Multi-colouring the Mycielskian of Graphs

Wensong Lin * Daphne Der-Fen Liu ${ }^{\dagger}$ Xuding Zhu ${ }^{\ddagger}$

December 1, 2016

Abstract

A k-fold colouring of a graph is a function that assigns to each vertex a set of k colours, so that the colour sets assigned to adjacent vertices are disjoint. The k-th chromatic number of a graph G, denoted by $\chi_{k}(G)$, is the minimum total number of colours used in a k-fold colouring of G. Let $\mu(G)$ denote the Mycielskian of G. For any positive integer k, it holds that $\chi_{k}(G)+1 \leq \chi_{k}(\mu(G)) \leq \chi_{k}(G)+k$ [5]. Although both bounds are attainable, it was proved in [7] that if $k \geq 2$ and $\chi_{k}(G) \leq 3 k-2$, then the upper bound can be reduced by 1 , i.e., $\chi_{k}(\mu(G)) \leq \chi_{k}(G)+k-1$. We conjecture that for any $n \geq 3 k-1$, there is a graph G with $\chi_{k}(G)=n$ and $\chi_{k}(\mu(G))=n+k$. This is equivalent to conjecturing that the equality $\chi_{k}(\mu(K(n, k)))=n+k$ holds for Kneser graphs $K(n, k)$ with $n \geq 3 k-1$. We confirm this conjecture for $k=2,3$, or when n is a multiple of k or $n \geq 3 k^{2} / \ln k$. Moreover, we determine the values of $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)$ for $1 \leq k \leq q$.

[^0]
1 Introduction

In search of graphs with large chromatic number but small clique size, Mycielski [6]introduced the following construction: Let G be a graph with vertex set V and edge set E. Let \bar{V} be a copy of $V, \bar{V}=\{\bar{x}: x \in V\}$, and let u be a new vertex. The Mycielskian of G, denoted by $\mu(G)$, is the graph with vertex set $V \cup \bar{V} \cup\{u\}$ and edge set $E^{\prime}=E \cup\{x \bar{y}: x y \in E\} \cup\{u \bar{x}: \bar{x} \in \bar{V}\}$. The vertex u is called the root of $\mu(G)$; and for any $x \in V, \bar{x}$ is called the twin of x. For a graph G, denote $\chi(G)$ and $\omega(G)$, respectively, the chromatic number and the clique size of G. It is straightforward to verify that for any graph G with $\omega(G) \geq 2$, we have $\omega(\mu(G))=\omega(G)$ and $\chi(\mu(G))=\chi(G)+1$. Hence, one can obtain triangle free graphs with arbitrarily large chromatic number, by repeatedly applying the Mycielski construction to K_{2}.

Multiple-colouring of graphs was introduced by Stahl [10], and has been studied extensively in the literature. For any positive integers n and k, we denote by $[n]$ the set $\{0,1, \ldots, n-1\}$ and $\binom{[n]}{k}$ the set of all k-subsets of $[n]$. A k-fold n-colouring of a graph G is a mapping, $f: V \rightarrow\binom{[n]}{k}$, such that for any edge $x y$ of $G, f(x) \cap f(y)=\emptyset$. In other words, a k-fold colouring assigns to each vertex a set of k colours, where no colour is assigned to any adjacent vertices. Moreover, if all the colours assigned are from a set of n colours, then it is a k-fold n-colouring. The k-th chromatic number of G is defined as

$$
\chi_{k}(G)=\min \{n: G \text { admits a } k \text {-fold } n \text {-colouring }\}
$$

The k-fold colouring is an extension of conventional vertex colouring. A 1 -fold n-colouring of G is simply a proper n-colouring of G, so $\chi_{1}(G)=\chi(G)$.

It is known [8] and easy to see that for any $k, k^{\prime} \geq 1, \chi_{k+k^{\prime}}(G) \leq \chi_{k}(G)+$ $\chi_{k^{\prime}}(G)$. This implies $\frac{\chi_{k}(G)}{k} \leq \chi(G)$. The fractional chromatic number of G is
defined by

$$
\chi_{f}(G)=\inf \left\{\frac{\chi_{k}(G)}{k}: k=1,2, \ldots\right\}
$$

Thus $\chi_{f}(G) \leq \chi(G)$ (cf. [8]).
For a graph G, it is natural to ask the following two questions:

1. What is the relation between the fractional chromatic number of G and the fractional chromatic number of the Mycielskian of G ?
2. What is the relation between the k-th chromatic number of G and the k-th chromatic number of the Mycielskian of G ?

The first question was answered by Larsen, Propp and Ullman [4]. It turned out that the fractional chromatic number of $\mu(G)$ is determined by the fractional chromatic number of G : For any graph G,

$$
\chi_{f}(\mu(G))=\chi_{f}(G)+\frac{1}{\chi_{f}(G)}
$$

The second question is largely open. Contrary to the answer of the first question in the above equality, the k-th chromatic number of $\mu(G)$ is not determined by $\chi_{k}(G)$. There are graphs G and G^{\prime} with $\chi_{k}(G)=\chi_{k}\left(G^{\prime}\right)$ but $\chi_{k}(\mu(G)) \neq \chi_{k}\left(\mu\left(G^{\prime}\right)\right)$. So it is impossible to express $\chi_{k}(\mu(G))$ in terms of $\chi_{k}(G)$. Hence, we aim at establishing sharp bounds for $\chi_{k}(\mu(G))$ in terms of $\chi_{k}(G)$. Obviously, for any graph G and any positive integer $k, \chi_{k}(\mu(G)) \leq$ $\chi_{k}(G)+k$. Combining this with a lower bound established in [5] we have:

$$
\begin{equation*}
\chi_{k}(G)+1 \leq \chi_{k}(\mu(G)) \leq \chi_{k}(G)+k . \tag{1}
\end{equation*}
$$

Moreover, it is proved in [5] that for any k both the upper and the lower bounds in (1) can be attained. On the other hand, it is proved in [7] that if $\chi_{k}(G)$ is relatively small compared to k, then the upper bound can be reduced.

Theorem 1 [7] If $k \geq 2$ and $\chi_{k}(G)=n \leq 3 k-2$, then $\chi_{k}(\mu(G)) \leq n+k-1$.
In this article, we prove that for graphs G with $\chi_{k}(G)$ relatively large compared to k, then the upper bound in (1) cannot be improved. We conjecture that the condition $n \leq 3 k-2$ in Theorem 1 is sharp.

Conjecture 1 If $n \geq 3 k-1$, then there is a graph G with $\chi_{k}(G)=n$ and $\chi_{k}(\mu(G))=n+k$.

A homomorphism from a graph G to a graph G^{\prime} is a mapping $f: V(G) \rightarrow$ $V\left(G^{\prime}\right)$ such that $f(x) f(y) \in E\left(G^{\prime}\right)$ whenever $x y \in E(G)$. If f is a homomorphism from G to G^{\prime} and c^{\prime} is a k-fold n-colouring for G^{\prime}, then the mapping defined as $c(x)=c^{\prime}(f(x))$ is a k-fold n-colouring of G. Thus $\chi_{k}(G) \leq \chi_{k}\left(G^{\prime}\right)$.

For positive integers $n \geq 2 k$, the Kneser $\operatorname{graph} K(n, k)$ has vertex set $\binom{[n]}{k}$ in which $x \sim y$ if $x \cap y=\emptyset$. It follows from the definition that a graph G has a k-fold n-colouring if and only if there is a homomorphism from G to $K(n, k)$. In particular, if $k^{\prime}=q k$ for some integer q, then it is easy to show that $\chi_{k^{\prime}}(K(n, k))=q n$. If k^{\prime} is not a multiple of k, then determining $\chi_{k^{\prime}}(K(n, k))$ is usually a difficult problem. The well-known Kneser-Lovász Theorem [3] gives the answer to the case for $k^{\prime}=1: \chi(K(n, k))=n-2 k+2$. For $k^{\prime} \geq 2$, the values of $\chi_{k^{\prime}}(K(n, k))$ are still widely open.

Notice that, a homomorphism from G to G^{\prime} induces a homomorphism from $\mu(G)$ to $\mu\left(G^{\prime}\right)$. Hence, we have

$$
\max \left\{\chi_{k}(\mu(G)): \chi_{k}(G)=n\right\}=\chi_{k}(\mu(K(n, k)))
$$

Therefore, Conjecture 1 is equivalent to

Conjecture 2 If $n \geq 3 k-1$, then $\chi_{k}(\mu(K(n, k)))=n+k$.

In this paper, we confirm Conjecture 2 for the following cases:

- n is a multiple of k (Section 2),
- $n \geq 3 k^{2} / \ln k$ (Section 2),
- $k \leq 3$ (Section 3).

It was proved in [5] that the lower bound in (1) is sharp for complete graphs K_{n} with $k \leq n$. That is, if $k \leq n$, then $\chi_{k}\left(\mu\left(K_{n}\right)\right)=\chi_{k}\left(K_{n}\right)+1=$ $k n+1$. In Section 4, we generalize this result to circular complete graphs $K_{p / q}$ (Corollary 10). Also included in Section 4 are complete solutions of the k-th chromatic number for the Mycielskian of odd cycles $C_{2 q+1}$ with $k \leq q$.

2 Kneser graphs with large order

In this section, we prove for any k, if $n=q k$ for some integer $q \geq 3$ or $n \geq 3 k^{2} / \ln k$, then $\chi_{k}(\mu(K(n, k)))=n+k$.

In the following, the vertex set of $K(n, k)$ is denoted by V. The Mycielskian $\mu(K(n, k))$ has the vertex set $V \cup \bar{V} \cup\{u\}$. For two integers $a \leq b$, let [$a, b]$ denote the set of integers i with $a \leq i \leq b$.

Lemma 2 For any positive integer $k, \chi_{k}(\mu(K(3 k, k)))=4 k$.
Proof. Suppose to the contrary, $\chi_{k}(\mu(K(3 k, k))) \leq 4 k-1$. Let c be a k-fold colouring of $\mu(K(3 k, k))$ using colours from the set $[0,4 k-2]$. Without loss of generality, assume $c(u)=[0, k-1]$. Let $X=\{x \in V: c(x) \cap c(u)=\emptyset\}$. Then X is an independent set in $K(3 k, k)$; for if $v, w \in X$ and $v \sim w$, then v, w have a common neighbor, say \bar{x}, in \bar{V}, implying that $c(v), c(w), c(\bar{x})$ and $c(u)$ are pairwise disjoint. So $|c(u)|+|c(\bar{x})|+|c(v)|+|c(w)|=4 k$, a contradiction. Hence, the vertices of V can be partitioned into $k+1$ independent sets: X and $A_{i}=\{v \in V: i=\min c(v)\}, i=0,1, \ldots, k-1$, contradicting the fact that $\chi(K(3 k, k))=k+2$.

Lemma 3 For any $n \geq 3 k-1$,

$$
\chi_{k}(\mu(K(n, k))) \geq \chi_{k}(\mu(K(n-k, k)))+k .
$$

Proof. Suppose $\chi_{k}(\mu(K(n, k)))=m$. Let c be a k-fold colouring for $\mu(K(n, k))$ using colours from $[0, m-1]$. Assume $c(u)=[0, k-1]$. Since $\chi(K(n, k))=n-2 k+2>k$, there exists some vertex v in V with $c(v) \cap$ $[0, k-1]=\emptyset$. Without loss of generality, assume $c(v)=[k, 2 k-1]$. Let N be the set of neighbors of v in V, and let $\bar{N}=\{\bar{w} \in \bar{V}: w \in N\}$. Then the subgraph of $\mu(K(n, k))$ induced by $N \cup \bar{N} \cup\{u\}$ is isomorphic to $\mu(K(n-k, k))$. Denote this subgraph by G^{\prime}. The colouring c restricted to G^{\prime} is a k-fold colouring using colours from $[0, m-1] \backslash[k, 2 k-1]$, which implies $\chi_{k}\left(G^{\prime}\right)=\chi_{k}(\mu(K(n-k, k))) \leq m-k$.

Corollary 4 For any integers $q \geq 3$ and $k \geq 1, \chi_{k}(\mu(K(q k, k)))=(q+1) k$.

Next we prove that $\chi_{k}(\mu(K(n, k)))=n+k$ holds for $n \geq 3 k^{2} / \ln k$. It was proved by Hilton and Milner [2] that if X is an independent set of $K(n, k)$ and $\cap_{x \in X} x=\emptyset$, then $|X| \leq 1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}$.

For any positive integer k, let $\phi(k)$ be the minimum n such that

$$
\begin{equation*}
\frac{n((n-k-1)(n-k-2) \ldots(n-2 k+1)-(k-1)!)}{k(n-1)(n-2) \ldots(n-k+1)}>1 \tag{2}
\end{equation*}
$$

Theorem 5 Let n and k be integers with $n \geq \phi(k)$. Then

$$
\chi_{k}(\mu(K(n-1, k))) \leq \chi_{k}(\mu(K(n, k)))-1 .
$$

Proof. Let $t=\chi_{k}(\mu(K(n, k)))$ and let c be a k-fold t-colouring of $\mu(K(n, k))$ using colours from $[0, t-1]$. Assume $c(u)=[0, k-1]$. For $i \in[0, t-1]$, let $S_{i}=\{x \in V: i \in c(x)\}$. Then $\sum_{i=0}^{t-1}\left|S_{i}\right|=k\binom{n}{k}$, since each vertex appears in exactly k of the S_{i} 's.

Since $t \leq n+k$, by a straightforward calculation, inequality (2) implies that

$$
k\binom{n}{k}>(t-k)\left(1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}\right)+k\binom{n-1}{k-1}
$$

Therefore, at least $k+1$ of the S_{i} 's satisfy the following:

$$
\left|S_{i}\right|>1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}
$$

Hence there exists $i^{*} \notin[0, k-1]$ with $\left|S_{i^{*}}\right|>1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}$. This implies $\cap_{x \in S_{i^{*}}} x \neq \emptyset$. Note that the intersection $\cap_{x \in S_{i^{*}}} x$ contains only one integer. For otherwise, assume $a \in W=\cap_{x \in S_{i^{*}} x}$ and $W \backslash\{a\} \neq \emptyset$. Let x^{\prime} be a vertex containing a, and y^{\prime} be a vertex such that $y^{\prime} \cap W=W \backslash\{a\}$ and $y^{\prime} \cap x^{\prime} \neq \emptyset$. Then $S^{\prime}=S_{i^{*}} \cup\left\{x^{\prime}, y^{\prime}\right\}$ is an independent set with $\left|S^{\prime}\right|>1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1}$ and $\cap_{x \in S^{\prime}} x=\emptyset$, a contradiction.

Assume $\cap_{x \in S_{i^{*}}} x=\{a\}$. If $y \in K(n, k)$ and y intersects every $x \in S_{i^{*}}$, then $a \in y$. For otherwise, $S^{\prime}=S_{i^{*}} \cup\{y\}$ is an independent set with $S_{i^{*}} \subset S^{\prime}$ and $\cap_{x \in S^{\prime}} x=\emptyset$, a contradiction. We conclude that for any $y \in K(n, k)$, if $a \notin y$, then none of $S_{i^{*}} \cup\{y\}$ and $S_{i^{*}} \cup\{\bar{y}\}$ is an independent set in $\mu(K(n, k))$, which implies that $i^{*} \notin c(y)$ and $i^{*} \notin c(\bar{y})$.

By letting $a=n$, the restriction of c to the subgraph $\mu(K(n-1, k))$ gives a k-fold $(t-1)$-colouring of $\mu(K(n-1, k))$.

Corollary 6 For any $n \geq \max \{2 k+1, N\}, \chi_{k}(\mu(K(n, k)))=n+k$, where N is defined as follows. If $\phi(k)=q k+1$, then $N=q k$; otherwise, N is the smallest integer such that N is a multiple of k and $N \geq \phi(k)$.

Proof. By Corollary $4, \chi_{k}(\mu(K(N, k)))=N+k$. By Theorem 5,

$$
\chi_{k}(\mu(K(n, k))) \geq(n-N)+\chi_{k}(\mu(K(N, k)))=n+k
$$

Although it might be hard to find a simple formula for the function $\phi(k)$ defined in the above, one can easily learn that $\phi(k)$ has order $k^{2} / \ln k$.

Corollary 7 If $k \geq 4$ and $n \geq 3 k^{2} / \ln k$, then $\chi_{k}(\mu(K(n, k)))=n+k$.

Proof. Assume $n \geq 3 k^{2} / \ln k$. Then

$$
\begin{aligned}
& \frac{n[(n-k-1)(n-k-2) \ldots(n-2 k+1)-(k-1)!]}{k(n-1)(n-2) \ldots(n-k+1)} \\
> & \frac{(n-1)(n-k-1)(n-k-2) \ldots(n-2 k+1)}{k(n-1)(n-2) \ldots(n-k+1)} \\
> & \frac{n-1}{k}\left(\frac{n-2 k}{n-k}\right)^{k-1} \\
> & \frac{n-1}{k} e^{-k(k-1) /(n-2 k)} \\
> & \frac{2 k}{\ln k} e^{-k(k-1) \ln k / 2 k^{2}} \\
> & \frac{2 k}{\sqrt{k} \ln k}>1 .
\end{aligned}
$$

Therefore, $n \geq N$ for the N defined in Corollary 6, so the result follows.
In Corollary $7,3 k^{2} / \ln k$ can be replaced by $(1+\epsilon) k^{2} / \ln k$ for any $\epsilon>0$, provided that k is large enough.

$3 \quad K(n, 2)$ and $K(n, 3)$

In this section, we confirm Conjecture 2 for $k \leq 3$. The case $k=1$ was proved by Mycielski. For $k=2,3$, the value of $\phi(k)$ defined in (2) in Section 2 can be easily determined: $\phi(2)=6$ and $\phi(3)=10$. Thus to prove Conjecture 2 for $k=2,3$, by Corollary 6 it suffices to show that $\chi_{2}(\mu(K(5,2)))=7$ and $\chi_{3}(K(8,3))=11$. As it was proved in [5] that $\chi_{2}(\mu(K(5,2)))=7$, the case $k=2$ is settled.

In the following, we confirm the case $k=3$.

Theorem $8 \chi_{3}(\mu(K(8,3)))=11$.

Proof. As $\chi_{k}(K(8,3)) \leq 11$, it suffices to show $\chi_{k}(K(8,3))>10$. Assume to the contrary, there exists a 3 -fold 10 -colouring c of $\mu(K(8,3))$, using colours from the set $\left\{a_{0}, a_{1}, \ldots, a_{9}\right\}$. For simplicity, we denote each vertex in V by $(i j k)$, where $i, j, k \in\{0,1,2, \ldots, 7\}$, and its twin by $(\overline{i j k})$; and for $s \leq t$, we denote the set of colours $\left\{a_{s}, a_{s+1}, \ldots, a_{t}\right\}$ by $a[s, t]$.

Assume $c(u)=a[0,2]$. Let $X=\{x \in V: c(x) \cap c(u)=\emptyset\}$. For $x \in X$ and $i \notin x$, let $M_{i}(x)=\{v \in V: v \backslash x=\{i\}\}$. For a set A of vertices, let $c\langle A\rangle=\cup_{x \in A} c(x)$.

Claim 1 For any $x \in X$, there is at most one integer $i \notin x$ for which $c\left\langle M_{i}(x)\right\rangle \nsubseteq c(x) \cup c(u)$.

Proof. Assume the claim is not true. Without loss of generality, assume that $x=(012), c(x)=a[3,5]$ and $c\left\langle M_{3}(x)\right\rangle, c\left\langle M_{7}(x)\right\rangle \nsubseteq c(x) \cup c(u)=a[0,5]$. We may assume $a_{6} \in c\left\langle M_{3}(x)\right\rangle$ and $a_{t} \in c\left\langle M_{7}(x)\right\rangle$ for some $t \in[6,9]$. For any $i, j, k \in[4,7],(\overline{i j k}) \sim x, u, M_{3}(x)$. Hence $c(\overline{i j k})=a[7,9]$. Similarly, for any $i, j, k \in[3,6], c(\overline{i j k})=a[6,9]-\left\{a_{t}\right\}$. As $c(\overline{456})=a[7,9]=a[6,9]-\left\{a_{t}\right\}$, we conclude that $t=6$.

Let $W:=\{(034),(157),(026),(134),(257)\}$. Every vertex in W is adjacent to some $(\overline{i j k})$, with $i, j, k \in[4,7]$ or $i, j, k \in[3,6]$. Hence, $c\langle W\rangle \subseteq a[0,6]$. This is impossible, as W induces a C_{5} while it is known [10] that $\chi_{3}\left(C_{5}\right)=8$.

Claim 2 Let $x, y \in X$. If $x \neq y$, then $c(x) \neq c(y)$. Moreover, if $x \cap y \neq \emptyset$, then $|c(x) \cap c(y)|=2$.

Proof. Let $x, y \in X, x \neq y$. Assume to the contrary, $c(x)=c(y)$. Then $x \cap y \neq \emptyset$. Assume $|x \cap y|=2$, say $x=(012), y=(013) \in X$ and $c(y)=$ $c(x)=a[3,5]$. Then $c(\overline{245}), c(\overline{367}) \subseteq a[6,9]$, implying $|c(245) \cap a[0,2]| \geq 2$ and $|c(367) \cap a[0,2]| \geq 2$. This is impossible as (367) $\sim(245)$.

Next, assume $|x \cap y|=1$, say $x=(012), y=(234)$ and $c(x)=c(y)=$ $a[3,5]$. By Claim 1, there exists $i \in\{5,6,7\}$, say $i=5, c\left\langle M_{i}(x)\right\rangle \subseteq$ $c(x) \cup c(u)=a[0,5]$. Hence $c(015)=a[0,2]$ (as (015) $\sim(234))$. Then $c(346), c(\overline{015}) \subseteq a[6,9]$, a contradiction, as $345 \sim \overline{015}$. Hence, $c(x) \neq c(y)$.

To prove the moreover part, assume $x \cap y \neq \emptyset$. Then there is some $z \in V$ with $z \sim x, y$. Thus $c(x) \cup c(y) \cup c(u)$ is disjoint from $c(\bar{z})$. This implies $|c(x) \cap c(y)|=2$.

In the remainder of the proof, we use Schrijver graphs. For $n \geq k$, the Schrijver graph, denoted by $S(n, k)$, is a subgraph of $K(n, k)$ induced by the vertices that do not contain any pair of consecutive integers in the cyclic order of [n]. Schrijver [9] proved that $\chi(K(n, k))=\chi(S(n, k))$ and $S(n, k)$ is vertex critical.

Denote the subgraph of $K(8,3)$ induced by $V-X$ by $K(8,3) \backslash X$. Then $K(8,3) \backslash X$ has a 3-vertex-colouring f, defined by $f(v)=\min \{c(v)\}$. Hence, $S(8,3)$ can not be a subgraph of $K(8,3) \backslash X$. In what follows, we frequently use the fact that if, for some ordering of $\{0,1, \ldots, 7\}$, each vertex $x \in X$ contains a pair of cyclically consecutive integers in $\{0,1, \ldots, 7\}$, then $K(8,3) \backslash$ X contains $S(8,3)$ as a subgraph, which is a contradiction.

Claim 3 For any $x, y \in X, x \cap y \neq \emptyset$.

Proof. Assume to the contrary, $x=(012), y=(567) \in X$. Suppose there is a vertex $z \in X \backslash\{x, y\}$ which intersects both x, y. By Claim $2,|c(z) \cap c(x)|=2$ and $|c(z) \cap c(y)|=2$, which is a contradiction, as $c(x) \cap c(y)=\emptyset$. Therefore,
any $z \in X \backslash\{x, y\}$ is either disjoint from x or disjoint from y. We partition X into two sets, A_{x} and A_{y}, that include vertices disjoint from x or from y, respectively.

Next we claim $A_{x}=\{y\}$ or $A_{y}=\{x\}$. For each $z \in A_{y}$, applying the above discussion on x and y to z and y, one can show that for any $z^{\prime} \in A_{x}$, $z \cap z^{\prime}=\emptyset$. Hence, if $A_{y}-\{x\} \neq \emptyset$ and $A_{x}-\{y\} \neq \emptyset$, then we may assume $z \subseteq[0,3]$ for all $z \in A_{y}$, and $z^{\prime} \subseteq[4,7]$ for all $z^{\prime} \in A_{x}$. This implies that every vertex of X contains two consecutive integers. Thus, $A_{x}=\{y\}$ or $A_{y}=\{x\}$.

Assume $A_{x}=\{y\}$. If (024) $\notin X$, then clearly every vertex of X contains two consecutive integers. Suppose $z_{1}=(024) \in X$. If (023) $\notin X$, then by exchanging 3 and 4 in the cyclic ordering, every vertex in X contains two consecutive integers. Assume $z_{2}=(023) \in X$. By Claim 1, for some $i \in\{1,2\}, c\left(z_{i}\right) \subseteq c(x) \cup c(u)$, and hence $c(x)=c\left(z_{i}\right)$ (since $z_{i} \in X$), contradicting Claim 2.

It follows from Claims 2 and 3 that for any distinct $x, y \in X, \mid c(x) \cap$ $c(y) \mid=2$. There are at most five 3-subsets of $a[3,9]$ that pairwisely have two elements in common. Thus $|X| \leq 5$. By Claim 3, it is straightforward to verify that there exists an ordering of $\{0,1,2, \ldots, 7\}$ such that each $x \in X$ contains a pair of cyclic consecutive integers. The details are omitted, as they are a bit tedious yet apparent.

4 Circular cliques and odd cycles

For any positive integers $p \geq 2 q$, the circular complete graph (or circular clique) $K_{p / q}$ has vertex set $[p]$ in which $i j$ is an edge if and only if $q \leq$ $|i-j| \leq p-q$. Circular cliques play an essential role in the study of circular chromatic number of graphs (cf. [12, 13]). A homomorphism from G to $K_{p / q}$ is also called a (p, q)-colouring of G. The circular chromatic number of G is
defined as

$$
\chi_{c}(G)=\inf \{p / q: G \text { has a }(p, q) \text {-colouring }\}
$$

It is known [12] that for any graph $G, \chi_{f}(G) \leq \chi_{c}(G)$. Moreover, a result in [1] implies that if $\chi_{f}(G)=\chi_{c}(G)$ then for any positive integer k,

$$
\chi_{k}(G)=\left\lceil k \chi_{f}(G)\right\rceil
$$

As $\chi_{c}\left(K_{p / q}\right)=\chi_{f}\left(K_{p / q}\right)=p / q$, we have

$$
\chi_{k}\left(K_{p / q}\right)=\lceil k p / q\rceil .
$$

Let $m=\lceil k p / q\rceil$. Indeed, a k-fold m-colouring c of $K_{p / q}$, using colours $a_{0}, a_{1}, \ldots, a_{m-1}$, can be easily constructed as follows. For $j=0,1, \ldots, m-1$, assign colour a_{j} to vertices $j q, j q+1, \ldots,(j+1) q-1$. Here the calculations are modulo p. Observe that c is a k-fold colouring for $K_{p / q}$, because each colour a_{j} is assigned to an independent set of $K_{p / q}$, and the union $\cup_{j=0}^{m-1}\{j q, j q+$ $1, \ldots,(j+1) q-1\}=[0, m q-1]$ is an interval of $m q$ consecutive integers. As $m q \geq k p$, for each integer i, there are at least k integers $t \in[0, m q-1]$ that are congruent to i modulo p, i.e., there are at least k colours assigned to each vertex i of $K_{p / q}$. (Here, for convenience, we modify the definition of a k-fold colouring to be a colouring which assigns to each vertex a set of at least k colours.)

Now we extend the above k-fold colouring c of $K_{p / q}$ to a k-fold colouring for $\mu\left(K_{p / q}\right)$ by assigning at least k colours to each vertex in $\bar{V} \cup\{u\}$. Let $S=a[m-k, m-1]$ and let $c(u)=S$. For $i \in V\left(K_{p / q}\right)$, let $g(\bar{i})=c(i) \backslash S$. Then $|g(\bar{i})|$ is equal to the number of integers in the interval $[0,(m-k) q-1]$ that are congruent to i modulo p. Hence $|g(\bar{i})| \geq\lfloor(m-k) q / p\rfloor$. Let $b=$ $k-\lfloor(m-k) q / p\rfloor$, and let $c(\bar{i})=g(\bar{i}) \cup\left\{a_{m}, a_{m+1}, \ldots, a_{m+b-1}\right\}$. Then c is a k-fold $(m+b)$-colouring of $\mu\left(K_{p / q}\right)$, implying $\chi_{k}\left(\mu\left(K_{p / q}\right)\right) \leq m+b$.

Theorem 9 Suppose p, q, k are positive integers with $p \geq 2 q$. Then

$$
\lceil k p / q+k q / p\rceil \leq \chi_{k}\left(\mu\left(K_{p / q}\right)\right) \leq\lceil k p / q\rceil+\lceil k q / p\rceil .
$$

Proof. The lower bound follows from the result that $\chi_{f}\left(\mu\left(K_{p / q}\right)\right)=\chi_{f}\left(K_{p / q}\right)+$ $\frac{1}{\chi_{f}\left(K_{p / q}\right)}=\frac{p}{q}+\frac{q}{p}$. For the upper bound, we have shown in the previous paragraph that $\chi_{k}\left(\mu\left(K_{p / q}\right)\right) \leq m+b$, where $m=\lceil k q / p\rceil$ and $b=k-\lfloor(m-k) q / p\rfloor$. By letting $m=(k p+s) / q$, easy calculation shows that $b=\lceil(k q-s) / p\rceil \leq$ $\lceil k q / p\rceil$.

It was proved in [5] that $\chi_{k}\left(\mu\left(K_{n}\right)\right)=\chi_{k}\left(K_{n}\right)+1=k n+1$ holds for $k \leq n$. By Theorem 9, this result can be generalized to circular cliques.

Corollary 10 If $k \leq p / q$, then $\chi_{k}\left(\mu\left(K_{p / q}\right)\right)=\chi_{k}\left(K_{p / q}\right)+1$.
Proof. As $\chi_{k}(\mu(G)) \geq \chi_{k}(G)+1$ holds for any graph G, it suffices to note that when $k \leq p / q$, Theorem 9 implies that $\chi_{k}\left(\mu\left(K_{p / q}\right)\right) \leq \chi_{k}\left(K_{p / q}\right)+1$.

Corollary 11 If $k=t q$ is a multiple of q, then $\chi_{k}\left(\mu\left(K_{p / q}\right)\right)=t p+\lceil k q / p\rceil$; if $k=s p$ is a multiple of p, then $\chi_{k}\left(\mu\left(K_{p / q}\right)\right)=s q+\lceil k p / q\rceil$.

Corollary 11 implies that for any integer s with $1 \leq s \leq\lceil k / 2\rceil$, there is a graph G with $\chi_{k}(\mu(G))=\chi_{k}(G)+s$.

If $p=2 q+1$, then $K_{p / q}$ is the odd cycle $C_{2 q+1}$. Assume $k \leq q$. By Theorem 9,

$$
2 k+\lceil(k+1) / 2\rceil \leq \chi_{k}\left(\mu\left(C_{2 q+1}\right)\right) \leq 2 k+\lceil(k+2) / 2\rceil .
$$

In particular, if k is even, then $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)=5 k / 2+1$; if k is odd, then $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right) \in\left\{2 k+\frac{k+1}{2}, 2 k+\frac{k+3}{2}\right\}$. It was proved in [5] that $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)=$ $2 k+\frac{k+3}{2}$ if k is odd and $k \leq q \leq \frac{3 k-1}{2}$. In the next theorem, we completely determine the value of $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)$ for $3 \leq k \leq q$.

Theorem 12 Let k be an odd integer, $k \geq 3$. Then

$$
\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)= \begin{cases}2 k+\frac{k+3}{2}, & \text { if } k \leq q \leq \frac{3 k+3}{2} ; \\ 2 k+\frac{k+1}{2}, & \text { if } q \geq \frac{3 k+5}{2} .\end{cases}
$$

Proof. Denote $V\left(C_{2 q+1}\right)=\left\{v_{0}, v_{1}, \ldots, v_{2 q}\right\}$, where $v_{i} \sim v_{i+1}$. Throughout the proof, all the subindices are taken modulo $2 q+1$.

We first consider the case $k \leq q \leq \frac{3 k+3}{2}$. Assume to the contrary, $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right)=2 k+\frac{k+1}{2}$. Let c be a k-fold colouring of $\mu\left(C_{2 q+1}\right)$ using colours from the set $a\left[0,2 k+\frac{k-1}{2}\right]$. Without loss of generality, assume $c(u)=a[0, k-1]$.

Denote by X the colour set $a\left[k, 2 k+\frac{k-1}{2}\right]$. For $i=0,1, \ldots, 2 q$, let $W_{i}=$ $c\left(v_{i}\right), X_{i}=W_{i} \cap X$, and $Y_{i}=W_{i} \cap a[0, k-1]$. Then $W_{i}=Y_{i} \cup X_{i}$ and $\left|X_{i}\right|+\left|Y_{i}\right|=k$. For each i, since $c\left(\overline{v_{i}}\right) \subseteq X$ and $\left(c\left(v_{i-1}\right) \cup c\left(v_{i+1}\right)\right) \cap c\left(\overline{v_{i}}\right)=\emptyset$, we have $\left|X_{i-1} \cup X_{i+1}\right| \leq|X|-k=(k+1) / 2$. As $\left|W_{i} \cup W_{i+1}\right|=2 k$, we have $\left|X_{i} \cup X_{i+1}\right| \geq k$. Hence, for each $i, \frac{k-1}{2} \leq\left|X_{i}\right| \leq \frac{k+1}{2}$.

Partition $V=\left\{v_{0}, v_{1}, \ldots, v_{2 q}\right\}$ into the following two sets:

$$
\begin{aligned}
& A_{1}=\left\{v_{i} \in V:\left|X_{i}\right|=\frac{k-1}{2}\right\} \\
& A_{2}=\left\{v_{i} \in V:\left|X_{i}\right|=\frac{k+1}{2}\right\} .
\end{aligned}
$$

Observation A. All the following hold for every $i \in[0,2 q]$:

1. If $v_{i} \in A_{1}$, then $v_{i-1}, v_{i+1} \in A_{2}$.
2. If $v_{i}, v_{i+2} \in A_{2}$, then $X_{i}=X_{i+2}$; if $v_{i}, v_{i+2} \in A_{1}$, then $\left|X_{i} \backslash X_{i+2}\right| \leq 1$ and $\left|X_{i+2} \backslash X_{i}\right| \leq 1$.
3. Assume $v_{i} \in A_{1}$ for some i. If $v_{i+2} \in A_{2}$ (or $v_{i-2} \in A_{2}$, respectively), then $X_{i} \subseteq X_{i+2}$ (or $X_{i} \subseteq X_{i-2}$, respectively).

For each i, as $\left|X_{i}\right|+\left|Y_{i}\right|=k$, one has $\frac{k-1}{2} \leq\left|Y_{i}\right| \leq \frac{k+1}{2}$. Similar to the above discussion on X_{i} 's, we have:

Observation B. The following hold for all $i \in[0,2 q]$:

1. If $v_{i}, v_{i+2} \in A_{1}$, then $Y_{i}=Y_{i+2}$.
2. Assume $v_{i} \in A_{1}$ for some i. If $v_{i+2} \in A_{2}$ (or $v_{i-2} \in A_{2}$, respectively), then $Y_{i+2} \subseteq Y_{i}$ (or $Y_{i-2} \subseteq Y_{i}$, respectively).
3. Assume $v_{i}, v_{i+2} \in A_{2}$ for some i. If $v_{i+1} \in A_{1}$, then $Y_{i}=Y_{i+2}$; if $v_{i+1} \in A_{2}$, then $\left|Y_{i+2} \backslash Y_{i}\right| \leq 1$ and $\left|Y_{i} \backslash Y_{i+2}\right| \leq 1$.

By Observation A (1), there exists some i such that $v_{i}, v_{i+1} \in A_{2}$. Without loss of generality, assume $v_{0}, v_{1} \in A_{2}$.

Claim 1. $\left|A_{1}\right|=k+2$. Moreover, all the following hold:

1. $\cup_{i=0}^{2 q} X_{i}=X_{0} \cup X_{1} \cup\left\{w^{*}\right\}$ for some $w^{*} \notin X_{0} \cup X_{1}$.
2. For each $v_{i} \in A_{1}, i \in[0,2 q]$, there exists some $x \in X_{i-2} \backslash X_{i}$. In addition, if $x \neq w^{*}$, then $x \in X_{0}$ if i is even; and $x \in X_{1}$ if i is odd.
3. For each $x \in X_{0} \cup X_{1} \cup\left\{w^{*}\right\}$ there exists a unique $i \in[0,2 q]$ such that $x \in X_{i} \backslash X_{i+2}$. In addition,

- if $x=w^{*}$, then $x \notin X_{i+2} \cup X_{i+3} \cup \ldots \cup X_{2 q}$;
- if $x \in X_{0}$, then i is even and $x \notin X_{i+2} \cup X_{i+4} \cup \ldots \cup X_{2 q}$; and
- if $x \in X_{1}$, then i is odd and $x \notin X_{i+2} \cup X_{i+4} \cup \ldots \cup X_{2 q-1}$.

Proof. Consider the sequence $\left(X_{0}, X_{2}, \ldots, X_{2 q}, X_{1}\right)$. Because $X_{0} \cap X_{1}=\emptyset$, for each $x \in X_{0}$, there exists some even number $i \in[0,2 q]$ such that $x \in X_{i} \backslash X_{i+2}$. By Observation $\mathrm{A}, X_{i} \backslash X_{i+2}=\{x\}$ and $v_{i+2} \in A_{1}$. Since $\left|X_{0}\right|=\frac{k+1}{2}$, we conclude that there exist $\frac{k+1}{2}$ even integers $i \in[0,2 q]$ with $\left|X_{i} \backslash X_{i+2}\right|=1$ and $v_{i+2} \in A_{1}$. Similarly, by considering the sequence $\left(X_{1}, X_{3}, \ldots, X_{2 q-1}, X_{0}\right)$, there exist $\frac{k+1}{2}$ odd integers $i \in[0,2 q]$ with $\left|X_{i} \backslash X_{i+2}\right|=1$ and $v_{i+2} \in A_{1}$. Hence, $\left|A_{1}\right| \geq k+1$.

Let i^{*} be the smallest nonnegative integer such that $\left|X_{i^{*}+2} \backslash X_{i^{*}}\right|=1$. Note, by the above discussion, i^{*} exists. Let $X_{i^{*}+2} \backslash X_{i^{*}}=\left\{w^{*}\right\}$. It can be seen that $w^{*} \notin X_{0} \cup X_{1}$. By the same argument as in the previous paragraph (using either the even or the odd sequence depending on the parity of $\left.i^{*}\right)$, there exists some $i \geq i^{*}$ such that $w^{*} \in X_{i} \backslash X_{i+2}$ and $v_{i+2} \in A_{1}$. Moreover, this i is different from the i 's observed in the previous paragraph. So, $\left|A_{1}\right| \geq k+2$.

By a similar discussion applied to Y_{0} and Y_{1} one can show that there are at least k integers i such that $\left|Y_{i} \backslash Y_{i+2}\right|=1$.

Combining all the above discussion, to complete the proof (including the moreover part) it is enough to show $\left|A_{1}\right| \leq k+2$. Consider a sequence v_{i}, v_{i+1}, $\ldots, v_{i+s}, v_{i+s+1}$ with $v_{i}, v_{i+s+1} \in A_{1}$ and $v_{i+1}, \ldots, v_{i+s} \in A_{2}$. Then $s>0$ holds, and by Observation B , there are at most $s-1$ integers j in $[i, i+s]$ such that $\left|Y_{j} \backslash Y_{j+2}\right|=1$. Hence, there are at most $\left|A_{2}\right|-\left|A_{1}\right|$ integers i in $[0,2 q]$ with $\left|Y_{i} \backslash Y_{i+2}\right|=1$. This implies, by the previous paragraph, $\left|A_{2}\right|-\left|A_{1}\right| \geq k$. Recall, $\left|A_{2}\right|+\left|A_{1}\right|=2 q+1 \leq 3 k+4$. Therefore, $\left|A_{1}\right| \leq k+2$.
Claim 2. For any $v_{i}, v_{j} \in A_{1}$ with $i \neq j$, we have $|i-j| \geq 3$.
Proof. Suppose the claim fails. Without loss of generality, by Observation A (1), we may assume there exists some $i \in[0,2 q]$ such that $v_{i-1}, v_{i+1} \in A_{1}$ and $v_{i-3}, v_{i-2}, v_{i}, v_{i+2} \in A_{2}$. By Observation A (2), $X_{i-2}=X_{i}=X_{i+2}$. Assume i is odd. (The proof for i even is symmetric.) By Claim 1 (2), there exist $w_{1} \in X_{i-3} \backslash X_{i-1}$ and $w_{2} \in X_{i-1} \backslash X_{i+1}$, where $\left\{w_{1}, w_{2}\right\} \subseteq X_{0} \cup\left\{w^{*}\right\}$. From $w_{1} \in X_{i-3}$ and $w_{2} \in X_{i-1}$, it follows $w_{1}, w_{2} \notin X_{i-2}$. By Claim 1 (3), $w_{1}, w_{2} \notin X_{i+1} \cup X_{i+3}$. Hence,

$$
X_{i+2} \cup X_{i+1}=X_{i} \cup X_{i+1}=\left(X_{0} \cup X_{1} \cup\left\{w^{*}\right\}\right) \backslash\left\{w_{1}, w_{2}\right\}
$$

If $v_{i+3} \in A_{2}$, by Observation A (3), we have $X_{i+1} \subseteq X_{i+3}$, implying w_{1} or w_{2} is in $X_{i+3} \backslash X_{i+1}$, a contradiction. Hence, $v_{i+3} \in A_{1}$. Again by Claim 1 (2),
w_{1} or w_{2} must be in $X_{i+3} \backslash X_{i+1}$, a contradiction.
By Claims 1 and 2, we have $2 q+1=\left|A_{1}\right|+\left|A_{2}\right| \geq 3(k+2)=3 k+6$, contradicting $q \leq \frac{3 k+3}{2}$. This completes the proof for $q \leq \frac{3 k+3}{2}$.

Now consider $q \geq \frac{3 k+5}{2}$. Observe that if $q^{\prime} \leq q$, then $\mu\left(C_{2 q+1}\right)$ admits a homomorphism to $\mu\left(C_{2 q^{\prime}+1}\right)$, which implies that $\chi_{k}\left(\mu\left(C_{2 q+1}\right)\right) \leq \chi_{k}\left(\mu\left(C_{2 q^{\prime}+1}\right)\right)$. Thus to prove the case $q \geq \frac{3 k+5}{2}$, it suffices to give a k-fold colouring f for $\mu\left(C_{3 k+6}\right)$ using colours from the set $\left[0,2 k+\frac{k-1}{2}\right]$. We give such a colouring f below by using the above proof. For instance, combining Claims 1 and 2, there are exactly $k+2$ vertices in A_{1}; and these vertices are evenly distributed on $C_{3 k+6}$.

Let $f(u)=[0, k-1]$, where u is the root of $\mu\left(C_{3 k+6}\right)$. Next, we extend f to a k-fold colouring for $C_{3 k+6}$ using colours from $[0,2 k+1]$. For $a, b \in$ $[0,3 k+5]$ with appropriate parities, denote $\langle a, b\rangle$ as the set of integers $\{a, a+2, a+4, \ldots, b-2, b\}(\bmod 3 k+6)$. For $0 \leq j \leq 2 k+1$, define:

$$
V[j]= \begin{cases}<5+6 j, 2+6 j>, & j=0,1, \ldots, \frac{k-3}{2} ; \\ <8+6\left(j-\frac{k-1}{2}\right), 5+6\left(j-\frac{k-1}{2}\right)>, & j=\frac{k-1}{2}, \ldots, k-2 ; \\ <2,3 k-1>\cup\{3 k+2,3 k+5\}, & j=k-1 ; \\ <7+6(j-k), 6(j-k)>, & j=k, k+1, \ldots, k+\frac{k-1}{2} ; \\ <10+6\left(j-k-\frac{k+1}{2}\right), 3+6\left(j-k-\frac{k+1}{2}\right)>, & j=k+\frac{k+1}{2}, \ldots, 2 k ; \\ <4,3 k+3>, & j=2 k+1 .\end{cases}
$$

Define f on $C_{3 k+6}$ by $j \in f\left(v_{i}\right)$ whenever $i \in V[j]$. Observe, for each i, $\left|\left(f\left(v_{i-1}\right) \cup f\left(v_{i+1}\right)\right) \cap[k, 2 k+1]\right| \leq \frac{k+1}{2}$.

Finally, let $f\left(\overline{v_{i}}\right)$ be any k colours from $\left[k, 2 k+\frac{k-1}{2}\right] \backslash\left(f\left(v_{i-1}\right) \cup f\left(v_{i+1}\right)\right)$. It is straightforward to verify that f is a k-fold $\left(2 k+\frac{k+1}{2}\right)$-colouring for $\mu\left(C_{3 k+6}\right)$. We shall leave the details to the reader. This completes the proof of Theorem 12.

References

[1] G. Gao and X. Zhu, Star extremal graphs and the lexicographic product, Disc. Math., 152 (1996), 147-156.
[2] A.J.W. Hilton and E. C. Milner, Systems of finite sets, Quart. J. Math. Oxford (2), 18 (1967), 369-84.
[3] Lovász, L., Kneser's conjecture, chromatic number, and homotopy, J. Comb. Theory, Ser. A, 25 (1978), 319-324.
[4] M. Larsen, J. Propp and D. H. Ullman, The fractional chromatic number of Mycielski graphs, J Graph Theory, 19 (1995), 411-416.
[5] W. Lin, Multicolouring and Mycielski construction, Disc. Math., 308 (2008), 3565-3573.
[6] J. Mycielski, Sur le colouriage des graphes, Colloq. Math., 3 (1955), 161162.
[7] Z. Pan and X. Zhu, Multiple colouring of cone graphs, manuscript, 2006.
[8] E. R. Scheinerman, D. H. Ullman, Fractional Graph Theory. WileyInterscience Series in Discrete Mathematics and Optimization (John Wiley \& Son, New York, 1997).
[9] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wisk. (3), 26 (1978), 454-461.
[10] S. Stahl, n-fold colourings and associated graphs, J. Combin. Theory Ser. B, 20 (1976), 185-203.
[11] C. Tardif, Fractional chromatic numbers of cones over graphs, J. Graph Theory, 38 (2001), 87-94.
[12] X. Zhu, Circular chromatic number: a survey, Discrete Mathematics, 229 (2001), 371-410.
[13] X. Zhu, Recent development in circular colouring of graphs, Topics in Discrete Mathematics, 497-550, 2006.

[^0]: *Department of Mathematics, Southeast University, Nanjing 210096, P.R. China. Supported in part by NSFC under grant 10671033. Email: wslin@seu.edu.cn.
 ${ }^{\dagger}$ Corresponding Author. Department of Mathematics, California State University, Los Angeles, CA 90032, USA. Supported in part by the National Science Foundation under grant DMS 0302456. Email: dliu@calstatela.edu.
 ${ }^{\ddagger}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, and National Center for Theoretical Sciences, Taiwan. Supported in part by the National Science Council under grant NSC95-2115-M-110-013-MY3. Email: zhu@math.nsysu.edu.tw.

