Distance graphs with missing multiples in the distance sets

Daphne Der-Fen Liu * Department of Mathematics and Computer Science California State University, Los Angeles Los Angeles, CA 90032, USA Emil: dliu@calstatela.edu

> Xuding Zhu[†] Department of Applied Mathematics National Sun Yat-sen University Kaoshing, Taiwan 80424 Email: zhu@ibm18.math.nsysu.edu.tw

July 13, 1997 (Revised October 2, 1998)

Abstract

Given positive integers m, k and s with m > ks, let $D_{m,k,s}$ represent the set $\{1, 2, \dots, m\} - \{k, 2k, \dots, sk\}$. The distance graph $G(Z, D_{m,k,s})$ has as vertex set all integers Z and edges connecting i and j whenever $|i-j| \in D_{m,k,s}$. The chromatic number and the fractional chromatic number of $G(Z, D_{m,k,s})$ are denoted by $\chi(Z, D_{m,k,s})$ and $\chi_f(Z, D_{m,k,s})$, respectively. For $s = 1, \chi(Z, D_{m,k,1})$ was studied by Eggleton, Erdős and Skilton [6], Kemnitz and Kolberg [12], and Liu [13], and was solved lately by Chang, Liu and Zhu [2] who also determined $\chi_f(Z, D_{m,k,1})$ for any m and k. This article extends the study of $\chi(Z, D_{m,k,s})$ and $\chi_f(Z, D_{m,k,s})$ to general values of s. We prove $\chi_f(Z, D_{m,k,s}) =$ $\chi(Z, D_{m,k,s}) = k$ if m < (s+1)k; and $\chi_f(Z, D_{m,k,s}) = (m+sk+1)/(s+1)$ otherwise. The latter result provides a good lower bound for $\chi(Z, D_{m,k,s})$. A general upper bound for $\chi(Z, D_{m,k,s})$ is found. We prove the upper bound can be improved to [(m + sk + 1)/(s + 1)] + 1 for some values of m, k and s. In particular, when s + 1 is prime, $\chi(Z, D_{m,k,s})$ is either $\lceil (m + sk + 1)/(s + 1) \rceil$ or $\lceil (m + sk + 1)/(s + 1) \rceil + 1$. By using a special coloring method called the pre-coloring method, many distance graphs $G(Z, D_{m,k,s})$ are classified into

^{*}Supported in part by the National Science Foundation under grant DMS 9805945.

[†]Supported in part by the National Science Council under grant NSC87-2115-M110-004.

these two possible values of $\chi(Z, D_{m,k,s})$. Moreover, complete solutions of $\chi(Z, D_{m,k,s})$ for several families are determined including the case s = 1 (solved in [2]), the case s = 2, the case (k, s + 1) = 1, and the case that k is a power of a prime.

Keywords. Distance graph, chromatic number, fractional chromatic number, precoloring method.

1 Introduction

Given a set D of positive integers, the distance graph G(Z, D) has all integers as vertices; and two vertices are adjacent if and only if their difference falls within D, that is, the vertex set is Z and the edge set is $\{uv : |u - v| \in D\}$. We call D the distance set. The chromatic number of G(Z, D) is denoted by $\chi(Z, D)$.

For different types of distance sets D, the problem of determining $\chi(Z, D)$ has been studied extensively. (See [2, 3, 4, 6, 7, 8, 9, 12, 16, 15, 17].) For instance, suppose D is a subset of prime numbers and $\{2, 3\} \subseteq D$, Eggleton, Erdős and Skilton [9] proved that $\chi(Z, D)$ is either 3 or 4. The problem of classifying G(Z, D) with distance sets Dof primes into chromatic number 3 or 4 was studied by Eggleton, Erdős and Skilton [9], and by Voigt and Walther [16]. However, a complete classification is not obtained yet.

If D has only one element, it is trivial that $\chi(Z, D) = 2$. When D has two elements, it is known that $\chi(Z, D) = 3$ if the two integers in D are of different parity, and $\chi(Z, D) = 2$ otherwise (assuming that gcdD = 1). The case if D has three elements, which is much more complicated, has been studied by Chen, Chang, and Huang [3], and by Voigt [15], and was solved lately by Zhu [17].

A fractional coloring of a graph G is a mapping h from $\mathcal{I}(G)$, the set of all independent sets of G, to the interval [0,1] such that $\sum_{I \in \mathcal{I}(G), x \in I} h(I) \ge 1$ for each vertex x of G. The fractional chromatic number $\chi_f(G)$ of G is the infimum of the value $\sum_{I \in \mathcal{I}(G)} h(I)$ of a fractional coloring h of G. The fractional chromatic number of a distance graph G(Z, D) is denoted by $\chi_f(Z, D)$.

For any graph G, it is well-known and easy to verify that

$$\max\{\omega(G), \frac{|V(G)|}{\alpha(G)}\} \le \chi_f(G) \le \chi(G), \tag{*}$$

where $\omega(G)$ is the size (number of vertices) of a maximum complete graph, and $\alpha(G)$ is the size of a maximum independent set in G. (See Chapter 3 of [14].)

Given integers m, k and s with m > ks, let $D_{m,k,s}$ denote the distance set $D_{m,k,s} = \{1, 2, 3, \dots, m\} - \{k, 2k, 3k, \dots, sk\}$. This article studies the chromatic number and the fractional chromatic number of $G(Z, D_{m,k,s})$. If s = 1, the chromatic number of $G(Z, D_{m,k,1})$ was first studied by Eggleton, Erdős and Skilton [6] who determined $\chi(Z, D_{m,k,1})$ completely for k = 1, and partially for k = 2. The same results for the case k = 1 were also obtained in [12] by a different approach. For the cases that k is an odd number, k = 2 and k = 4, $\chi(Z, D_{m,k,1})$ were determined in [13]. Recently, the exact values of $\chi_f(Z, D_{m,k,1})$ and $\chi(Z, D_{m,k,1})$ for all m and k were settled in [2]. We extend the study to general values of s.

Note that it becomes an easy case if m < (s + 1)k. Define a coloring f of $G(Z, D_{m,k,s})$ by: For any $x \in Z$, $f(x) = x \mod k$. Since $D_{m,k,s}$ contains no multiples of k, f is a proper coloring. Thus, $\chi(Z, D_{m,k,s}) \leq k$. As any consecutive k vertices in $G(Z, D_{m,k,s})$ form a complete graph, by (*), $\chi_f(Z, D_{m,k,s}) \geq k$. This implies $\chi(Z, D_{m,k,s}) = \chi_f(Z, D_{m,k,s}) = k$, if m < (s + 1)k. Therefore, throughout the article, we assume $m \geq (s + 1)k$.

Section 2 determines the fractional chromatic number of $G(Z, D_{m,k,s})$ for all values of m, k and s with $m \ge (s+1)k$. This result provides a good lower bound for $\chi(Z, D_{m,k,s})$, namely,

$$\lceil (m+sk+1)/(s+1) \rceil \le \chi(Z, D_{m,k,s}), \text{ if } m \ge (s+1)k.$$
(**)

This lower bound will be shown to be sharp for some families of $G(Z, D_{m,k,s})$ and strict for some others. Section 3 introduces the pre-coloring method, one of the main tools used in the article. For such a coloring method, we determine when it produces a proper coloring for $G(Z, D_{m,k,s})$, and then determine the number of colors used by the produced proper coloring. These characterizations are used intensively in Sections 4 and 5.

Section 4 starts with the result of a general upper bound of $\chi(Z, D_{m,k,s})$. For some values of m, k and s, we improve the upper bound to $\lceil (m+sk+1)/(s+1)\rceil + 1$. Combining these results with the lower bound (**) mentioned above, the chromatic numbers for many families of $G(Z, D_{m,k,s})$ are determined.

Section 5 focuses on the study of $\chi(Z, D_{m,k,s})$ when s + 1 is a prime number. Using the results obtained in earlier sections, we show that when s + 1 is prime, $\chi(Z, D_{m,k,s})$ is either $\lceil (m + sk + 1)/(s + 1) \rceil$ or $\lceil (m + sk + 1)/(s + 1) \rceil + 1$. For many families of $G(Z, D_{m,k,s})$, we classify their chromatic numbers into one of these two values. Moreover, we completely determine the exact values of $\chi(Z, D_{m,k,s})$ for the following cases: If s = 1 (which was solved recently in [2]); if s = 2; if (k, s + 1) = 1; and if k is a power of a prime.

2 Lower bounds and fractional chromatic number

In this section, we first determine the fractional chromatic number of $G(Z, D_{m,k,s})$ for all values of m, k and s with $m \ge (s + 1)k$. This result immediately leads to (**), a lower bound for $\chi(Z, D_{m,k,s})$. Then we prove that in (**), equality holds for some values of m, k and s; while strict inequality holds for some others.

Theorem 1 For any given integers m, k and s with $m \ge (s+1)k$,

$$\chi_f(Z, D_{m,k,s}) = (m + sk + 1)/(s + 1).$$

Proof. For any *i* with $0 \le i \le m + sk$, let $I_i = \{j \in Z : j - i \equiv xk \pmod{m + sk + 1}, 0 \le x \le s\}$. It is straightforward to verify that I_i is an independent set in

 $G(Z, D_{m,k,s})$. It is also easy to verify that any integer is contained in exactly s + 1such independent sets. Define a mapping $h : \mathcal{I}(G(Z, D_{m,k,s})) \to [0, 1]$ by

$$h(I) = \begin{cases} \frac{1}{s+1}, & \text{if } I = I_i \text{ for } 0 \le i \le m + sk; \\ 0, & \text{otherwise.} \end{cases}$$

Then h is a fractional coloring of $G(Z, D_{m,k,s})$ which has value $\frac{m+sk+1}{s+1}$. Thus, $\chi_f(Z, D_{m,k,s}) \leq \frac{m+sk+1}{s+1}$.

To show $\chi_f(Z, D_{m,k,s}) \ge \frac{m+sk+1}{s+1}$, let G be the subgraph of $G(Z, D_{m,k,s})$ induced by the vertices $\{0, 1, 2, \dots, m+sk\}$. Then $\chi_f(G) \le \chi_f(Z, D_{m,k,s})$. It is straightforward to verify that $\alpha(G) = s+1$. Hence, by (*), $\chi_f(G) \ge \frac{|V(G)|}{\alpha(G)} = \frac{m+sk+1}{s+1}$. This completes the proof of Theorem 1. Q.E.D.

Since $\chi(G)$ is an integer, by (*), we have $\lceil \chi_f(G) \rceil \leq \chi(G)$. Hence, the following is obtained.

Theorem 2 For any given integers m, k and s with $m \ge (s+1)k$,

$$\chi(Z, D_{m,k,s}) \ge \lceil (m+sk+1)/(s+1) \rceil.$$

The following result indicates that the lower bound of $\chi(Z, D_{m,k,s})$ in Theorem 2 is attained by some values of m, k and s, but not attained by some others.

Theorem 3 Suppose $m \ge (s+1)k$, $k = (s+1)^a k'$ and $m + sk + 1 = (s+1)^b m'$, where both k' and m' are not divisible by s + 1. Then

$$\chi(Z, D_{m,k,s}) \begin{cases} \ge (m+sk+1)/(s+1)+1, & \text{if } 0 < b \le a; \\ = (m+sk+1)/(s+1), & \text{if } a < b \text{ and } (s+1,k') = 1. \end{cases}$$

Proof. Let n = (m + sk + 1)/(s + 1). Because b > 0, n is an integer.

Suppose $0 < b \leq a$, we shall show that $G(Z, D_{m,k,s})$ is not *n*-colorable. Assume to the contrary, there exits an *n*-coloring f of $G(Z, D_{m,k,s})$.

For any two integers i and j, let G[i, j] be the subgraph of $G(Z, D_{m,k,s})$ induced by the vertex set $\{i+1, i+2, \dots, j\}$. Then for any integer i, the graph G[i, i+m+sk+1] has m + sk + 1 vertices and a maximum independent set of size s + 1. Since f is an (m + sk + 1)/(s + 1)-coloring, exactly s + 1 vertices of G[i, i + m + sk + 1] are colored by the same color. It follows that f(i) = f(i + m + sk + 1) for any integer i.

Define a circulant graph G on the set $\{0, 1, \dots, m + sk\}$ with generating set $D_{m,k,s}$, that is, ij is an edge of G if and only if $(j - i) \mod (m + sk + 1) \in D_{m,k,s}$ or $(i - j) \mod (m + sk + 1) \in D_{m,k,s}$. The argument in the previous paragraph shows that f induces a proper n-coloring of G. Moreover, each color class consists of s + 1 vertices in G. It is not difficult to verify that all (s + 1)-independent sets of G are of the form $\{i, i+k, \dots, i+sk\}$. (Here each number is calculated by modulo m+sk+1.)

Let d = (k, m + sk + 1) and u = (m + sk + 1)/d. Divide the vertex set of G into d subsets of the form $\{i, i + k, i + 2k, \dots, i + (u - 1)k\} \pmod{m + sk + 1}$, each of size u. Then each of these d subsets is the union of some color classes of size s + 1, so (s+1) divides u. Therefore m + sk + 1 is a multiple of $(s+1)^{a+1}$, which is impossible since $b \leq a$.

Suppose a < b and (s + 1, k') = 1, then u is a multiple of s + 1. One can easily define a proper n-coloring f on G by using u/(s + 1) colors to each of the subsets $\{i, i+k, i+2k, \dots, i+(u-1)k\}$ (mod m+sk+1) as defined in the previous paragraph by: the first s + 1 vertices in a subset use one color and the next s + 1 vertices use the next, and continue the process until all vertices are colored. It is easy to check that f is a proper coloring of G. Furthermore, f can be extended to a proper coloring of $G(Z, D_{m,k,s})$ by letting f'(y) = f(x), where $x = y \mod (m + sk + 1)$. Therefore, $G(Z, D_{m,k,s})$ is n-colorable. This completes the proof of Theorem 3. Q.E.D.

3 The pre-coloring method

This section introduces the main tool to be used in the remaining part of this article, namely, the *pre-coloring method*. A simpler version of this method was originally applied in [2] in determining the chromatic number of $G(Z, D_{m,k,1})$. Here we extend the idea to a more complex version and use it extensively throughout this article.

Before introducing the pre-coloring method, we note another fact. Let Z^* denote the set of non-negative integers. It is known and easy to verify that for any distance set D, $\chi(Z, D) = \chi(Z^*, D)$, where $G(Z^*, D)$ is the subgraph of G(Z, D) induced by Z^* . Therefore, to color the graph $G(Z, D_{m,k,s})$, it suffices to color the subgraph of $G(Z, D_{m,k,s})$ induced by Z^* .

There are two steps in the pre-coloring method. First, we partition the set Z^* into s + 1 parts by a mapping $c : Z^* \to \{0, 1, 2, \dots, s\}$. Second, for each non-negative integer x, according to the value of c(x), we assign a color to x by the rule defined as follows.

Definition 4 Suppose m, k, s are positive integers. For a given mapping $c : Z^* \rightarrow \{0, 1, 2, \dots, s\}$, define a coloring c' of Z^* recursively by:

$$c'(j) = \begin{cases} j, & \text{if } j < k; \\ c'(j-k), & \text{if } j \ge k \text{ and } c(j) \neq 0; \\ n, & \text{if } j \ge k \text{ and } c(j) = 0, \end{cases}$$

where n is the smallest non-negative integer (color) not been used in the m vertices preceeding j, that is, $n = \min\{t \in Z^* : c'(j-i) \neq t \text{ for } i = 1, 2, \dots, m\}.$

Note that c' defined above is uniquely determined by c. We call c the *pre-coloring*, and c' the *coloring induced by* c. For any $x \in Z^*$, c(x) and c'(x) are called the *pre-color* and the *color* of x, respectively.

In order to ensure that the coloring c' in Definition 4 to be a proper coloring for $G(Z^*, D_{m,k,s})$ as desired, the pre-coloring c needs to satisfy certain conditions specified in the following lemma.

Lemma 5 Suppose c is a pre-coloring of Z^* . If for any integer $j \ge sk$, $c(j), c(j - k), c(j - 2k), \cdots$, and c(j - sk) are all distinct, then the induced coloring c' is a proper coloring for $G(Z, D_{m,k,s})$.

Proof. It is enough to show by induction that for any $j \in Z^*$, $c'(j) \neq c'(x)$ for any neighbor x of j and x < j. If j < k, or $j \ge k$ with c(j) = 0, then this is true by Definition 4.

Now, assume $j \ge k$ and $c(j) \ne 0$. By definition, c'(j) = c'(j-k). If j-k < x < j, then x is adjacent to j-k. By the inductive hypotheses, $c'(x) \ne c'(j-k)$, so $c'(x) \ne c'(j)$. If x < j-k and x is adjacent to j, then either x is a neighbor of j-k or x = j - (s+1)k. In the former case, according to the inductive hypotheses, $c'(x) \ne c'(j-k)$, hence $c'(x) \ne c'(j)$. We now consider the case that x = j - (s+1)k. Because the pre-colors of $j, j - k, j - 2k, \dots, j - sk$ are all distinct, exactly one of them is 0. Suppose c(j - uk) = 0 for some $0 \le u \le s$. Then by Definition 4, c'(j - uk) is different from the color of any of the m vertices preceding j - uk, hence $c'(j-k) \ne c'(j-(s+1)k)$. Because $c(j), c(j-k), \dots, c(j-(u-1)k) \ne 0$, $c'(j) = c'(j-k) = c'(j-2k) = \dots = c'(j-uk)$. Therefore, $c'(j) \ne c'(j-(s+1)k)$, *i.e.*, $c'(j) \ne c'(x)$. This completes the proof of Lemma 5.

After getting a necessary condition for the pre-coloring c to produce a proper coloring c' for the distance graph $G(Z^*, D_{m,k,s})$, the next natural question to ask is *how many* colors are used by c'. The answer of this question is shown in the following result.

Lemma 6 Suppose c is a pre-coloring and c' is the induced coloring. Then the number of colors used by c' is at most $k + \ell$, where ℓ is the maximum number of vertices with pre-color 0, among any m - k + 1 consecutive integers greater than k.

Proof. We prove, by induction on j, that vertices $0, 1, 2, \dots, j$ are colored by the pre-coloring method with at most $k + \ell$ colors. This is trivial when j < k, or $j \ge k$ with $c(j) \ne 0$.

Now we assume j > k and c(j) = 0. It suffices to show that the *m* vertices preceding *j* use at most $k + \ell - 1$ colors. For the *m* vertices preceding *j*, the first *k* vertices use at most k colors. Among the remaining m-k vertices, only those vertices with pre-color 0 require a new color. Due to the facts that c(j) = 0, and any set of consecutive m - k + 1 vertices contains at most ℓ vertices of pre-color 0, we conclude that among the remaining m - k vertices, there are at most $\ell - 1$ vertices with precolor 0. Therefore, the total number of colors used by the m vertices preceeding j is at most $k + \ell - 1$, and hence there is a color for the vertex j. Q.E.D.

Combining Lemmas 5 and 6, we arrive at the following useful conclusion.

Corollary 7 Given integers m, k and $s, \chi(Z, D_{m,k,s}) \leq n$ if there exists a pre-coloring c such that the following two conditions are satisfied:

- (1) for any integer $j \ge sk$, $c(j), c(j-k), c(j-2k), \cdots, c(j-sk)$ are all distinct, and
- (2) among any consecutive non-negative m k + 1 integers, there are at most n k vertices with pre-color 0.

Corollary 7 will be used in many of the proofs in the rest of the article. Instead of finding a proper coloring for the distance graph $G(Z, D_{m,k,s})$ with n colors, it is enough to present a pre-coloring c that satisfies (1) and (2) of Corollary 7.

4 Upper bounds

This section shows upper bounds of $\chi(Z, D_{m,k,s})$ for different values of m, k and s. Combining these upper bounds with the lower bounds obtained in Section 2 gives the exact value of $\chi(Z, D_{m,k,s})$ for some families of $G(Z, D_{m,k,s})$. In particular, we prove for many different combinations of m, k and $s, \chi(Z, D_{m,k,s})$ is either $\lceil (m+sk+1)/(s+1) \rceil$ or $\lceil (m+sk+1)/(s+1) \rceil + 1$.

We start with a general upper bound in the following. For any two integers a and b, let (a, b) denote the greatest common divisor of a and b.

Theorem 8 Suppose $m \ge (s+1)k$ and (k, m+sk+1) = d, then $\chi(Z, D_{m,k,s}) \le d[(m+sk+1)/d(s+1)].$

Proof. Define a circulant graph G on the set $\{0, 1, \dots, m + sk\}$ with generating set $D_{m,k,s}$, that is, ij is an edge of G if and only if $(j - i) \mod (m + sk + 1) \in D_{m,k,s}$ or $(i - j) \mod (m + sk + 1) \in D_{m,k,s}$. It is easy to verify that any proper coloring f of G can be extended to a proper coloring f' of $G(Z, D_{m,k,s})$ by letting f'(y) = f(x), where $x = y \mod (m + sk + 1)$. Therefore, it is enough to find a proper n-coloring of G, where $n = d\lceil (m + sk + 1)/d(s + 1)\rceil$.

Let u = (m+sk+1)/d. Divide the vertex set of G into d subsets such that each subset has u vertices and is of the form $\{i, i+k, i+2k, \dots, i+(u-1)k\} \pmod{m+sk+1}$. Any consecutive s+1 vertices in a subset are independent, so each subset can be partitioned into $\lceil u/(s+1) \rceil = \lceil (m+sk+1)/d(s+1) \rceil$ independent sets of size s+1, except the last one whose size might be smaller than s+1. Therefore the vertex set of G can be partitioned into $d\lceil (m+sk+1)/d(s+1) \rceil$ independent sets. Hence $\chi(Z, D_{m,k,s}) \leq d\lceil (m+sk+1)/d(s+1) \rceil$. Q.E.D.

Combining the upper bound above with the lower bound in Theorem 2, the following two results emerge.

Corollary 9 Suppose $m \ge (s+1)k$ and (k, m+sk+1) = d, then

$$[(m+sk+1)/(s+1)] \le \chi(Z, D_{m,k,s}) \le d[(m+sk+1)/d(s+1)].$$

Corollary 10 If $m \ge (s+1)k$ and (k, m+sk+1) = 1, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$.

We note that in Corollary 9, there may exist big gaps between the upper and the lower bounds, depending on the values of d = (k, m + sk + 1). However, so far we do not have any example of distance graph $G(Z, D_{m,k,s})$ with chromatic number exceeding $\lceil (m + sk + 1)/(s + 1) \rceil + 1$. The next theorem provides a better upper bound for some families of $G(Z, D_{m,k,s})$.

Theorem 11 If $m \ge (s+1)k$ and s+1 is a divisor of k, then $\chi(Z, D_{m,k,s}) \le \lceil (m+sk+1)/(s+1) \rceil + 1.$

Proof. For any $j \in Z^*$, we can write j uniquely in the form j = uk + v(s+1) + w, where u, v and w are integers such that $0 \le v < k/(s+1)$ and $0 \le w \le s$. Then define a pre-coloring c by $c(j) = u + w \pmod{s+1}$. We only need to show that csatisfies (1) and (2) in Corollary 7, with $n = \lceil (m+sk+1)/(s+1) \rceil + 1$.

First we show that for any vertex j, the s + 1 vertices, $j, j - k, j - 2k, \dots, j - sk$ have distinct pre-colors. Assume j = uk + v(s + 1) + w with $0 \le v < k/(s + 1)$ and $0 \le w \le s$. Then j - ik = (u - i)k + v(s + 1) + w, $0 \le i \le s$. It follows that $c(j - ik) = (u - i + w) \mod (s + 1)$ which give distinct colors for $0 \le i \le s$.

Next we show that among any consecutive m - k + 1 vertices, there are at most $n - k = \lceil (m - k + 1)/(s + 1) \rceil + 1$ vertices with pre-color 0. Divide the set of non-negative integers into segments of length s + 1 by $A_0 = \{0, 1, \dots, s\}, A_1 =$ $\{s + 1, s + 2, \dots, 2s + 1\}, \dots, A_i = \{i(s + 1), i(s + 1) + 1, \dots, (i + 1)(s + 1) - 1\}, \dots$ Then each segment A_i contains exactly one vertex of each pre-color. Indeed, it is straightforward to verify that the pre-colors of A_i are $\{j, j + 1, \dots, s, 0, 1, \dots, j - 1\}$, where i = uk/(s + 1) + v, $0 \le v < k/(s + 1)$ and $j = u \mod (s + 1)$. Any set of consecutive m - k + 1 vertices intersects at most $\lceil (m - k + 1)/(s + 1) \rceil + 1$ segments, so it contains at most $\lceil (m - k + 1)/(s + 1) \rceil + 1$ vertices of pre-color 0. This completes the proof. Q.E.D.

The following corollary follows from Theorems 3 and 11.

Corollary 12 Suppose $m \ge (s+1)k$, $k = (s+1)^a k'$ and $m + sk + 1 = (s+1)^b m'$, where both k' and m' are not divisible by s + 1. If $0 < b \le a$, then $\chi(Z, D_{m,k,s}) = (m+sk+1)/(s+1)+1$. The next result shows another family of $G(Z, D_{m,k,s})$ such that the chromatic number reaches the lower bound.

Theorem 13 If (k, s + 1) = 1, then $\chi(Z, D_{m,k,s}) = \lceil (m + sk + 1)/(s + 1) \rceil$ for all $m \ge (s + 1)k$.

Proof. Define a pre-coloring c by $c(j) = j \mod (s+1)$. We prove that c satisfies (1) and (2) of Corollary 7, with $n = \lceil (m+sk+1)/(s+1) \rceil$.

To show that for any vertex j, c(j), c(j-k), c(j-2k), \cdots , and c(j-sk) are all distinct, we assume to the contrary that c(j-tk) = c(j-t'k) for some $0 \le t < t' \le s$. Then $j-tk \equiv j-t'k \pmod{s+1}$, so $(t'-t)k \equiv 0 \pmod{s+1}$. This is impossible, because (k, s+1) = 1 and $0 < t'-t \le s$.

Next we show that among any consecutive m - k + 1 vertices, there are at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices with pre-color 0. This is trivial, because the vertices of pre-color 0 are those vertices j for which $j \equiv 0 \pmod{s+1}$, so any two vertices with pre-color 0 are exactly s + 1 vertices apart. This completes the proof. Q.E.D.

5 The case s + 1 is prime

This section focuses on the study of $\chi_f(Z, D_{m,k,s})$ when s + 1 is a prime number. If s+1 is prime, then either s+1 is a divisor of k or (k, s+1) = 1. Hence by Theorems 11 and 13, $\chi(Z, D_{m,k,s})$ is either $\lceil (m+sk+1)/(s+1) \rceil$ or $\lceil (m+sk+1)/(s+1) \rceil + 1$. In this section, assuming s+1 is prime, we classify the chromatic number for most of the families of the distance graphs $G(Z, D_{m,k,s})$ into one of those two possible values.

Similarly to Theorem 3, we let $k = (s+1)^a k'$ and $m+sk+1 = (s+1)^b m'$, where k' and m' are not divisible by (s+1). As s+1 is prime, (s+1,k') = 1. Therefore, the following result can be derived immediately from Theorems 3 and 13, and Corollary 12.

Theorem 14 Suppose $m \ge (s+1)k$, s+1 is prime, and m, k, a, b are defined as above. Then

$$\chi(Z, D_{m,k,s}) = \begin{cases} \lceil (m+sk+1)/(s+1) \rceil, & \text{if } a = 0 \text{ or } a < b; \\ (m+sk+1)/(s+1)+1, & \text{if } 0 < b \le a. \end{cases}$$

Suppose k is a power of a prime, $k = p^a$. If $p \neq s + 1$, by Theorem 14, $\chi(Z, D_{m,k,s}) = \lceil (m + sk + 1)/(s + 1) \rceil$ for all $m \geq (s + 1)k$. If p = s + 1, that is, $k = (s+1)^a$, then the chromatic number of $G(Z, D_{m,k,s})$ can be completely determined as follows.

Corollary 15 Suppose $m \ge (s+1)k$, s+1 is prime, $k = (s+1)^a$, and $m+sk+1 = (s+1)^b m'$, where m' is not a multiple of s+1. Then

$$\chi(Z, D_{m,k,s}) = \begin{cases} \lceil (m+sk+1)/(s+1) \rceil, & \text{if } b = 0 \text{ or } a < b; \\ (m+sk+1)/(s+1)+1, & \text{if } 0 < b \le a. \end{cases}$$

Proof. By Theorem 14, we only have to show the case as b = 0, which implies (k, m + sk + 1) = 1. Hence by Corollary 10, the prove is complete. Q.E.D.

Note that when s + 1 is prime, Theorem 14 determines the value of $\chi(Z, D_{m,k,s})$ unless a > 0 and b = 0. Thus, for the rest of this section, we shall assume that a > 0and b = 0, that is, k is a multiple of s + 1 but m + sk + 1 is not. Our next result completely settles the case for a = 1.

Theorem 16 Suppose s + 1 is prime, let m, s, k, a, b be integers same as defined in Theorem 3. If a = 1, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$ for all $m \ge (s+1)k$.

Proof. Let $r = \lfloor (m + sk + 1)/(s + 1) \rfloor \mod (s + 1)$. We consider two cases.

Case 1. r = 0. There exists an integer $\bar{m} \ge m$ such that $(\bar{m} + sk + 1)/(s+1) = [(m+sk+1)/(s+1)]$. The distance graph $G(Z, D_{m,k,s})$ is a subgraph of $G(Z, D_{\bar{m},k,s})$, so $\chi(Z, D_{m,k,s}) \le \chi(Z, D_{\bar{m},k,s})$. Let $\bar{m} + sk + 1 = (s+1)^{\bar{b}}\bar{m}'$, where \bar{m}' is not divisible

by (s+1). Since $(\bar{m}+sk+1)/(s+1) \equiv r \equiv 0 \pmod{s+1}$, $\bar{b} \geq 2 > 1 = a$. Thus by Theorems 2 and 3, we have

$$\lceil (m+sk+1)/(s+1) \rceil \le \chi(Z, D_{m,k,s}) \le \chi(Z, D_{\bar{m},k,s}) = (\bar{m}+sk+1)/(s+1).$$

Therefore, $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$.

Case 2. $1 \le r \le s$. Since s + 1 is a prime, there exists an integer $1 \le t \le s$ such that $tr \equiv 1 \pmod{s+1}$. Define a pre-coloring c of the set Z^* with s+1 colors as follows. For each integer $j \in Z^*$, express j uniquely in the form j = u(s+1) + v, where $0 \le v \le s$. Then let $c(j) = (ut+v) \mod (s+1)$. We shall show that c satisfies (1) and (2) in Corollary 7 with $n = \lceil (m+sk+1)/(s+1) \rceil$.

Let $j \in Z^*$. Assume, contrary to (1) of Corollary 7, c(j - hk) = c(j - h'k)for some $0 \le h < h' \le s$. Let j - hk = u(s + 1) + v and j - h'k = u'(s + 1) + v', then $ut + v \equiv u't + v' \pmod{s+1}$. Because a = 1, (s + 1) divides k, which implies $j - hk \equiv j - h'k \pmod{s+1}$, so v = v'. Hence, $ut - u't \equiv 0 \pmod{s+1}$. This is impossible because (t, s + 1) = 1 and $0 < u' - u \le s$.

Now we show that among any m - k + 1 consecutive integers, there are at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices of pre-color 0. Similarly to the proof of Theorem 13, we divide the set Z^* into segments of length s + 1 by $A_0 = \{0, 1, \dots, s\}, A_1 = \{s + 1, s + 2, \dots, 2s + 1\}, \dots, A_i = \{i(s+1), i(s+1) + 1, \dots, (i+1)(s+1) - 1\}, \dots$ Then each of the segments A_i contains exactly one vertex of each pre-color. Indeed, it is straightforward to verify that the pre-colors of the segment A_i are $\{j, j+1, \dots, s, 0, 1, \dots, j-1\}$, where $i \equiv v \pmod{s+1}, 0 \leq v \leq s$, and $j = vt \pmod{s+1}$.

Let $Y = \{y, y+1, \dots, y+m-k\}$ be a set of m-k+1 consecutive non-negative integers. Suppose $y \in A_i$ and $y+m-k \in A_{i'}$. If $|Y \cap A_i| + |Y \cap A_{i'}| \ge s+1$, then Yintersects $\lceil (m-k+1)/(s+1) \rceil$ segments. Hence Y contains at most $\lceil (m-k+1)/(s+1) \rceil$ vertices of pre-color 0.

Assume $|Y \cap A_i| + |Y \cap A_{i'}| < s + 1$, then $i' - i = \lceil (m - k + 1)/(s + 1) \rceil \equiv \lceil (m + sk + 1)/(s + 1) \rceil \equiv r \pmod{s + 1}$. Recall that $tr \equiv 1 \pmod{s + 1}$. Hence, if

 A_i is pre-colored by colors $\{j, j + 1, \dots, s, 0, 1, \dots, j - 1\}$, then $A_{i'}$ is pre-colored by colors $\{j + 1, j + 2, \dots, s, 0, 1, \dots, j\}$. Since $|Y \cap A_i| + |Y \cap A_{i'}| < s + 1$, we conclude that pre-color 0 is used at most once in the set $(Y \cap A_i) \cup (Y \cap A_{i'})$. Therefore, at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices of Y have pre-color 0. This completes the proof of Theorem 16. Q.E.D.

In the next result, we write m - k + 1 in the form m - k + 1 = u(s + 1)k + vk + p(s + 1) + q, where u, v, p, q are integers such that $u \ge 0$, $0 \le v \le s$, $0 \le p < k/(s + 1)$, $0 \le q \le s$. It is easy to see that the integers u, v, p, q are uniquely determined by m - k + 1.

Theorem 17 Suppose $m \ge (s+1)k$, k is a multiple of the prime s+1, but m+sk+1 is not. Let u, v, p, q be integers defined as above. If $q \le v+1$, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$.

Proof. It suffices to show that $G(Z, D_{m,k,s})$ is $\lceil (m + sk + 1)/(s + 1) \rceil$ -colorable. Define a pre-coloring as follows. First, partition the set of Z^* into blocks recursively in such a way that the first k vertices are divided into k - 1 blocks with k - 2 singlevertex blocks followed by one block with two vertices. Then repeat the same process to the next k vertices and so on. Next, pre-color the blocks periodically with precolors $\{0, 1, 2, \dots, s\}$, that is, every vertex in the first block is pre-colored by 0 and so on. It is enough to show that the pre-coloring satisfies (1) and (2) of Corollary 7, with $n = \lceil (m + sk + 1)/(s + 1) \rceil$.

First we prove that for any $j \ge sk$, the s + 1 vertices $j, j - k, \dots, j - sk$ receive distinct pre-colors. Suppose $0 \le t < t' \le s$. Let the pre-colors of j - t'k and j - tk be x and y, respectively. Because s + 1 divides k, and s + 1 is prime, we have (s + 1, k - 1) = 1. As (j - tk) - (j - t'k) = (t' - t)k and any consecutive k vertices are divided into k - 1 blocks, so $y \equiv x + (t' - t)(k - 1) \pmod{s + 1}$. Hence, we conclude that $x \ne y$, since $1 \le t' - t < s + 1$ and (s + 1, k - 1) = 1. Next we prove that among any m - k + 1 consecutive vertices, there are at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices with pre-color 0. Given a set Y of m - k + 1 consecutive non-negative integers, we may assume that the first two vertices of Y have pre-color 0. Among the first u(s + 1)k vertices of Y, exactly uk of them have pre-color 0, because any consecutive (s+1)k vertices are evenly pre-colored, *i.e.*, there are exactly k vertices of each pre-color.

The assumption that m + sk + 1 is not a multiple of s + 1 implies that m - k + 1 is not a multiple of s + 1. Because k is a multiple of s + 1 while m - k + 1 is not, $p(s + 1) + q \ge 1$. If $p(s + 1) + q \ge 2$, then among the remaining vk + p(s + 1) + q vertices of Y, there are v + 1 blocks of size 2. If we remove one vertex from each of these blocks of size 2, then the remaining vk + p(s + 1) + q - v - 1 vertices of Y are almost evenly pre-colored, that is, the numbers of vertices with same pre-colors differ by at most one. Hence at most $\lceil (vk + p(s + 1) + q - v - 1)/(s + 1) \rceil$ of them have pre-color 0. On the other hand, among the removed vertices, exactly one vertex has precolor 0. Therefore, the total number of vertices of pre-color 0 is at most $uk + 1 + \lceil (vk + p(s + 1) + q - v - 1)/(s + 1) \rceil = \lceil (m - k + 1)/(s + 1) \rceil$. Note that the last equality is due to the assumption that $q \le v + 1$.

Finally, we assume p(s + 1) + q = 1. Then it is straightforward to verify that either v = 0, or the pre-color of the last vertex is not 0. Consider the remaining vk + p(s + 1) + q = vk + 1 vertices of Y. If v = 0, then there is one vertex of pre-color 0. If the pre-color of the last vertex is not 0, then among the remaining vk + 1 vertices of Y, there are v blocks of size 2. If we remove one vertex from each of these blocks of size 2, then the remaining vk - v vertices of Y are almost evenly pre-colored, so at most $\lceil (vk - v)/(s + 1) \rceil$ of them have pre-color 0. On the other hand, among the vertices taken away, only one has pre-color 0. Hence, there are at most $1 + \lceil (vk - v)/(s + 1) \rceil = \lceil (vk + 1)/(s + 1) \rceil$ (because $v \leq s$) vertices of pre-color 0 in the remaining vk + 1 vertices of Y. Therefore, we conclude that Y has at most $uk + \lceil (vk + 1)/(s + 1) \rceil = \lceil (m - k + 1)/(s + 1) \rceil$ vertices with pre-color 0. This completes the proof. Q.E.D.

Corollary 18 Suppose $m \ge (s+1)k$, k is a multiple of the prime s+1, but m+sk+1 is not. Let u, v, p, q be the same as defined in Theorem 17. If $v \ge s-1$, or $q \le 1$, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$.

Note that when s = 1, then $v \ge s-1$ is always true, hence we have the following corollary which was proved in [2]:

Corollary 19 Suppose s = 1, $m \ge 2k$, $k = 2^{a}k'$ and $m + k + 1 = 2^{b}m'$, where k' and m' are odd. Then

$$\chi(Z, D_{m,k,1}) = \begin{cases} \lceil (m+k+1)/2 \rceil, & \text{if } b = 0 \text{ or } a < b; \\ ((m+k+1)/2) + 1, & \text{if } 0 < b \le a. \end{cases}$$

Proof. The case as b = 0 follows from Corollary 18; and the case as b > 0 follows from Theorem 14. Q.E.D.

Recall that $k = (s+1)^a k'$ where $a \ge 1$ and k' is not divisible by s+1, and m-k+1 is not divisible by s+1. In order to introduce the next result, we need the following definitions and notations. For any factor x of k', define:

$$\begin{array}{ll} q(x) & := \lceil (m-k+1)/((s+1)^a x) \rceil \mod (s+1); \\ m(t,x) & := \max\{t(q(x)-1) \mod (s+1), tq(x) \mod (s+1)\}, 1 \le t \le s; \\ f(x) & := \min\{m(t,x) : 1 \le t \le s\}. \end{array}$$

Finally, define $f := \min\{f(x) : x \text{ is a factor of } k'\}$.

Note that for given m, k and s, the integer f in the above is uniquely determined. Similarly as in Theorem 17, we let $q = (m - k + 1) \mod (s + 1)$.

Theorem 20 Given m, k and s where $m \ge (s+1)k$ and s+1 is a prime, let f, q be defined as above. If $f + q \le s+1$, then $\chi(Z, D_{m,k,s}) = \lceil \chi_f(Z, D_{m,k,s}) \rceil = \lceil (m+sk+1)/(s+1) \rceil$.

Proof. Suppose f = f(x) = m(t, x) for some factor x of k' and some $1 \le t \le s$. Express any integer $j \in Z^*$ in the following form:

$$j = u(s+1)^{a}x + v(s+1) + w,$$

where $u \ge 0, \ 0 \le v < (s+1)^{a-1}x$ and $0 \le w \le s$.

It is easy to see that for each j, the integers u, v, w in the form above are uniquely determined by j. Define a pre-coloring c using the s + 1 pre-colors $\{0, 1, \dots, s\}$ by $c(j) = (ut + w) \mod (s + 1)$. In order to prove $G(Z, D_{m,k,s})$ is $\lceil (m + sk + 1)/(s + 1) \rceil$ colorable, it suffices to show that c satisfies (1) and (2) of Corollary 7, with $n = \lceil (m + sk + 1)/(s + 1) \rceil$.

First, let j be any non-negative integer, we shall show that $c(j), c(j-k), c(j-2k), \dots, c(j-sk)$ are all distinct. Let $0 \le p' . If <math>j - pk = u(s+1)^a x + v(s+1) + w$, then

$$j - p'k = u(s+1)^a x + v(s+1) + w + (p-p')k$$

= $u(s+1)^a x + v(s+1) + w + (p-p')(s+1)^a k'$
= $u'(s+1)^a x + v(s+1) + w.$

Because (s + 1, k') = (p - p', s + 1) = 1, one has (u' - u, s + 1) = 1. Assume c(j - pk) = c(j - p'k), then $ut + w \equiv u't + w \pmod{s+1}$. Hence $t(u' - u) \equiv 0 \pmod{s+1}$, which is impossible, since s+1 is prime and (t, s+1) = (u'-u, s+1) = 1. This proves that c satisfies (1) of Corollary 7.

Next, we prove that among any m - k + 1 consecutive integers, there are at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices with pre-color 0. Divide the vertex set Z^* evenly into segments of length s+1 by $A_0 = \{0, 1, 2, \dots, s\}, A_1 = \{s+1, s+2, \dots, 2s+1\}, \dots, A_i = \{i(s+1), i(s+1)+1, \dots, (i+1)(s+1)-1\}, \dots$ Then each of the segments A_i contains exactly one vertex of each pre-color. Indeed, the pre-colors of the segment A_i are $\{j, j+1, \dots, s, 0, 1, \dots, j-1\}$, where $j = ut \mod (s+1)$, and u is the unique integer such that $i = u(s+1)^{a-1}x + v, 0 \leq v < (s+1)^{a-1}x$.

Let Y be a set of m - k + 1 consecutive integers, $Y = \{y, y + 1, \dots, y + m - k\}$.

Suppose $y \in A_i$ and $y + m - k \in A_{i'}$. If $|Y \cap A_i| + |Y \cap A_{i'}| \ge s + 1$, then Y has at most $\lceil (m - k + 1)/(s + 1) \rceil$ vertices with pre-color 0 (cf. proof of Theorem 16).

Now we assume that $|Y \cap A_i| + |Y \cap A_{i'}| < s + 1$, then $|Y \cap A_i| + |Y \cap A_{i'}| = q$. Suppose $i = u(s+1)^{a-1}x + v$ and $i' = u'(s+1)^{a-1}x + v'$, where $0 \le v, v' < (s+1)^{a-1}x$. Then by the definition of q(x), either u' - u = q(x) or u' - u = q(x) - 1. Suppose $\alpha = q(x)t \mod (s+1)$ and $\beta = (q(x) - 1)t \mod (s+1)$. Then by the choice of x and t, one has $\alpha, \beta \le f$.

Suppose the pre-colors of A_i are $\{j, j + 1, \dots, s, 0, 1, \dots, j - 1\}$. Then the precolors of $A_{i'}$ are either $\{j + \alpha, j + \alpha + 1, \dots, s, 0, 1, \dots, j + \alpha - 1\}$, if u' - u = q(x); or $\{j + \beta, j + \beta + 1, \dots, s, 0, 1, \dots, j + \beta - 1\}$, if u' - u = q(x) - 1.

Any other segment different from A_i and $A_{i'}$ is either disjoint from Y or contained in Y. As each segment contains exactly one vertex of each color, to prove that Y has at most $\lceil (m-k+1)/(s+1) \rceil$ vertices with pre-color 0, it suffices to show that the pre-color 0 is used at most once in the union $(Y \cap A_i) \cup (Y \cap A_{i'})$. Assume that 0 is used in both $Y \cap A_i$ and $Y \cap A_{i'}$. Without loss of generality, we may assume that the pre-colors of $A_{i'}$ are $\{j+\alpha, j+\alpha+1, \cdots, s, 0, 1, \cdots, j+\alpha-1\}$. Then one has $|Y \cap A_i| \ge j$ and $|Y \cap A_{i'}| \ge s+1-(j+\alpha-1)$. It follows that $q = |(Y \cap A_i) \cup (Y \cap A_{i'})| \ge s+2-\alpha$, contrary to the assumption that $\alpha + q \le f + q \le s + 1$. Therefore c satisfies (2) of Corollary 7, with $n = \lceil (m+sk+1)/(s+1) \rceil$. This completes the proof of Theorem 20. Q.E.D.

Corollary 21 If $m \ge (s+1)k$, s+1 is prime, and there is a factor x of k' such that $q(x) \le 1$, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$. In particular, if $\lceil (m-k+1)/k \rceil$ mod $(s+1) \le 1$, then $\chi(Z, D_{m,k,s}) = \lceil (m+sk+1)/(s+1) \rceil$.

Proof. According to definition, if q(x) = 1, then m(1, x) = 1; if q(x) = 0, then m(t, x) = 1 for some t such that $ts \equiv 1 \pmod{s+1}$. (Such a t exists, because

(s, s + 1) = 1.) In any of the two cases, f = 1, so $f + q \le s + 1$. Therefore, $\chi(Z, D_{m,k,s}) = \lceil (m + sk + 1)/(s + 1) \rceil$ by Theorem 20. Q.E.D.

Applying Theorem 14 and Corollaries 18 and 21, we are able to completely settle the case s = 2.

Corollary 22 Suppose s = 2, $m \ge 3k$, $k = 3^ak'$ and $m + 2k + 1 = 3^bm'$, where k' and m' are not multiples of 3. Then

$$\chi(Z, D_{m,k,2}) = \begin{cases} \lceil (m+2k+1)/3 \rceil, & \text{if } b = 0 \text{ or } a < b; \\ (m+2k+1)/3 + 1, & \text{if } 0 < b \le a. \end{cases}$$

Proof. According to Theorem 14, we only have to show the case as b = 0. Suppose m - k + 1 = u(s + 1)k + vk + p(s + 1) + q. If $v \neq 0$, then the conclusion follows from Corollary 18. If v = 0, then the conclusion follows from Corollary 21. (Because $\lceil (m - k + 1)/k \rceil \mod (s + 1) \leq 1.$) Q.E.D.

Remarks. New results related to this topic have been obtained since the submission of this paper. In [5], it was proved that $\chi(G(Z, D_{m,k,s})) \leq \lceil (m+sk+1)/(s+1) \rceil + 1$ for all $m \geq (s+1)k$. Then in [11], the chromatic numbers of all the graphs $G(Z, D_{m,k,s})$ are completely determined. The circular chromatic number of the class of distance graphs $G(Z, D_{m,k,s})$ was studied in [1, 11, 19], and the value of $\chi_c(Z, D_{m,k,s})$ has been completely determined in [19]. (The circular chromatic number $\chi_c(G)$ of a graph G is a refinement of $\chi(G)$, and $\chi(G) = \lceil \chi_c(G) \rceil$ for any graph G. For a survey of research concerning circular chromatic number of graphs, see [20].)

Acknowledgments. The authors are grateful to the referees for many helpful suggestions.

References

[1] G. J. Chang, L. Huang and X. Zhu, *The circular chromatic numbers and the fractional chromatic numbers of distance graphs*, Europ. J. of Comb., to appear.

- [2] G. J. Chang, D. D.-F. Liu and X. Zhu, *Distance graphs and T-coloring*, J. of Comb. Theory, Series B, to appear.
- [3] J. J. Chen, G. J. Chang and K. C. Huang, *Integral distance graphs*, J. Graph Theory 25 (1997) 287-294.
- [4] W. Deuber and X. Zhu, The chromatic number of distance graphs, Disc. Math. 165/166 (1997) 195-204.
- [5] W. Deuber and X. Zhu, Chromatic numbers of distance graphs with distance sets missing multiples, manuscript, 1997.
- [6] R. B. Eggleton, P. Erdős and D. K. Skilton, *Coloring the real line*, J. Comb. Theory, Series B 39 (1985) 86-100.
- [7] R. B. Eggleton, P. Erdős and D. K. Skilton, *Research problem 77*, Disc. Math. 58 (1986) 323.
- [8] R. B. Eggleton, P. Erdős and D. K. Skilton, Update information on research problem 77, Disc. Math. 69 (1988) 105.
- [9] R. B. Eggleton, P. Erdős and D. K. Skilton, *Coloring prime distance graphs*, Graphs and Comb. 32 (1990) 17-32.
- [10] J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites, J. Comb. Theory, Series A, 68 (1994) 169-183.
- [11] L. Huang and G. J. Chang, Circular chromatic number of distance graphs with distance set missing multiples, manuscript, 1998.
- [12] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Disc. Math., to appear (1998).

- [13] D. D.-F. Liu, *T*-coloring and chromatic number of distance graphs, Ars. Comb., to appear.
- [14] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, 1997.
- [15] M. Voigt, *Coloring of distance graphs*, Ars Comb., to appear.
- [16] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Disc. Appl. Math. 51 (1994) 197-209.
- [17] X. Zhu, Distance graphs on the real line, manuscript, 1996.
- [18] X. Zhu, Pattern-periodic coloring of distance graphs, J. of Comb. Theory, Series B, 73 (1998), 195-206.
- [19] X. Zhu, The circular chromatic number of a class of distance graphs, manuscript, 1998.
- [20] X. Zhu, Circular chromatic number: A survey, manuscript, 1997.