‘=(f—r92)e,,+(ré+2f9)e9
V. =7 v6=r9

a, =i-r6’ a0=ré+2i’9



If path is a circle, then r = constant, 77 =#=0,

v=roe,

a=-r0%, +rfe,
Kinetics of Particles: Newton’s Second Law

EF =ma (Equation of motion)

where
EF = resultant force

m = mass of particle
a = absolute acceleration, measured in a

newtonian frame of reference (inertial system)

Graphical Representation of Newton's 2nd Law

F,

—

P
Free-body diagram Kinetic diagram (KD)
(FBD) (Mass-acceleration diagram)
Units
Quantity
Length Time Mass Force
System
SI m s kg N= kg-g2
s
S2
USCS ft S slug =1b- o Ib
t




In either system, W = mg, where

W = weight

g = acceleration due to gravity

At surface of earth: (SI) g=9.807 m/s?
(USCS) g=32.174 ft/s?

AVOID: Ibf, lbm

E

uations of Motion: Rectangular Components

y DF,

y ma,
F — ma,_
P E x — P
X X
0 0
FBD KD
EFX =ma,
EFy =ma,
Equations of Motion: Tangential and Normal Components
y EF" y ma

o

n

\ ma,

P

FBD

KD



Equations of Motion: Radial and Transverse Components

J EFG 4 ma,

\ DF, / ma,

P —
Path

FBD KD

Kinetics of Particles: Energy Methods

Position 2

The work done by F on the particle
during a finite movement of the
particle along a curved path from
position 1 to position 2is U, _, :

U._,= f :F -dr  (Line integral)

[t can be shown:

U, = [ Fds
1

2 1 2
=—my, ——my,
2

2
Let T= %mv2 = kinetic energy of particle
Then,
U,=T,-T,
=AT
0 X oor T,=T+U,_,

Above result is the principle of work and energy. Units: (SI) N-m =J; (USCS) ft-lb



Work Done on Particle by Gravitational Force

y

Upa == [, W dy =~(Wh, - Wh)

Let V, =Wy =mgy = gravitational
potential energy
of particle

X Then, U,_, =-{(V,) -(V
0 en, ‘%2__[( 8’)2_( g)l]

—-AV

8

Note U,_, isindependent of path from 1 to 2. For this reason W is called

a conservative force.

Work Done on Particle by a Linearly-Elastic Spring Force

Let k= spring constant
x = spring elongation
F, = kx = spring force

Then,
Upy=-[ Fdx=-["kxdx
Path ={%h§—%mﬂ

1
Let V, = Ekx2 = elastic potential energy

of particle
Undeformed
length of
si)r;%ng ° Then, U, = _[(Ve)z - (Ve)l]
=-AV,

Note U,_, isindependent of path from 1 to 2. For this reason F, is called

a conservative force.



Summary
The work-energy equation can now be written as:

U_,=AT+AV, +AV,

where U, _,, is the work done on the particle by forces other than
gravitational and spring forces.

If U,., above is zero, then:

TL+(V,),+(V.), =T +(v,) +(V.),

e

This is the law of conservation of total mechanical energy.

Power and Efficiency

Power is the time rate of doing work by a force on a particle.

ft-1b
S

Power=F ‘v Units: (SI) N-m/s=1J/s=W; (USCS) hp = 550

ower output . ..
= u = mechanical efficiency
power 1nput

Kinetics of Particles: Momentum Methods

Recall Newton’s 2nd law:

F =ma= E(mv)

where F = resultant force

mv = linear momentum of particle

0

Define angular momentum H,, of particle about O:

H, =rxmv

10



Then, H, =rxma=rxF=M,
or M,=H,
where M, = sum of the moments about O of

all forces acting on particle

Equations of Impulse and Momentum

What is the cumulative effect of integrating F and M, with respect to time
over an interval from ¢, to t,?

:2th = f:vvlz d(mv)=mv, - mv,
or mv, + f:det =mv,
1

Graphical interpretation:

1 Zy I
‘Fdt v
+ t m 2
|_ ) —
0

{-l’lltlal Linear l_31nal
inear impulse linear
momentum momentum

or (mvx)1 +[°F dt=(mvx)2

Units: (SI) kg == N-s; (USCS) Ib-s
S

Recall M, = dH,
dt
12) (Ho)z
| Modt = f(Ho)l dHo = (Ho)z - (H0)1
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or (H,)+ [ M,di=(H,),

Initial Angular Final
angular + impulse — angular
momentum momentum

2
Units: (SI) kg = N-m-s; (USCS) Ib-ft-s
S

Extension to System of n Particles

Let Emv = imivi
i=1

ot .
. .
““““
. .
. - .
. .
.
. .
. .
“““
. .

Sum of all Sum of all Sum of all

initial linear final
linear impulses linear
momenta from external momenta
forces

Note: Linear impulses from internal forces of action and reaction cancel.

If no external forces act from time ¢, to ¢,,then

Sy, = v,

and the total linear momentum of the particles is conserved.

Let EHO = iri Xmyv,
i=1

.
. .
,,,,,,
. .
. .
. .
. .
. .
. .
. .
o ‘e
. LN

Sum of all Sum of all Sum of all

initial angular final
angular impulses angular
momenta from external momenta
forces
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Note: Angular impulses from internal forces of action and reaction cancel.

If no external forces act from time ¢, to ¢,,then

and the total angular momentum of the particles is conserved.

Graphical interpretation:

y (m1V1)1 y Y

4
[l

(m2v2)1 (mIV])Z

(mz‘(’)z)z\

X X
0 0 /t 0
D J M,
Direct Central Impact
V] V2
S v, >V, —>
Before =----. @ ------------ @ _————
u

»

Impact _———(m ) my)-————

v, v,

Total linear momentum is conserved during impact:

' '
my,+m,v, =my, + m,v,

13
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velocity of separation v, —v,

Coefficient of restitution : e = -
velocity of approach v, -v,

If total kinetic energy is conserved, impact is said to be perfectly elastic and
e=1.

If particles stick together after impact, v, = v, , impact is said to be perfectly
plastic,and e=0.

For all other impact cases, O0<e=<1.
A special case occurs when m, = m, , collision is elastic, v, >0, and v, =0.

Then, v/=0 and v, =v,.

Kinematics of Rigid Bodies

Types of plane motion:

Rectilinear translation

Curvilinear translation

Fixed-axis rotation

14



General plane motion

Combination of translation and
rotation

Translation
Recall analysis of “Motion Relative to Translating Reference Axes”:
r, =T, +T,,

Now A and B are any two particles in the translating rigid body. Therefore,
r,; = constant vector, and

Rotation About a Fixed Axis

Recall analysis of “Angular Motion of a Line”:

, _do_
’ dt
2
_do _d6_
dt dt

Define angular velocity vector
® and angular acceleration
vector o as follows:

o = wk
o= ok

Fixed axis

Then, the velocity of particle P is v = w x r and the acceleration is

a=oxr+ ox(xr)
axr - wr

15



Note: In r- 6 coordinates, v. =0 Vv, =r

In t-n axes, v=owr

General Plane Motion — Absolute and Relative Velocity and Acceleration

Y y Axes x -y translate with their

origin attached to particle B.
ry = rgt I

V4 = Vg T @ X I

ay = ag T A XTI T O X (0 X Tep)

2
= ag T O X T — W Tl

0

Graphical interpretation:

W X Irel
V4 A\
W X Trel \
VB
Plane Motion Translation with v, Rotation about B
with ®
O X TI'rel
_a)zrrel
Plane Motion Translation with a,  Rotation about B

with  and a
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Instantaneous Center of Rotation in Plane Motion

Suppose v, =0 in the previous analysis. Then,

VA = ere].

This result implies the body is rotating for an instant about point B. Such a
point is called an instantaneous center of rotation (1.C.R.). Such a point can be
determined, as follows, if the velocities of two different particles in a body
are known.

I.CR

Note: The location of the I.C.R. changes with time in general. Hence, a,, =0
in general!

Plane Motion of a Particle Relative to a Rotating Frame

v Y Axes x -y are body-fixed
axes, which have angular
velocity @ and angular

acceleration o .

Particle A moves relative to
the body-fixed axes x -y.
The relative position vector
of A referenced to the x-y
axes is

r, =xi+Yj

17



The relative velocity of A with respect to the x -y axesis:
V= Xi+Y]j
The relative acceleration of A with respect to the x -y axes is:
a, =Xi+yj
The absolute position vector of A inthe X -Y inertial axes is given by:
r,=r,+I,
The absolute velocity of A inthe X-Y inertial axes is given by:
V4 = Vg + W X Tl T Vil
The absolute acceleration of A inthe X-Y inertial axes is given by:
a; = a3 T A XTIl T O X(W X)) 20 X Vigp + 2

The term 2w x v, is known as Coriolis acceleration.

Kinetics of Rigid Bodies: Forces and Accelerations

Equations of Motion for Body in Plane Motion

FBD KD

EF =ma,
EMC =1a

or EMP =lo+p, xma,

18



where:  m = total mass
¢ = center of mass
I. = mass moment of inertia about axis
through ¢ parallel to z-axis
p = any moment center in x - y plane

In component form: EFK =ma,,

Noncentroidal Rotation

(—Ica\
macl
Center
of — Pqc ma

rotation en
y
|— X

0 0
FBD KD

EMq =la+p,xma,

=Iqa

where [ = mass moment of inertia about axis through q

parallel to z-axis.

Laws of Friction Block is initially at rest when force P is
applied and its magnitude is progressively

w l g increased from zero. As long as
P
> P=F<uN,
7777 77/ the block will not slide.
F
N
u, = coefficient of static friction.

19




When P =F =uN, the block starts to slide, and F becomes:
F=uN
where u, = coefficient of kinetic friction,
ALLk < Au’s )
Kinetics of Rigid Bodies: Energy Methods

For a body in plane motion, the work done on the body by all external forces
F. is
(ri)z
U_,= Ef() F.-dr,

when the body is displaced from position 1 to position 2.

For a body in plane motion, the kinetic energy is
T= lva2 + lIca)2
2 2

For a body in plane motion, the work done on the body by a couple M is
U_,= [ Mdo

when the body is displaced from position 1 to position 2.

In general, U, =lmv 2+lla)2—lmv 2+11a)2
1-2 2 c)o 2 c72 2 c)l 2 ¢l

-1,-7,
=AT
or I,=T+U,_,

If a gravitational force W acts on the body, and/or a linearly-elastic spring
force, then the work-energy equation can be written as:

U_,=AT+AV, +AV,

where U,_,, now excludes gravitational and spring forces. If U,_, aboveis
zero, total mechanical energy is conserved.

20



Noncentroidal Rotation

1 . .
T= Elqa)2 where ¢ is the center of rotation.

Power developed by a couple M

Power = Mw
Kinetics of Rigid Bodies: Momentum Methods

For a body in plane motion, the equations of impulse and momentum are;
m(v,), + E :2 Fdt=m(v,),
153
lw, + Eftl M dt=1w,
Graphical interpretation

m(VC)] . Fdt

+ —

ftz del f:z F3dl m(VC)z

4 1

Initial linear and Sum of all linear Final linear and
angular momenta and angular momenta

angular impulses
(about c) from
external forces

If Ef:z F.dt=0,then m(v,) =m(v,), and we say linear momentum is

conserved.

If 2 :2 M dt =0 about some point p, then

Lo +p, X m(vc)] =lw,+p, x m(vc)2

and we say total angular momentum about point p is conserved.
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Vibrations

When a mass moves back and forth about an equilibrium position, the
motion is described as vibration.

A simple example of vibration is the motion of a mass m connected to a
massless spring with spring constant k.

Y I I 444

g k
------ — =  Unstretched position of spring
55[
————— Static equilibrium position of mass
m
X Note: kd, = mg

Mass m displaced from its equilibrium position

Kx+o,) A

mi+kx=0 (1) (Equation of motion)
Let w’ = ﬁ, then Eq. (1) becomes:
m

F+wx=0 (2)

22



The solution of Eq. (2) is

x = x(0)cos(w,1) + ?sin(wnt)

n

where x(0) and x(0) are initial conditions.

The motion is called simple harmonic motion, and , = \/E = ,6£ is known
m st

as the natural (circular) frequency (rad/s).

[\®]

T, = —n, called period (
wn

X < >

cycle)

Since no forcing function appears in the equation of motion (1), the vibration
above is called free vibration.

For an example of torsional vibration, see p. 127 in the 10.2 Handbook.
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The following material is adapted from FE Reference Handbook 10.2

Free and Forced Vibration

A single degree-of-freedom vibration system. containing a mass . a spring £. a viscous damper ¢. and an external applied force
F can be diagrammed as shown:

EQUILIBRIUM POSITION
'—’ x
c
T
L

i K m p—p F

(4 4
- F m&;
— = —_
peSu—
Ax

FBD KD

The equation of motion for the displacement of x is:
mi=—kx—cx+F

or in terms of x.
mitexthkx=F

One can define

m,,=\/%

E=x=
2/km

K=%

Then:

1 e
—=% +WC.\' +x=KF
(D; n
If the externally applied force is 0. this is a free vibration. and the motion of x is solved as the solution to a homogeneous
ordinary differential equation.
In a forced vibration system. the externally applied force F is typically periodic (for example. F = Fj, sin ot). The solution is the
sum of the homogeneous solution and a particular solution.
For forced vibrations. one is typically interested in the steady state behavior (i.e. a long time after the system has started). which
is the particular solution.

For F = F); sin of. the particular solution is:

x(1)=Xysin(@r+ )

where
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2Lw

4 ®

b=tan" —%5
P

2
O,

An example of a particular solution is:

YR
i
A"
<
L
~

L \\\ /X

Xo
| R | 1
0 T 2 3 4
wl

® > w,, ¢ =-3n/4

The following figures provide illustrative plots of relative amplitude and phase, depending on @ and ©,.

[ 1 1 0
- 'ﬁ\:\ T
c=001 imARXE OIO[ |
J [ % T g:0'05
£ 10 A: 5 O = 1£=0.1
x 10 e —:C:::Oi é P il
uxj }' r;\ rl 10'2| E
S = B g C=06TIT]
= % k/ Q: 0. 5 y c=1-0~———
& 10° é_”\\g £ _'ne wl ¥R s
g 10 (=06 = 5 DN e =15
< i %afﬁ 1.0 =4 g _:_:g =02 TN \\N: -
B =15 L S o 16 =0.47 q :::\ \H:;;
I | T -3 I H I l N
4 1 2 3 05 15 2 25 3
FREQUENCY @y FREQUENCY ©®,

() (b)

Steady state vibration of a force spring-mass system (a) amplitude (b) phase.

From Brown University School of Engineering, Introduction to Dynamics and Vibrations, as posted on www.brown edu/Departments/Engineering/
Courses/En4/Notes/vibrations_forced/vibrations_forced htm. April 2019.

25



