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Abstract

Given positive integers m, k and s with m > ks, let Dm,k,s represent the set
{1, 2, · · · ,m} − {k, 2k, · · · , sk}. The distance graph G(Z,Dm,k,s) has as vertex
set all integers Z and edges connecting i and j whenever |i − j| ∈ Dm,k,s. The
chromatic number and the fractional chromatic number of G(Z,Dm,k,s) are de-
noted by χ(Z,Dm,k,s) and χf (Z,Dm,k,s), respectively. For s = 1, χ(Z,Dm,k,1)
was studied by Eggleton, Erdős and Skilton [6], Kemnitz and Kolberg [12],
and Liu [13], and was solved lately by Chang, Liu and Zhu [2] who also de-
termined χf (Z,Dm,k,1) for any m and k. This article extends the study of
χ(Z,Dm,k,s) and χf (Z,Dm,k,s) to general values of s. We prove χf (Z,Dm,k,s) =
χ(Z,Dm,k,s) = k if m < (s + 1)k; and χf (Z,Dm,k,s) = (m + sk + 1)/(s + 1)
otherwise. The latter result provides a good lower bound for χ(Z,Dm,k,s). A
general upper bound for χ(Z,Dm,k,s) is found. We prove the upper bound can
be improved to d(m + sk + 1)/(s + 1)e + 1 for some values of m, k and s. In
particular, when s + 1 is prime, χ(Z,Dm,k,s) is either d(m + sk + 1)/(s + 1)e
or d(m + sk + 1)/(s + 1)e + 1. By using a special coloring method called
the pre-coloring method, many distance graphs G(Z,Dm,k,s) are classified into
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these two possible values of χ(Z,Dm,k,s). Moreover, complete solutions of
χ(Z,Dm,k,s) for several families are determined including the case s = 1 (solved
in [2]), the case s = 2, the case (k, s + 1) = 1, and the case that k is a power of
a prime.

Keywords. Distance graph, chromatic number, fractional chromatic number, pre-

coloring method.

1 Introduction

Given a set D of positive integers, the distance graph G(Z, D) has all integers as

vertices; and two vertices are adjacent if and only if their difference falls within D,

that is, the vertex set is Z and the edge set is {uv : |u − v| ∈ D}. We call D the

distance set. The chromatic number of G(Z, D) is denoted by χ(Z, D).

For different types of distance sets D, the problem of determining χ(Z, D) has

been studied extensively. (See [2, 3, 4, 6, 7, 8, 9, 12, 16, 15, 17].) For instance, suppose

D is a subset of prime numbers and {2, 3} ⊆ D, Eggleton, Erdős and Skilton [9] proved

that χ(Z, D) is either 3 or 4. The problem of classifying G(Z, D) with distance sets D

of primes into chromatic number 3 or 4 was studied by Eggleton, Erdős and Skilton

[9], and by Voigt and Walther [16]. However, a complete classification is not obtained

yet.

If D has only one element, it is trivial that χ(Z, D) = 2. When D has two

elements, it is known that χ(Z, D) = 3 if the two integers in D are of different parity,

and χ(Z, D) = 2 otherwise (assuming that gcdD = 1). The case if D has three

elements, which is much more complicated, has been studied by Chen, Chang, and

Huang [3], and by Voigt [15], and was solved lately by Zhu [17].

A fractional coloring of a graph G is a mapping h from I(G), the set of all

independent sets of G, to the interval [0, 1] such that
∑

I∈I(G),x∈I

h(I) ≥ 1 for each

vertex x of G. The fractional chromatic number χf(G) of G is the infimum of the

value
∑

I∈I(G)
h(I) of a fractional coloring h of G. The fractional chromatic number of
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a distance graph G(Z, D) is denoted by χf(Z, D).

For any graph G, it is well-known and easy to verify that

max{ω(G),
|V (G)|

α(G)
} ≤ χf (G) ≤ χ(G), (*)

where ω(G) is the size (number of vertices) of a maximum complete graph, and α(G)

is the size of a maximum independent set in G. (See Chapter 3 of [14].)

Given integers m, k and s with m > ks, let Dm,k,s denote the distance set

Dm,k,s = {1, 2, 3, · · · , m} − {k, 2k, 3k, · · · , sk}. This article studies the chromatic

number and the fractional chromatic number of G(Z, Dm,k,s). If s = 1, the chromatic

number of G(Z, Dm,k,1) was first studied by Eggleton, Erdős and Skilton [6] who

determined χ(Z, Dm,k,1) completely for k = 1, and partially for k = 2. The same

results for the case k = 1 were also obtained in [12] by a different approach. For the

cases that k is an odd number, k = 2 and k = 4, χ(Z, Dm,k,1) were determined in

[13]. Recently, the exact values of χf(Z, Dm,k,1) and χ(Z, Dm,k,1) for all m and k were

settled in [2]. We extend the study to general values of s.

Note that it becomes an easy case if m < (s + 1)k. Define a coloring f of

G(Z, Dm,k,s) by: For any x ∈ Z, f(x) = x mod k. Since Dm,k,s contains no multiples

of k, f is a proper coloring. Thus, χ(Z, Dm,k,s) ≤ k. As any consecutive k vertices

in G(Z, Dm,k,s) form a complete graph, by (*), χf (Z, Dm,k,s) ≥ k. This implies

χ(Z, Dm,k,s) = χf (Z, Dm,k,s) = k, if m < (s + 1)k. Therefore, throughout the article,

we assume m ≥ (s + 1)k.

Section 2 determines the fractional chromatic number of G(Z, Dm,k,s) for all

values of m, k and s with m ≥ (s + 1)k. This result provides a good lower bound for

χ(Z, Dm,k,s), namely,

d(m + sk + 1)/(s + 1)e ≤ χ(Z, Dm,k,s), if m ≥ (s + 1)k. (**)

This lower bound will be shown to be sharp for some families of G(Z, Dm,k,s) and

strict for some others.
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Section 3 introduces the pre-coloring method, one of the main tools used in the

article. For such a coloring method, we determine when it produces a proper coloring

for G(Z, Dm,k,s), and then determine the number of colors used by the produced

proper coloring. These characterizations are used intensively in Sections 4 and 5.

Section 4 starts with the result of a general upper bound of χ(Z, Dm,k,s). For

some values of m, k and s, we improve the upper bound to d(m+ sk +1)/(s+1)e+1.

Combining these results with the lower bound (**) mentioned above, the chromatic

numbers for many families of G(Z, Dm,k,s) are determined.

Section 5 focuses on the study of χ(Z, Dm,k,s) when s + 1 is a prime number.

Using the results obtained in earlier sections, we show that when s + 1 is prime,

χ(Z, Dm,k,s) is either d(m + sk + 1)/(s + 1)e or d(m + sk + 1)/(s + 1)e+ 1. For many

families of G(Z, Dm,k,s), we classify their chromatic numbers into one of these two

values. Moreover, we completely determine the exact values of χ(Z, Dm,k,s) for the

following cases: If s = 1 (which was solved recently in [2]); if s = 2; if (k, s + 1) = 1;

and if k is a power of a prime.

2 Lower bounds and fractional chromatic number

In this section, we first determine the fractional chromatic number of G(Z, Dm,k,s) for

all values of m, k and s with m ≥ (s + 1)k. This result immediately leads to (**),

a lower bound for χ(Z, Dm,k,s). Then we prove that in (**), equality holds for some

values of m, k and s; while strict inequality holds for some others.

Theorem 1 For any given integers m, k and s with m ≥ (s + 1)k,

χf(Z, Dm,k,s) = (m + sk + 1)/(s + 1).

Proof. For any i with 0 ≤ i ≤ m + sk, let Ii = {j ∈ Z : j − i ≡ xk (mod m +

sk + 1), 0 ≤ x ≤ s}. It is straightforward to verify that Ii is an independent set in
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G(Z, Dm,k,s). It is also easy to verify that any integer is contained in exactly s + 1

such independent sets. Define a mapping h : I(G(Z, Dm,k,s)) → [0, 1] by

h(I) =

{

1
s+1

, if I = Ii for 0 ≤ i ≤ m + sk;

0, otherwise.

Then h is a fractional coloring of G(Z, Dm,k,s) which has value m+sk+1
s+1

. Thus,

χf(Z, Dm,k,s) ≤
m+sk+1

s+1
.

To show χf (Z, Dm,k,s) ≥
m+sk+1

s+1
, let G be the subgraph of G(Z, Dm,k,s) induced

by the vertices {0, 1, 2, · · · , m+sk}. Then χf (G) ≤ χf (Z, Dm,k,s). It is straightforward

to verify that α(G) = s+ 1. Hence, by (*), χf(G) ≥ |V (G)|
α(G)

= m+sk+1
s+1

. This completes

the proof of Theorem 1. Q.E.D.

Since χ(G) is an integer, by (*), we have dχf (G)e ≤ χ(G). Hence, the following

is obtained.

Theorem 2 For any given integers m, k and s with m ≥ (s + 1)k,

χ(Z, Dm,k,s) ≥ d(m + sk + 1)/(s + 1)e.

The following result indicates that the lower bound of χ(Z, Dm,k,s) in Theorem

2 is attained by some values of m, k and s, but not attained by some others.

Theorem 3 Suppose m ≥ (s + 1)k, k = (s + 1)ak′ and m + sk + 1 = (s + 1)bm′,

where both k′ and m′ are not divisible by s + 1. Then

χ(Z, Dm,k,s)

{

≥ (m + sk + 1)/(s + 1) + 1, if 0 < b ≤ a;
= (m + sk + 1)/(s + 1), if a < b and (s + 1, k′) = 1.

Proof. Let n = (m + sk + 1)/(s + 1). Because b > 0, n is an integer.

Suppose 0 < b ≤ a, we shall show that G(Z, Dm,k,s) is not n-colorable. Assume

to the contrary, there exits an n-coloring f of G(Z, Dm,k,s).

For any two integers i and j, let G[i, j] be the subgraph of G(Z, Dm,k,s) induced

by the vertex set {i+1, i+2, · · · , j}. Then for any integer i, the graph G[i, i+m+sk+1]
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has m + sk + 1 vertices and a maximum independent set of size s + 1. Since f is an

(m+ sk +1)/(s+1)-coloring, exactly s+1 vertices of G[i, i+m+ sk +1] are colored

by the same color. It follows that f(i) = f(i + m + sk + 1) for any integer i.

Define a circulant graph G on the set {0, 1, · · · , m + sk} with generating set

Dm,k,s, that is, ij is an edge of G if and only if (j − i) mod (m + sk + 1) ∈ Dm,k,s or

(i − j) mod (m + sk + 1) ∈ Dm,k,s. The argument in the previous paragraph shows

that f induces a proper n-coloring of G. Moreover, each color class consists of s + 1

vertices in G. It is not difficult to verify that all (s + 1)-independent sets of G are of

the form {i, i+k, · · · , i+sk}. (Here each number is calculated by modulo m+sk+1.)

Let d = (k, m+ sk +1) and u = (m+ sk +1)/d. Divide the vertex set of G into

d subsets of the form {i, i + k, i + 2k, · · · , i + (u − 1)k} (mod m + sk + 1), each of

size u. Then each of these d subsets is the union of some color classes of size s+1, so

(s+1) divides u. Therefore m+ sk +1 is a multiple of (s+1)a+1, which is impossible

since b ≤ a.

Suppose a < b and (s + 1, k′) = 1, then u is a multiple of s + 1. One can easily

define a proper n-coloring f on G by using u/(s + 1) colors to each of the subsets

{i, i+k, i+2k, · · · , i+(u−1)k} (mod m+sk+1) as defined in the previous paragraph

by: the first s + 1 vertices in a subset use one color and the next s + 1 vertices use

the next, and continue the process until all vertices are colored. It is easy to check

that f is a proper coloring of G. Furthermore, f can be extended to a proper coloring

of G(Z, Dm,k,s) by letting f ′(y) = f(x), where x = y mod (m + sk + 1). Therefore,

G(Z, Dm,k,s) is n-colorable. This completes the proof of Theorem 3. Q.E.D.

3 The pre-coloring method

This section introduces the main tool to be used in the remaining part of this article,

namely, the pre-coloring method. A simpler version of this method was originally

applied in [2] in determining the chromatic number of G(Z, Dm,k,1). Here we extend

6



the idea to a more complex version and use it extensively throughout this article.

Before introducing the pre-coloring method, we note another fact. Let Z∗ denote

the set of non-negative integers. It is known and easy to verify that for any distance

set D, χ(Z, D) = χ(Z∗, D), where G(Z∗, D) is the subgraph of G(Z, D) induced by

Z∗. Therefore, to color the graph G(Z, Dm,k,s), it suffices to color the subgraph of

G(Z, Dm,k,s) induced by Z∗.

There are two steps in the pre-coloring method. First, we partition the set Z∗

into s+1 parts by a mapping c : Z∗ → {0, 1, 2, · · · , s}. Second, for each non-negative

integer x, according to the value of c(x), we assign a color to x by the rule defined as

follows.

Definition 4 Suppose m, k, s are positive integers. For a given mapping c : Z∗ →

{0, 1, 2, · · · , s}, define a coloring c′ of Z∗ recursively by:

c′(j) =











j, if j < k;
c′(j − k), if j ≥ k and c(j) 6= 0;
n, if j ≥ k and c(j) = 0,

where n is the smallest non-negative integer (color) not been used in the m vertices

preceeding j, that is, n = min{t ∈ Z∗ : c′(j − i) 6= t for i = 1, 2, · · · , m}.

Note that c′ defined above is uniquely determined by c. We call c the pre-

coloring, and c′ the coloring induced by c. For any x ∈ Z∗, c(x) and c′(x) are called

the pre-color and the color of x, respectively.

In order to ensure that the coloring c′ in Definition 4 to be a proper coloring

for G(Z∗, Dm,k,s) as desired, the pre-coloring c needs to satisfy certain conditions

specified in the following lemma.

Lemma 5 Suppose c is a pre-coloring of Z∗. If for any integer j ≥ sk, c(j), c(j −

k), c(j−2k), · · ·, and c(j−sk) are all distinct, then the induced coloring c′ is a proper

coloring for G(Z, Dm,k,s).
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Proof. It is enough to show by induction that for any j ∈ Z∗, c′(j) 6= c′(x) for any

neighbor x of j and x < j. If j < k, or j ≥ k with c(j) = 0, then this is true by

Definition 4.

Now, assume j ≥ k and c(j) 6= 0. By definition, c′(j) = c′(j − k). If j − k <

x < j, then x is adjacent to j − k. By the inductive hypotheses, c′(x) 6= c′(j − k),

so c′(x) 6= c′(j). If x < j − k and x is adjacent to j, then either x is a neighbor of

j − k or x = j − (s + 1)k. In the former case, according to the inductive hypotheses,

c′(x) 6= c′(j −k), hence c′(x) 6= c′(j). We now consider the case that x = j − (s+1)k.

Because the pre-colors of j, j − k, j − 2k, · · · , j − sk are all distinct, exactly one

of them is 0. Suppose c(j − uk) = 0 for some 0 ≤ u ≤ s. Then by Definition

4, c′(j − uk) is different from the color of any of the m vertices preceding j − uk,

hence c′(j − uk) 6= c′(j − (s + 1)k). Because c(j), c(j − k), · · · , c(j − (u − 1)k) 6= 0,

c′(j) = c′(j − k) = c′(j − 2k) = · · · = c′(j − uk). Therefore, c′(j) 6= c′(j − (s + 1)k),

i.e., c′(j) 6= c′(x). This completes the proof of Lemma 5. Q.E.D.

After getting a necessary condition for the pre-coloring c to produce a proper

coloring c′ for the distance graph G(Z∗, Dm,k,s), the next natural question to ask is

how many colors are used by c′. The answer of this question is shown in the following

result.

Lemma 6 Suppose c is a pre-coloring and c′ is the induced coloring. Then the number

of colors used by c′ is at most k + `, where ` is the maximum number of vertices with

pre-color 0, among any m − k + 1 consecutive integers greater than k.

Proof. We prove, by induction on j, that vertices 0, 1, 2, · · · , j are colored by the

pre-coloring method with at most k + ` colors. This is trivial when j < k, or j ≥ k

with c(j) 6= 0.

Now we assume j > k and c(j) = 0. It suffices to show that the m vertices

preceeding j use at most k + `− 1 colors. For the m vertices preceeding j, the first k
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vertices use at most k colors. Among the remaining m−k vertices, only those vertices

with pre-color 0 require a new color. Due to the facts that c(j) = 0, and any set of

consecutive m− k + 1 vertices contains at most ` vertices of pre-color 0, we conclude

that among the remaining m − k vertices, there are at most ` − 1 vertices with pre-

color 0. Therefore, the total number of colors used by the m vertices preceeding j is

at most k + ` − 1, and hence there is a color for the vertex j. Q.E.D.

Combining Lemmas 5 and 6, we arrive at the following useful conclusion.

Corollary 7 Given integers m, k and s, χ(Z, Dm,k,s) ≤ n if there exists a pre-coloring

c such that the following two conditions are satisfied:

(1) for any integer j ≥ sk, c(j), c(j − k), c(j − 2k), · · · , c(j − sk) are all distinct,

and

(2) among any consecutive non-negative m−k +1 integers, there are at most n−k

vertices with pre-color 0.

Corollary 7 will be used in many of the proofs in the rest of the article. Instead

of finding a proper coloring for the distance graph G(Z, Dm,k,s) with n colors, it is

enough to present a pre-coloring c that satisfies (1) and (2) of Corollary 7.

4 Upper bounds

This section shows upper bounds of χ(Z, Dm,k,s) for different values of m, k and s.

Combining these upper bounds with the lower bounds obtained in Section 2 gives

the exact value of χ(Z, Dm,k,s) for some families of G(Z, Dm,k,s). In particular, we

prove for many different combinations of m, k and s, χ(Z, Dm,k,s) is either d(m+sk +

1)/(s + 1)e or d(m + sk + 1)/(s + 1)e + 1.

We start with a general upper bound in the following. For any two integers a

and b, let (a, b) denote the greatest common divisor of a and b.
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Theorem 8 Suppose m ≥ (s + 1)k and (k, m + sk + 1) = d, then χ(Z, Dm,k,s) ≤

dd(m + sk + 1)/d(s + 1)e.

Proof. Define a circulant graph G on the set {0, 1, · · · , m + sk} with generating

set Dm,k,s, that is, ij is an edge of G if and only if (j − i) mod (m + sk + 1) ∈ Dm,k,s

or (i − j) mod (m + sk + 1) ∈ Dm,k,s. It is easy to verify that any proper coloring f

of G can be extended to a proper coloring f ′ of G(Z, Dm,k,s) by letting f ′(y) = f(x),

where x = y mod (m + sk + 1). Therefore, it is enough to find a proper n-coloring of

G, where n = dd(m + sk + 1)/d(s + 1)e.

Let u = (m+sk+1)/d. Divide the vertex set of G into d subsets such that each

subset has u vertices and is of the form {i, i + k, i + 2k, · · · , i + (u− 1)k} (mod m +

sk + 1). Any consecutive s + 1 vertices in a subset are independent, so each subset

can be partitioned into du/(s + 1)e = d(m + sk + 1)/d(s + 1)e independent sets of

size s + 1, except the last one whose size might be smaller than s + 1. Therefore the

vertex set of G can be partitioned into dd(m + sk + 1)/d(s + 1)e independent sets.

Hence χ(Z, Dm,k,s) ≤ dd(m + sk + 1)/d(s + 1)e. Q.E.D.

Combining the upper bound above with the lower bound in Theorem 2, the

following two results emerge.

Corollary 9 Suppose m ≥ (s + 1)k and (k, m + sk + 1) = d, then

d(m + sk + 1)/(s + 1)e ≤ χ(Z, Dm,k,s) ≤ dd(m + sk + 1)/d(s + 1)e.

Corollary 10 If m ≥ (s + 1)k and (k, m + sk + 1) = 1, then χ(Z, Dm,k,s) = d(m +

sk + 1)/(s + 1)e.

We note that in Corollary 9, there may exist big gaps between the upper and

the lower bounds, depending on the values of d = (k, m + sk + 1). However, so far

we do not have any example of distance graph G(Z, Dm,k,s) with chromatic number
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exceeding d(m + sk + 1)/(s + 1)e + 1. The next theorem provides a better upper

bound for some families of G(Z, Dm,k,s).

Theorem 11 If m ≥ (s + 1)k and s + 1 is a divisor of k, then χ(Z, Dm,k,s) ≤

d(m + sk + 1)/(s + 1)e + 1.

Proof. For any j ∈ Z∗, we can write j uniquely in the form j = uk + v(s + 1) + w,

where u, v and w are integers such that 0 ≤ v < k/(s + 1) and 0 ≤ w ≤ s. Then

define a pre-coloring c by c(j) = u + w (mod s + 1). We only need to show that c

satisfies (1) and (2) in Corollary 7, with n = d(m + sk + 1)/(s + 1)e + 1.

First we show that for any vertex j, the s+1 vertices, j, j−k, j−2k, · · · , j− sk

have distinct pre-colors. Assume j = uk + v(s + 1) + w with 0 ≤ v < k/(s + 1)

and 0 ≤ w ≤ s. Then j − ik = (u − i)k + v(s + 1) + w, 0 ≤ i ≤ s. It follows that

c(j − ik) = (u − i + w) mod (s + 1) which give distinct colors for 0 ≤ i ≤ s.

Next we show that among any consecutive m − k + 1 vertices, there are at

most n − k = d(m − k + 1)/(s + 1)e + 1 vertices with pre-color 0. Divide the set

of non-negative integers into segments of length s + 1 by A0 = {0, 1, · · · , s}, A1 =

{s + 1, s + 2, · · · , 2s + 1}, · · · , Ai = {i(s + 1), i(s + 1) + 1, · · · , (i + 1)(s + 1) − 1}, · · ·.

Then each segment Ai contains exactly one vertex of each pre-color. Indeed, it is

straightforward to verify that the pre-colors of Ai are {j, j + 1, · · · , s, 0, 1, · · · , j − 1},

where i = uk/(s + 1) + v, 0 ≤ v < k/(s + 1) and j = u mod (s + 1). Any set of

consecutive m− k + 1 vertices intersects at most d(m− k + 1)/(s + 1)e+ 1 segments,

so it contains at most d(m−k+1)/(s+1)e+1 vertices of pre-color 0. This completes

the proof. Q.E.D.

The following corollary follows from Theorems 3 and 11.

Corollary 12 Suppose m ≥ (s + 1)k, k = (s + 1)ak′ and m + sk + 1 = (s + 1)bm′,

where both k′ and m′ are not divisible by s + 1. If 0 < b ≤ a, then χ(Z, Dm,k,s) =

(m + sk + 1)/(s + 1) + 1.
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The next result shows another family of G(Z, Dm,k,s) such that the chromatic

number reaches the lower bound.

Theorem 13 If (k, s + 1) = 1, then χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e for all

m ≥ (s + 1)k.

Proof. Define a pre-coloring c by c(j) = j mod (s + 1). We prove that c satisfies

(1) and (2) of Corollary 7, with n = d(m + sk + 1)/(s + 1)e.

To show that for any vertex j, c(j), c(j − k), c(j − 2k), · · ·, and c(j − sk) are all

distinct, we assume to the contrary that c(j− tk) = c(j− t′k) for some 0 ≤ t < t′ ≤ s.

Then j− tk ≡ j− t′k (mod s+1), so (t′− t)k ≡ 0 (mod s+1). This is impossible,

because (k, s + 1) = 1 and 0 < t′ − t ≤ s.

Next we show that among any consecutive m−k +1 vertices, there are at most

d(m − k + 1)/(s + 1)e vertices with pre-color 0. This is trivial, because the vertices

of pre-color 0 are those vertices j for which j ≡ 0 (mod s + 1), so any two vertices

with pre-color 0 are exactly s + 1 vertices apart. This completes the proof. Q.E.D.

5 The case s + 1 is prime

This section focuses on the study of χf(Z, Dm,k,s) when s + 1 is a prime number. If

s+1 is prime, then either s+1 is a divisor of k or (k, s+1) = 1. Hence by Theorems

11 and 13, χ(Z, Dm,k,s) is either d(m + sk +1)/(s+ 1)e or d(m + sk + 1)/(s+ 1)e+ 1.

In this section, assuming s+1 is prime, we classify the chromatic number for most of

the families of the distance graphs G(Z, Dm,k,s) into one of those two possible values.

Similarly to Theorem 3, we let k = (s+1)ak′ and m+sk+1 = (s+1)bm′, where

k′ and m′ are not divisible by (s+1). As s+1 is prime, (s+1, k′) = 1. Therefore, the

following result can be derived immediately from Theorems 3 and 13, and Corollary

12.

12



Theorem 14 Suppose m ≥ (s + 1)k, s + 1 is prime, and m, k, a, b are defined as

above. Then

χ(Z, Dm,k,s) =

{

d(m + sk + 1)/(s + 1)e, if a = 0 or a < b;
(m + sk + 1)/(s + 1) + 1, if 0 < b ≤ a.

Suppose k is a power of a prime, k = pa. If p 6= s + 1, by Theorem 14,

χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e for all m ≥ (s + 1)k. If p = s + 1, that is,

k = (s+1)a, then the chromatic number of G(Z, Dm,k,s) can be completely determined

as follows.

Corollary 15 Suppose m ≥ (s + 1)k, s + 1 is prime, k = (s + 1)a, and m + sk + 1 =

(s + 1)bm′, where m′ is not a multiple of s + 1. Then

χ(Z, Dm,k,s) =

{

d(m + sk + 1)/(s + 1)e, if b = 0 or a < b;
(m + sk + 1)/(s + 1) + 1, if 0 < b ≤ a.

Proof. By Theorem 14, we only have to show the case as b = 0, which implies

(k, m + sk + 1) = 1. Hence by Corollary 10, the prove is complete. Q.E.D.

Note that when s+1 is prime, Theorem 14 determines the value of χ(Z, Dm,k,s)

unless a > 0 and b = 0. Thus, for the rest of this section, we shall assume that a > 0

and b = 0, that is, k is a multiple of s + 1 but m + sk + 1 is not. Our next result

completely settles the case for a = 1.

Theorem 16 Suppose s + 1 is prime, let m, s, k, a, b be integers same as defined in

Theorem 3. If a = 1, then χ(Z, Dm,k,s) = d(m+ sk +1)/(s+1)e for all m ≥ (s+1)k.

Proof. Let r = d(m + sk + 1)/(s + 1)e mod (s + 1). We consider two cases.

Case 1. r = 0. There exists an integer m̄ ≥ m such that (m̄+sk+1)/(s+1) =

d(m+sk+1)/(s+1)e. The distance graph G(Z, Dm,k,s) is a subgraph of G(Z, Dm̄,k,s),

so χ(Z, Dm,k,s) ≤ χ(Z, Dm̄,k,s). Let m̄ + sk + 1 = (s + 1)b̄m̄′, where m̄′ is not divisible
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by (s + 1). Since (m̄ + sk + 1)/(s + 1) ≡ r ≡ 0 (mod s + 1), b̄ ≥ 2 > 1 = a. Thus

by Theorems 2 and 3, we have

d(m + sk + 1)/(s + 1)e ≤ χ(Z, Dm,k,s) ≤ χ(Z, Dm̄,k,s) = (m̄ + sk + 1)/(s + 1).

Therefore, χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e.

Case 2. 1 ≤ r ≤ s. Since s + 1 is a prime, there exists an integer 1 ≤ t ≤ s

such that tr ≡ 1 (mod s+1). Define a pre-coloring c of the set Z∗ with s+1 colors

as follows. For each integer j ∈ Z∗, express j uniquely in the form j = u(s + 1) + v,

where 0 ≤ v ≤ s. Then let c(j) = (ut+ v) mod (s+1). We shall show that c satisfies

(1) and (2) in Corollary 7 with n = d(m + sk + 1)/(s + 1)e.

Let j ∈ Z∗. Assume, contrary to (1) of Corollary 7, c(j − hk) = c(j − h′k)

for some 0 ≤ h < h′ ≤ s. Let j − hk = u(s + 1) + v and j − h′k = u′(s + 1) + v′,

then ut + v ≡ u′t + v′ (mod s + 1). Because a = 1, (s + 1) divides k, which implies

j − hk ≡ j − h′k (mod s + 1), so v = v′. Hence, ut− u′t ≡ 0 (mod s + 1). This is

impossible because (t, s + 1) = 1 and 0 < u′ − u ≤ s.

Now we show that among any m− k +1 consecutive integers, there are at most

d(m−k+1)/(s+1)e vertices of pre-color 0. Similarly to the proof of Theorem 13, we

divide the set Z∗ into segments of length s + 1 by A0 = {0, 1, · · · , s}, A1 = {s+ 1, s+

2, · · · , 2s+1}, · · · , Ai = {i(s+1), i(s+1)+1, · · · , (i+1)(s+1)−1}, · · ·. Then each of the

segments Ai contains exactly one vertex of each pre-color. Indeed, it is straightforward

to verify that the pre-colors of the segment Ai are {j, j+1, · · · , s, 0, 1, · · · , j−1}, where

i ≡ v (mod s + 1), 0 ≤ v ≤ s, and j = vt mod (s + 1).

Let Y = {y, y+1, · · · , y+m−k} be a set of m−k +1 consecutive non-negative

integers. Suppose y ∈ Ai and y + m− k ∈ Ai′ . If |Y ∩Ai|+ |Y ∩Ai′ | ≥ s + 1, then Y

intersects d(m−k+1)/(s+1)e segments. Hence Y contains at most d(m−k+1)/(s+1)e

vertices of pre-color 0.

Assume |Y ∩ Ai| + |Y ∩ Ai′| < s + 1, then i′ − i = d(m − k + 1)/(s + 1)e ≡

d(m + sk +1)/(s +1)e ≡ r (mod s + 1). Recall that tr ≡ 1 (mod s+ 1). Hence, if
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Ai is pre-colored by colors {j, j + 1, · · · , s, 0, 1, · · · , j − 1}, then Ai′ is pre-colored by

colors {j + 1, j + 2, · · · , s, 0, 1, · · · , j}. Since |Y ∩Ai|+ |Y ∩Ai′ | < s + 1, we conclude

that pre-color 0 is used at most once in the set (Y ∩ Ai) ∪ (Y ∩ Ai′). Therefore, at

most d(m − k + 1)/(s + 1)e vertices of Y have pre-color 0. This completes the proof

of Theorem 16. Q.E.D.

In the next result, we write m − k + 1 in the form m − k + 1 = u(s + 1)k +

vk + p(s + 1) + q, where u, v, p, q are integers such that u ≥ 0, 0 ≤ v ≤ s, 0 ≤

p < k/(s + 1), 0 ≤ q ≤ s. It is easy to see that the integers u, v, p, q are uniquely

determined by m − k + 1.

Theorem 17 Suppose m ≥ (s+1)k, k is a multiple of the prime s+1, but m+sk+1

is not. Let u, v, p, q be integers defined as above. If q ≤ v + 1, then χ(Z, Dm,k,s) =

d(m + sk + 1)/(s + 1)e.

Proof. It suffices to show that G(Z, Dm,k,s) is d(m + sk + 1)/(s + 1)e-colorable.

Define a pre-coloring as follows. First, partition the set of Z∗ into blocks recursively

in such a way that the first k vertices are divided into k − 1 blocks with k − 2 single-

vertex blocks followed by one block with two vertices. Then repeat the same process

to the next k vertices and so on. Next, pre-color the blocks periodically with pre-

colors {0, 1, 2, · · · , s}, that is, every vertex in the first block is pre-colored by 0 and

so on. It is enough to show that the pre-coloring satisfies (1) and (2) of Corollary 7,

with n = d(m + sk + 1)/(s + 1)e.

First we prove that for any j ≥ sk, the s + 1 vertices j, j − k, · · ·, j − sk

receive distinct pre-colors. Suppose 0 ≤ t < t′ ≤ s. Let the pre-colors of j − t′k and

j − tk be x and y, respectively. Because s + 1 divides k, and s + 1 is prime, we have

(s + 1, k − 1) = 1. As (j − tk) − (j − t′k) = (t′ − t)k and any consecutive k vertices

are divided into k − 1 blocks, so y ≡ x + (t′ − t)(k − 1) (mod s + 1). Hence, we

conclude that x 6= y, since 1 ≤ t′ − t < s + 1 and (s + 1, k − 1) = 1.

15



Next we prove that among any m − k + 1 consecutive vertices, there are at

most d(m − k + 1)/(s + 1)e vertices with pre-color 0. Given a set Y of m − k + 1

consecutive non-negative integers, we may assume that the first two vertices of Y

have pre-color 0. Among the first u(s + 1)k vertices of Y , exactly uk of them have

pre-color 0, because any consecutive (s+1)k vertices are evenly pre-colored, i.e., there

are exactly k vertices of each pre-color.

The assumption that m+ sk+1 is not a multiple of s+1 implies that m−k +1

is not a multiple of s + 1. Because k is a multiple of s + 1 while m − k + 1 is not,

p(s + 1) + q ≥ 1. If p(s + 1) + q ≥ 2, then among the remaining vk + p(s + 1) + q

vertices of Y , there are v + 1 blocks of size 2. If we remove one vertex from each

of these blocks of size 2, then the remaining vk + p(s + 1) + q − v − 1 vertices of Y

are almost evenly pre-colored, that is, the numbers of vertices with same pre-colors

differ by at most one. Hence at most d(vk + p(s + 1) + q − v − 1)/(s + 1)e of them

have pre-color 0. On the other hand, among the removed vertices, exactly one vertex

has precolor 0. Therefore, the total number of vertices of pre-color 0 is at most

uk + 1 + d(vk + p(s + 1) + q − v − 1)/(s + 1)e = d(m− k + 1)/(s + 1)e. Note that the

last equality is due to the assumption that q ≤ v + 1.

Finally, we assume p(s + 1) + q = 1. Then it is straightforward to verify that

either v = 0, or the pre-color of the last vertex is not 0. Consider the remaining

vk + p(s + 1) + q = vk + 1 vertices of Y . If v = 0, then there is one vertex of

pre-color 0. If the pre-color of the last vertex is not 0, then among the remaining

vk + 1 vertices of Y , there are v blocks of size 2. If we remove one vertex from each

of these blocks of size 2, then the remaining vk − v vertices of Y are almost evenly

pre-colored, so at most d(vk − v)/(s + 1)e of them have pre-color 0. On the other

hand, among the vertices taken away, only one has pre-color 0. Hence, there are at

most 1 + d(vk− v)/(s +1)e = d(vk +1)/(s + 1)e (because v ≤ s) vertices of pre-color

0 in the remaining vk + 1 vertices of Y . Therefore, we conclude that Y has at most
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uk + d(vk + 1)/(s + 1)e = d(m − k + 1)/(s + 1)e vertices with pre-color 0. This

completes the proof. Q.E.D.

Corollary 18 Suppose m ≥ (s+1)k, k is a multiple of the prime s+1, but m+sk+1

is not. Let u, v, p, q be the same as defined in Theorem 17. If v ≥ s − 1, or q ≤ 1,

then χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e.

Note that when s = 1, then v ≥ s−1 is always true, hence we have the following

corollary which was proved in [2]:

Corollary 19 Suppose s = 1, m ≥ 2k, k = 2ak′ and m+ k +1 = 2bm′, where k′ and

m′ are odd. Then

χ(Z, Dm,k,1) =

{

d(m + k + 1)/2e, if b = 0 or a < b;
((m + k + 1)/2) + 1, if 0 < b ≤ a.

Proof. The case as b = 0 follows from Corollary 18; and the case as b > 0 follows

from Theorem 14. Q.E.D.

Recall that k = (s + 1)ak′ where a ≥ 1 and k′ is not divisible by s + 1, and

m− k + 1 is not divisible by s + 1. In order to introduce the next result, we need the

following definitions and notations. For any factor x of k′, define:

q(x) := d(m − k + 1)/((s + 1)ax)e mod (s + 1);
m(t, x) := max{t(q(x) − 1) mod (s + 1), tq(x) mod (s + 1)}, 1 ≤ t ≤ s;
f(x) := min{m(t, x) : 1 ≤ t ≤ s}.

Finally, define f := min{f(x) : x is a factor of k′}.

Note that for given m, k and s, the integer f in the above is uniquely determined.

Similarly as in Theorem 17, we let q = (m − k + 1) mod (s + 1).

Theorem 20 Given m, k and s where m ≥ (s + 1)k and s + 1 is a prime, let f, q be

defined as above. If f + q ≤ s + 1, then χ(Z, Dm,k,s) = dχf (Z, Dm,k,s)e = d(m + sk +

1)/(s + 1)e.

17



Proof. Suppose f = f(x) = m(t, x) for some factor x of k′ and some 1 ≤ t ≤ s.

Express any integer j ∈ Z∗ in the following form:

j = u(s + 1)ax + v(s + 1) + w,

where u ≥ 0, 0 ≤ v < (s + 1)a−1x and 0 ≤ w ≤ s.

It is easy to see that for each j, the integers u, v, w in the form above are uniquely

determined by j. Define a pre-coloring c using the s + 1 pre-colors {0, 1, · · · , s} by

c(j) = (ut+w) mod (s+1). In order to prove G(Z, Dm,k,s) is d(m+ sk +1)/(s+1)e-

colorable, it suffices to show that c satisfies (1) and (2) of Corollary 7, with n =

d(m + sk + 1)/(s + 1)e.

First, let j be any non-negative integer, we shall show that c(j), c(j − k), c(j −

2k), · · · , c(j − sk) are all distinct. Let 0 ≤ p′ < p ≤ s. If j − pk = u(s + 1)ax + v(s +

1) + w, then

j − p′k = u(s + 1)ax + v(s + 1) + w + (p − p′)k
= u(s + 1)ax + v(s + 1) + w + (p − p′)(s + 1)ak′

= u′(s + 1)ax + v(s + 1) + w.

Because (s + 1, k′) = (p − p′, s + 1) = 1, one has (u′ − u, s + 1) = 1. Assume

c(j − pk) = c(j − p′k), then ut + w ≡ u′t + w (mod s + 1). Hence t(u′ − u) ≡ 0

(mod s+1), which is impossible, since s+1 is prime and (t, s+1) = (u′−u, s+1) = 1.

This proves that c satisfies (1) of Corollary 7.

Next, we prove that among any m−k+1 consecutive integers, there are at most

d(m − k + 1)/(s + 1)e vertices with pre-color 0. Divide the vertex set Z∗ evenly into

segments of length s+1 by A0 = {0, 1, 2, · · · , s}, A1 = {s+1, s+2, · · · , 2s+1}, · · · , Ai =

{i(s+1), i(s+1)+1, · · · , (i+1)(s+1)−1}, · · ·. Then each of the segments Ai contains

exactly one vertex of each pre-color. Indeed, the pre-colors of the segment Ai are

{j, j + 1, · · · , s, 0, 1, · · · , j − 1}, where j = ut mod (s + 1), and u is the unique integer

such that i = u(s + 1)a−1x + v, 0 ≤ v < (s + 1)a−1x.

Let Y be a set of m− k + 1 consecutive integers, Y = {y, y + 1, · · · , y + m− k}.
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Suppose y ∈ Ai and y + m − k ∈ Ai′ . If |Y ∩ Ai| + |Y ∩ Ai′ | ≥ s + 1, then Y has at

most d(m − k + 1)/(s + 1)e vertices with pre-color 0 (cf. proof of Theorem 16).

Now we assume that |Y ∩Ai|+ |Y ∩Ai′| < s + 1, then |Y ∩Ai|+ |Y ∩Ai′| = q.

Suppose i = u(s+1)a−1x+v and i′ = u′(s+1)a−1x+v′, where 0 ≤ v, v′ < (s+1)a−1x.

Then by the definition of q(x), either u′ − u = q(x) or u′ − u = q(x) − 1. Suppose

α = q(x)t mod (s + 1) and β = (q(x)− 1)t mod (s + 1). Then by the choice of x and

t, one has α, β ≤ f .

Suppose the pre-colors of Ai are {j, j + 1, · · · , s, 0, 1, · · · , j − 1}. Then the pre-

colors of Ai′ are either {j + α, j + α + 1, · · · , s, 0, 1, · · · , j + α − 1}, if u′ − u = q(x);

or {j + β, j + β + 1, · · · , s, 0, 1, · · · , j + β − 1}, if u′ − u = q(x) − 1.

Any other segment different from Ai and Ai′ is either disjoint from Y or con-

tained in Y . As each segment contains exactly one vertex of each color, to prove that

Y has at most d(m− k + 1)/(s + 1)e vertices with pre-color 0, it suffices to show that

the pre-color 0 is used at most once in the union (Y ∩Ai)∪(Y ∩Ai′). Assume that 0 is

used in both Y ∩Ai and Y ∩Ai′ . Without loss of generality, we may assume that the

pre-colors of Ai′ are {j+α, j+α+1, · · · , s, 0, 1, · · · , j+α−1}. Then one has |Y ∩Ai| ≥ j

and |Y ∩Ai′ | ≥ s+1−(j+α−1). It follows that q = |(Y ∩Ai)∪(Y ∩Ai′)| ≥ s+2−α,

contrary to the assumption that α + q ≤ f + q ≤ s + 1. Therefore c satisfies (2) of

Corollary 7, with n = d(m + sk + 1)/(s + 1)e. This completes the proof of Theorem

20. Q.E.D.

Corollary 21 If m ≥ (s+1)k, s+1 is prime, and there is a factor x of k′ such that

q(x) ≤ 1, then χ(Z, Dm,k,s) = d(m+sk+1)/(s+1)e. In particular, if d(m−k+1)/ke

mod (s + 1) ≤ 1, then χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e.

Proof. According to definition, if q(x) = 1, then m(1, x) = 1; if q(x) = 0, then

m(t, x) = 1 for some t such that ts ≡ 1 (mod s + 1). (Such a t exists, because
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(s, s + 1) = 1.) In any of the two cases, f = 1, so f + q ≤ s + 1. Therefore,

χ(Z, Dm,k,s) = d(m + sk + 1)/(s + 1)e by Theorem 20. Q.E.D.

Applying Theorem 14 and Corollaries 18 and 21, we are able to completely settle

the case s = 2.

Corollary 22 Suppose s = 2, m ≥ 3k, k = 3ak′ and m + 2k + 1 = 3bm′, where k′

and m′ are not multiples of 3. Then

χ(Z, Dm,k,2) =

{

d(m + 2k + 1)/3e, if b = 0 or a < b;
(m + 2k + 1)/3 + 1, if 0 < b ≤ a.

Proof. According to Theorem 14, we only have to show the case as b = 0. Suppose

m − k + 1 = u(s + 1)k + vk + p(s + 1) + q. If v 6= 0, then the conclusion follows

from Corollary 18. If v = 0, then the conclusion follows from Corollary 21. (Because

d(m − k + 1)/ke mod (s + 1) ≤ 1.) Q.E.D.

Remarks. New results related to this topic have been obtained since the submission

of this paper. In [5], it was proved that χ(G(Z, Dm,k,s)) ≤ d(m+sk+1)/(s+1)e+1 for

all m ≥ (s + 1)k. Then in [11], the chromatic numbers of all the graphs G(Z, Dm,k,s)

are completely determined. The circular chromatic number of the class of distance

graphs G(Z, Dm,k,s) was studied in [1, 11, 19], and the value of χc(Z, Dm,k,s) has been

completely determined in [19]. (The circular chromatic number χc(G) of a graph G is

a refinement of χ(G), and χ(G) = dχc(G)e for any graph G. For a survey of research

concerning circular chromatic number of graphs, see [20].)
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