Notes on Dynamics

by

Stephen F. Felszeghy CSULA Prof. Emeritus of ME

These notes are a supplement to *FE Reference Handbook*, 10.2 Edition, for the Computer-Based Exam, NCEES, July 2022, pp. 114-129.

These notes were prepared for the FE/EIT Exam Review Course class meeting held on Oct. 15, 2022, 9:00 a.m. to 12:00 p.m.

Dynamics

Kinematics – deals with motion alone apart from considerations of force and mass.

Kinetics – relates unbalanced forces with changes in motion.

Kinematics of Particles

Rectilinear Motion of a Particle

Position coordinate

(Rectilinear displacement): $x = f(t) \rightarrow x = x(t)$

Velocity:
$$v = \frac{dx}{dt} = \dot{x}$$

Acceleration:
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = \ddot{x}$$

Suppose v = v(x); apply "Chain Rule":

$$\frac{dv}{dt} = a = \frac{dv}{dx}\frac{dx}{dt} \implies a = \frac{dv}{dx}v$$

Determination of Motion of a Particle

Integrate differential relations:

$$dx = v dt$$

$$dv = a dt$$

$$v dv = a dx$$

Angular Motion of a Line

Angular position coordinate (Angular displacement): $\theta = f(t)$

Angular velocity: $\omega = \frac{d\theta}{dt} = \dot{\theta}$

Angular acceleration: $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \ddot{\theta}$

Differential relations:

$$d\theta = \omega \, dt$$
$$d\omega = \alpha \, dt$$

$$\omega d\omega = \alpha d\theta$$

Note analogy with rectilinear motion.

Two common cases:

- 1. Acceleration a = constant, or $\alpha = \text{constant}$
- 2. Acceleration a = f(t), or $\alpha = f(t)$

See motion equations in the 10.2 Handbook on pp. 117-118.

Curvilinear Motion of a Particle

Vectors will be denoted by upright boldface letters, e.g., ${\bf r}.$

Vectors will be denoted by underlined letters in handwriting, e.g., \underline{r} .

Scalar component of vector \mathbf{r} will be denoted by *italic* r.

Position vector: $\mathbf{r} = \mathbf{r}(t)$ (Vector function)

Velocity:
$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \dot{\mathbf{r}}$$

Acceleration:
$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} = \ddot{\mathbf{r}}$$

Rectangular Components

Position vector: $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

Velocity: $\mathbf{v} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} + \dot{z}\mathbf{k}$

Acceleration: $\mathbf{a} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j} + \ddot{z}\mathbf{k}$

We write: $v_x = \dot{x}$, etc. $a_x = \ddot{x}$, etc.

Application: See projectile motion in the 10.2 Handbook on p. 118.

Motion Relative to Translating Reference Axes

"Translating" means x' - y' axes move but remain parallel to x - y axes.

$$\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{A/B}$$

$$\dot{\mathbf{r}}_A = \dot{\mathbf{r}}_B + \dot{\mathbf{r}}_{A/B}$$

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{v}_{A/B}$$

$$\mathbf{a}_A = \mathbf{a}_B + \mathbf{a}_{A/B}$$

Tangential and Normal Components

 $|CP| = \rho$ = radius of curvature

 \mathbf{e}_t = unit vector tangent to path

 \mathbf{e}_n = unit vector normal to path pointing to C

s =directed distance along path

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{ds}{dt}\mathbf{e}_{t} = v\mathbf{e}_{t}$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^{2}\mathbf{r}}{dt^{2}} = \frac{d^{2}s}{dt^{2}}\mathbf{e}_{t} + \frac{v^{2}}{\rho}\mathbf{e}_{n} = \frac{dv}{dt}\mathbf{e}_{t} + \frac{v^{2}}{\rho}\mathbf{e}_{n}$$

$$= a_{t}\mathbf{e}_{t} + a_{n}\mathbf{e}_{n} = \mathbf{a}_{t} + \mathbf{a}_{n}$$

Radial and Transverse Components

Polar coordinates of P: (r, θ)

 \mathbf{e}_r = unit vector in \mathbf{r} direction

 \mathbf{e}_{θ} = unit vector perpendicular to \mathbf{r} in direction of increasing θ

 $\mathbf{r} = r\mathbf{e}_r$

$$\mathbf{v} = \dot{\mathbf{r}} = \dot{r}\mathbf{e}_r + r\dot{\theta}\mathbf{e}_{\theta}$$

$$\mathbf{a} = \dot{\mathbf{v}} = \ddot{\mathbf{r}} = (\ddot{r} - r\dot{\theta}^2)\mathbf{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{e}_{\theta}$$

$$v_r = \dot{r}$$

$$v_{\theta} = r\dot{\theta}$$

$$a_r = \ddot{r} - r\dot{\theta}^2$$

$$a_r = \ddot{r} - r\dot{\theta}^2 \qquad a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$$

If path is a circle, then r = constant, $\dot{r} = \ddot{r} = 0$,

$$\mathbf{v} = r\dot{\theta}\mathbf{e}_{\theta}$$
$$\mathbf{a} = -r\dot{\theta}^{2}\mathbf{e}_{r} + r\ddot{\theta}\mathbf{e}_{\theta}$$

Kinetics of Particles: Newton's Second Law

$$\sum \mathbf{F} = m\mathbf{a}$$
 (Equation of motion)

where

 $\sum \mathbf{F} = \text{resultant force}$

m =mass of particle

a = absolute acceleration, measured in a newtonian frame of reference (inertial system)

Graphical Representation of Newton's 2nd Law

Free-body diagram (FBD)

Kinetic diagram (KD) (Mass-acceleration diagram)

Units

Quantity System	Length	Time	Mass	Force
SI	m	S	kg	$N = kg \cdot \frac{m}{s^2}$
USCS	ft	S	$slug = lb \cdot \frac{s^2}{ft}$	lb

In either system, W = mg, where

At surface of earth: (SI)
$$g = 9.807 \text{ m/s}^2$$

(USCS) $g = 32.174 \text{ ft/s}^2$

AVOID: lbf, lbm

Equations of Motion: Rectangular Components

Equations of Motion: Tangential and Normal Components

Equations of Motion: Radial and Transverse Components

Kinetics of Particles: Energy Methods

The *work* done by **F** on the particle during a finite movement of the particle along a curved path from position 1 to position 2 is $U_{1\rightarrow 2}$:

$$U_{1\to 2} = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} \cdot d\mathbf{r}$$
 (Line integral)

It can be shown:

$$U_{1\rightarrow 2} = \int_{s_1}^{s_2} F_t ds$$

$$= \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2$$
Let $T = \frac{1}{2} m v^2 = kinetic\ energy$ of particle
Then,
$$U_{1\rightarrow 2} = T_2 - T_1$$

$$= \Delta T$$
or $T_2 = T_1 + U_{1\rightarrow 2}$

Above result is the *principle of work and energy*. Units: (SI) $N \cdot m = J$; (USCS) $ft \cdot lb$

Work Done on Particle by Gravitational Force

$$U_{1\to 2} = -\int_{h_1}^{h_2} W \, dy = -(Wh_2 - Wh_1)$$

Let
$$V_g = Wy = mgy = gravitational$$
 potential energy of particle

Then,
$$U_{1\rightarrow 2} = -\left[\left(V_g\right)_2 - \left(V_g\right)_1\right]$$

= $-\Delta V_g$

Note $U_{1\rightarrow 2}$ is independent of path from 1 to 2. For this reason **W** is called a *conservative force*.

Work Done on Particle by a Linearly-Elastic Spring Force

Let k = spring constant x = spring elongation $F_s = kx = \text{spring force}$

Then,

$$U_{1\to 2} = -\int_{x_1}^{x_2} F_s dx = -\int_{x_1}^{x_2} kx dx$$
$$= -\left(\frac{1}{2}kx_2^2 - \frac{1}{2}kx_1^2\right)$$

Let
$$V_e = \frac{1}{2}kx^2 = elastic potential energy$$

of particle

Then,
$$U_{1\rightarrow 2} = -\left[\left(V_e\right)_2 - \left(V_e\right)_1\right]$$

= $-\Delta V_e$

Note $U_{1\rightarrow 2}$ is independent of path from 1 to 2. For this reason F_s is called a *conservative force*.

Summary

The work-energy equation can now be written as:

$$U_{1\rightarrow 2} = \Delta T + \Delta V_{e} + \Delta V_{e}$$

where $\,U_{\scriptscriptstyle 1\to 2}\,$ is the work done on the particle by forces other than gravitational and spring forces.

If $U_{1\rightarrow 2}$ above is zero, then:

$$T_2 + (V_g)_2 + (V_e)_2 = T_1 + (V_g)_1 + (V_e)_1$$

This is the *law of conservation of total mechanical energy*.

Power and Efficiency

Power is the time rate of doing work by a force on a particle.

Power =
$$\mathbf{F} \cdot \mathbf{v}$$
 Units: (SI) $\mathbf{N} \cdot \mathbf{m/s} = \mathbf{J/s} = \mathbf{W}$; (USCS) $\mathbf{hp} = 550 \frac{\mathbf{ft} \cdot \mathbf{lb}}{\mathbf{s}}$

$$\eta = \frac{\mathbf{power output}}{\mathbf{power input}} = \mathbf{mechanical efficiency}$$

Kinetics of Particles: Momentum Methods

Recall Newton's 2nd law:

$$\mathbf{F} = m\mathbf{a} = \frac{d}{dt}(m\mathbf{v})$$

where $\mathbf{F} = \text{resultant force}$

 $m\mathbf{v} = linear momentum of particle$

Define angular momentum \mathbf{H}_{o} of particle about O :

$$\mathbf{H}_{O} = \mathbf{r} \times m\mathbf{v}$$

Then,
$$\dot{\mathbf{H}}_O = \mathbf{r} \times m \mathbf{a} = \mathbf{r} \times \mathbf{F} = \mathbf{M}_O$$

or $\mathbf{M}_O = \dot{\mathbf{H}}_O$

where \mathbf{M}_{O} = sum of the moments about O of all forces acting on particle

Equations of Impulse and Momentum

What is the cumulative effect of integrating \mathbf{F} and \mathbf{M}_{o} with respect to time over an interval from t_1 to t_2 ?

$$\int_{t_1}^{t_2} \mathbf{F} dt = \int_{m\mathbf{v}_1}^{m\mathbf{v}_2} d(m\mathbf{v}) = m\mathbf{v}_2 - m\mathbf{v}_1$$
or $m\mathbf{v}_1 + \int_{t_1}^{t_2} \mathbf{F} dt = m\mathbf{v}_2$

Graphical interpretation:

or
$$(mv_x)_1 + \int_{t_1}^{t_2} F_x dt = (mv_x)_2$$

 $(mv_y)_1 + \int_{t_1}^{t_2} F_y dt = (mv_y)_2$

Units: (SI)
$$kg \cdot \frac{m}{s} = N \cdot s$$
; (USCS) $lb \cdot s$

Recall
$$\mathbf{M}_O = \frac{d\mathbf{H}_O}{dt}$$

$$\int_{t_1}^{t_2} \mathbf{M}_O \, dt = \int_{\left(\mathbf{H}_O\right)_1}^{\left(\mathbf{H}_O\right)_2} d\, \mathbf{H}_O = \left(\mathbf{H}_O\right)_2 - \left(\mathbf{H}_O\right)_1$$

or
$$(\mathbf{H}_{o})_{1} + \int_{t_{1}}^{t_{2}} \mathbf{M}_{o} dt = (\mathbf{H}_{o})_{2}$$

Initial Angular impulse

Here \mathbf{H}_{o}

The second of \mathbf{H}_{o}

Initial angular momentum

Units: (SI) $kg \cdot \frac{m^{2}}{s} = N \cdot m \cdot s$; (USCS) $lb \cdot ft \cdot s$

Extension to System of *n* Particles

Note: Linear impulses from *internal* forces of action and reaction cancel.

If no external forces act from time t_1 to t_2 , then

$$\sum m\mathbf{v}_1 = \sum m\mathbf{v}_2$$

and the total linear momentum of the particles is conserved.

Note: Angular impulses from *internal* forces of action and reaction cancel.

If no external forces act from time $\ t_1 \$ to $\ t_2 \$, then

$$\sum (\mathbf{H}_O)_1 = \sum (\mathbf{H}_O)_2$$

and the total angular momentum of the particles is conserved.

Graphical interpretation:

Direct Central Impact

Total linear momentum is conserved during impact:

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$

Coefficient of restitution:
$$e = \frac{\text{velocity of separation}}{\text{velocity of approach}} = \frac{v_2' - v_1'}{v_1 - v_2}$$

If total kinetic energy is conserved, impact is said to be *perfectly elastic* and e=1 .

If particles stick together after impact, $v_1' = v_2'$, impact is said to be *perfectly plastic*, and e = 0.

For all other impact cases, $0 \le e \le 1$.

A special case occurs when $m_1=m_2$, collision is elastic, $v_1>0$, and $v_2=0$. Then, $v_1'=0$ and $v_2'=v_1$.

Kinematics of Rigid Bodies

Types of plane motion:

Rectilinear translation

Curvilinear translation

Fixed-axis rotation

General plane motion

Combination of translation and rotation

Translation

Recall analysis of "Motion Relative to Translating Reference Axes":

$$\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{A/B}$$

Now A and B are any two particles in the translating rigid body. Therefore, $\mathbf{r}_{A/B} = \mathbf{constant} \ \mathbf{vector}$, and

$$\mathbf{v}_A = \mathbf{v}_B$$

$$\mathbf{a}_A = \mathbf{a}_B$$

Rotation About a Fixed Axis

Recall analysis of "Angular Motion of a Line":

$$\omega = \frac{d\theta}{dt} = \dot{\theta}$$

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \ddot{\theta}$$

Define angular velocity vector ω and angular acceleration vector α as follows:

$$\mathbf{\omega} = \omega \mathbf{k}$$
$$\mathbf{\alpha} = \alpha \mathbf{k}$$

Then, the velocity of particle P is $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$ and the acceleration is

$$\mathbf{a} = \mathbf{\alpha} \times \mathbf{r} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r})$$
$$= \mathbf{\alpha} \times \mathbf{r} - \omega^2 \mathbf{r}$$

Note: In
$$r$$
 - θ coordinates, $v_r = 0$ $v_\theta = a_r = -\omega^2 r$ $a_\theta = 0$

In
$$t - n$$
 axes, $v = \omega r$
 $a_n = \omega^2 r$ $a_t = \alpha r$

General Plane Motion – Absolute and Relative Velocity and Acceleration

Axes x - y translate with their origin attached to particle B.

$$\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{\text{rel}}$$

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{\omega} \times \mathbf{r}_{rel}$$

$$\mathbf{a}_A = \mathbf{a}_B + \mathbf{\alpha} \times \mathbf{r}_{rel} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}_{rel})$$

=
$$\mathbf{a}_B + \mathbf{\alpha} \times \mathbf{r}_{rel} - \omega^2 \mathbf{r}_{rel}$$

Graphical interpretation:

with ω and α

Instantaneous Center of Rotation in Plane Motion

Suppose $v_B = 0$ in the previous analysis. Then,

$$\mathbf{v}_A = \mathbf{\omega} \times \mathbf{r}_{rel}$$
.

This result implies the body is rotating for an *instant* about point *B*. Such a point is called an *instantaneous center of rotation* (I.C.R.). Such a point can be determined, as follows, if the velocities of two different particles in a body are known.

Note: The location of the I.C.R. changes with time in general. Hence, $\mathbf{a}_{\text{ICR}} \neq \mathbf{0}$ in general!

Plane Motion of a Particle Relative to a Rotating Frame

Axes x - y are body-fixed axes, which have angular velocity ω and angular acceleration α .

Particle A moves relative to the body-fixed axes x - y. The relative position vector of A referenced to the x - y axes is

$$\mathbf{r}_{rel} = x\mathbf{i} + y\mathbf{j}$$

The *relative velocity* of A with respect to the x - y axes is:

$$\mathbf{v}_{rel} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j}$$

The *relative acceleration* of A with respect to the x - y axes is:

$$\mathbf{a}_{rel} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j}$$

The absolute position vector of A in the X - Y inertial axes is given by:

$$\mathbf{r}_A = \mathbf{r}_B + \mathbf{r}_{rel}$$

The *absolute velocity* of A in the X - Y inertial axes is given by:

$$\mathbf{v}_A = \mathbf{v}_B + \mathbf{\omega} \times \mathbf{r}_{\text{rel}} + \mathbf{v}_{\text{rel}}$$

The *absolute acceleration* of A in the X - Y inertial axes is given by:

$$\mathbf{a}_A = \mathbf{a}_B + \mathbf{\alpha} \times \mathbf{r}_{rel} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}_{rel}) + 2\mathbf{\omega} \times \mathbf{v}_{rel} + \mathbf{a}_{rel}$$

The term $2\omega \times v_{\text{rel}}$ is known as *Coriolis acceleration*.

Kinetics of Rigid Bodies: Forces and Accelerations

Equations of Motion for Body in Plane Motion

$$\sum \mathbf{F} = m\mathbf{a}_{c}$$

$$\sum \mathbf{M}_{c} = I_{c}\mathbf{\alpha}$$
or
$$\sum \mathbf{M}_{p} = I_{c}\mathbf{\alpha} + \mathbf{\rho}_{pc} \times m\mathbf{a}_{c}$$

where: m = total mass

c = center of mass

 I_c = mass moment of inertia about axis

through *c* parallel to *z*-axis

p = any moment center in x - y plane

In component form: $\sum F_x = ma_{cx}$

$$\sum F_y = ma_{cy}$$

$$\sum M_c = I_c \alpha$$

Noncentroidal Rotation

where I_q = mass moment of inertia about axis through q parallel to z-axis.

Laws of Friction

Block is initially at rest when force $\, {f P} \,$ is applied and its magnitude is progressively increased from zero. As long as

$$P = F < \mu_{\rm s} N$$

the block will not slide.

 μ_s = coefficient of static friction.

When $P = F = \mu_s N$, the block starts to slide, and F becomes:

$$F = \mu_{\nu} N$$

where $\mu_k = coefficient of kinetic friction,$ $\mu_k < \mu_s$.

Kinetics of Rigid Bodies: Energy Methods

For a body in plane motion, the work done on the body by all external forces \mathbf{F}_i is

$$U_{1\to 2} = \sum \int_{(\mathbf{r}_i)_1}^{(\mathbf{r}_i)_2} \mathbf{F}_i \cdot d\mathbf{r}_i$$

when the body is displaced from position 1 to position 2.

For a body in plane motion, the kinetic energy is

$$T = \frac{1}{2}mv_c^2 + \frac{1}{2}I_c\omega^2$$

For a body in plane motion, the work done on the body by a couple M is

$$U_{1\to 2} = \int_{\theta_1}^{\theta_2} M d\theta$$

when the body is displaced from position 1 to position 2.

In general,
$$U_{1\to 2} = \frac{1}{2} m (v_c)_2^2 + \frac{1}{2} I_c \omega_2^2 - \left[\frac{1}{2} m (v_c)_1^2 + \frac{1}{2} I_c \omega_1^2 \right]$$
$$= T_2 - T_1$$
$$= \Delta T$$
or $T_2 = T_1 + U_{1\to 2}$

If a gravitational force $\, \mathbf{W} \,$ acts on the body, and/or a linearly-elastic spring force, then the work-energy equation can be written as:

$$U_{1\to 2} = \Delta T + \Delta V_g + \Delta V_e$$

where $U_{1\rightarrow 2}$ now excludes gravitational and spring forces. If $U_{1\rightarrow 2}$ above is zero, *total mechanical energy is conserved.*

Noncentroidal Rotation

$$T = \frac{1}{2}I_q\omega^2$$
 where q is the center of rotation.

Power developed by a couple **M**

Power =
$$M\omega$$

Kinetics of Rigid Bodies: Momentum Methods

For a body in plane motion, the equations of impulse and momentum are;

$$m(\mathbf{v}_c)_1 + \sum_{t_1} \int_{t_1}^{t_2} \mathbf{F}_i dt = m(\mathbf{v}_c)_2$$

$$I_c \mathbf{\omega}_1 + \sum_{t_1} \int_{t_1}^{t_2} \mathbf{M}_c dt = I_c \mathbf{\omega}_2$$

Graphical interpretation

Initial linear and angular momenta

Sum of all linear and angular impulses (about *c*) from external forces

Final linear and angular momenta

If $\sum_{t_1} \int_{t_1}^{t_2} \mathbf{F}_i dt = \mathbf{0}$, then $m(\mathbf{v}_c)_1 = m(\mathbf{v}_c)_2$ and we say *linear momentum is conserved.*

If $\sum \int_{t_1}^{t_2} \mathbf{M}_p dt = \mathbf{0}$ about some point p, then

$$I_c \mathbf{\omega}_1 + \mathbf{\rho}_{pc} \times m(\mathbf{v}_c)_1 = I_c \mathbf{\omega}_2 + \mathbf{\rho}_{pc} \times m(\mathbf{v}_c)_2$$

and we say total angular momentum about point p is conserved.

Vibrations

When a mass moves back and forth about an equilibrium position, the motion is described as *vibration*.

A simple example of vibration is the motion of a mass m connected to a massless spring with spring constant k.

Mass m displaced from its equilibrium position

$$k(x + \delta_{st})$$

$$=$$

$$m\ddot{x}$$

$$FBD KD$$

$$\sum F_x = m\ddot{x}$$

$$-k(x + \delta_{st}) + mg = m\ddot{x}$$

$$m\ddot{x} + kx = 0 (1) (Equation of motion)$$

Let $\omega_n^2 = \frac{k}{m}$, then Eq. (1) becomes:

$$\ddot{x} + \omega_n^2 x = 0 \quad (2)$$

The solution of Eq. (2) is

$$x = x(0)\cos(\omega_n t) + \frac{\dot{x}(0)}{\omega_n}\sin(\omega_n t)$$

where x(0) and $\dot{x}(0)$ are initial conditions.

The motion is called *simple harmonic motion*, and $\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\delta_{st}}}$ is known as the *natural (circular) frequency* (rad/s).

Since no forcing function appears in the equation of motion (1), the vibration above is called *free vibration*.

For an example of torsional vibration, see p. 127 in the 10.2 Handbook.

Free and Forced Vibration

A single degree-of-freedom vibration system, containing a mass m, a spring k, a viscous damper c, and an external applied force F can be diagrammed as shown:

KD

The equation of motion for the displacement of x is:

FBD

$$m\ddot{x} = -kx - c\dot{x} + F$$

or in terms of x,

$$m\ddot{x} + c\dot{x} + kx = F$$

One can define

$$\omega_n = \sqrt{\frac{k}{m}}$$

$$\zeta = \frac{c}{2\sqrt{km}}$$

$$K = \frac{1}{k}$$

Then:

$$\frac{1}{\omega_n^2}\ddot{x} + \frac{2\zeta}{\omega_n}\dot{x} + x = KF$$

If the externally applied force is 0, this is a free vibration, and the motion of x is solved as the solution to a homogeneous ordinary differential equation.

In a forced vibration system, the externally applied force F is typically periodic (for example, $F = F_0 \sin \omega t$). The solution is the sum of the homogeneous solution and a particular solution.

For forced vibrations, one is typically interested in the steady state behavior (i.e. a long time after the system has started), which is the particular solution.

For $F = F_0 \sin \omega t$, the particular solution is:

$$x(t) = X_0 \sin(\omega t + \phi)$$

where

$$X_0 = \frac{KF_0}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(\frac{2\zeta\omega}{\omega_n}\right)^2}}$$

$$\phi = \tan^{-1} \frac{-\frac{2\zeta\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}$$

An example of a particular solution is:

The following figures provide illustrative plots of relative amplitude and phase, depending on ω and ω_n .

Steady state vibration of a force spring-mass system (a) amplitude (b) phase.

From Brown University School of Engineering, Introduction to Dynamics and Vibrations, as posted on www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibrations_forced/vibrations_forced.htm, April 2019.