Distance graphs with missing multiples in the distance sets

Daphne Der-Fen Liu *
Department of Mathematics and Computer Science
California State University, Los Angeles
Los Angeles, CA 90032, USA
Emil: dliu@calstatela.edu

Xuding Zhu ${ }^{\dagger}$
Department of Applied Mathematics
National Sun Yat-sen University
Kaoshing, Taiwan 80424
Email: zhu@ibm18.math.nsysu.edu.tw
July 13, 1997 (Revised October 2, 1998)

Abstract

Given positive integers m, k and s with $m>k s$, let $D_{m, k, s}$ represent the set $\{1,2, \cdots, m\}-\{k, 2 k, \cdots, s k\}$. The distance graph $G\left(Z, D_{m, k, s}\right)$ has as vertex set all integers Z and edges connecting i and j whenever $|i-j| \in D_{m, k, s}$. The chromatic number and the fractional chromatic number of $G\left(Z, D_{m, k, s}\right)$ are denoted by $\chi\left(Z, D_{m, k, s}\right)$ and $\chi_{f}\left(Z, D_{m, k, s}\right)$, respectively. For $s=1, \chi\left(Z, D_{m, k, 1}\right)$ was studied by Eggleton, Erdős and Skilton [6], Kemnitz and Kolberg [12], and Liu [13], and was solved lately by Chang, Liu and Zhu [2] who also determined $\chi_{f}\left(Z, D_{m, k, 1}\right)$ for any m and k. This article extends the study of $\chi\left(Z, D_{m, k, s}\right)$ and $\chi_{f}\left(Z, D_{m, k, s}\right)$ to general values of s. We prove $\chi_{f}\left(Z, D_{m, k, s}\right)=$ $\chi\left(Z, D_{m, k, s}\right)=k$ if $m<(s+1) k$; and $\chi_{f}\left(Z, D_{m, k, s}\right)=(m+s k+1) /(s+1)$ otherwise. The latter result provides a good lower bound for $\chi\left(Z, D_{m, k, s}\right)$. A general upper bound for $\chi\left(Z, D_{m, k, s}\right)$ is found. We prove the upper bound can be improved to $\lceil(m+s k+1) /(s+1)\rceil+1$ for some values of m, k and s. In particular, when $s+1$ is prime, $\chi\left(Z, D_{m, k, s}\right)$ is either $\lceil(m+s k+1) /(s+1)\rceil$ or $\lceil(m+s k+1) /(s+1)\rceil+1$. By using a special coloring method called the pre-coloring method, many distance graphs $G\left(Z, D_{m, k, s}\right)$ are classified into

[^0]these two possible values of $\chi\left(Z, D_{m, k, s}\right)$. Moreover, complete solutions of $\chi\left(Z, D_{m, k, s}\right)$ for several families are determined including the case $s=1$ (solved in [2]), the case $s=2$, the case $(k, s+1)=1$, and the case that k is a power of a prime.

Keywords. Distance graph, chromatic number, fractional chromatic number, precoloring method.

1 Introduction

Given a set D of positive integers, the distance graph $G(Z, D)$ has all integers as vertices; and two vertices are adjacent if and only if their difference falls within D, that is, the vertex set is Z and the edge set is $\{u v:|u-v| \in D\}$. We call D the distance set. The chromatic number of $G(Z, D)$ is denoted by $\chi(Z, D)$.

For different types of distance sets D, the problem of determining $\chi(Z, D)$ has been studied extensively. (See $[2,3,4,6,7,8,9,12,16,15,17]$.) For instance, suppose D is a subset of prime numbers and $\{2,3\} \subseteq D$, Eggleton, Erdős and Skilton [9] proved that $\chi(Z, D)$ is either 3 or 4 . The problem of classifying $G(Z, D)$ with distance sets D of primes into chromatic number 3 or 4 was studied by Eggleton, Erdős and Skilton [9], and by Voigt and Walther [16]. However, a complete classification is not obtained yet.

If D has only one element, it is trivial that $\chi(Z, D)=2$. When D has two elements, it is known that $\chi(Z, D)=3$ if the two integers in D are of different parity, and $\chi(Z, D)=2$ otherwise (assuming that $\operatorname{gcd} D=1$). The case if D has three elements, which is much more complicated, has been studied by Chen, Chang, and Huang [3], and by Voigt [15], and was solved lately by Zhu [17].

A fractional coloring of a graph G is a mapping h from $\mathcal{I}(G)$, the set of all independent sets of G, to the interval $[0,1]$ such that $\sum_{I \in \mathcal{I}(G), x \in I} h(I) \geq 1$ for each vertex x of G. The fractional chromatic number $\chi_{f}(G)$ of G is the infimum of the value $\sum_{I \in \mathcal{I}(G)} h(I)$ of a fractional coloring h of G. The fractional chromatic number of
a distance graph $G(Z, D)$ is denoted by $\chi_{f}(Z, D)$.
For any graph G, it is well-known and easy to verify that

$$
\begin{equation*}
\max \left\{\omega(G), \frac{|V(G)|}{\alpha(G)}\right\} \leq \chi_{f}(G) \leq \chi(G) \tag{*}
\end{equation*}
$$

where $\omega(G)$ is the size (number of vertices) of a maximum complete graph, and $\alpha(G)$ is the size of a maximum independent set in G. (See Chapter 3 of [14].)

Given integers m, k and s with $m>k s$, let $D_{m, k, s}$ denote the distance set $D_{m, k, s}=\{1,2,3, \cdots, m\}-\{k, 2 k, 3 k, \cdots, s k\}$. This article studies the chromatic number and the fractional chromatic number of $G\left(Z, D_{m, k, s}\right)$. If $s=1$, the chromatic number of $G\left(Z, D_{m, k, 1}\right)$ was first studied by Eggleton, Erdős and Skilton [6] who determined $\chi\left(Z, D_{m, k, 1}\right)$ completely for $k=1$, and partially for $k=2$. The same results for the case $k=1$ were also obtained in [12] by a different approach. For the cases that k is an odd number, $k=2$ and $k=4, \chi\left(Z, D_{m, k, 1}\right)$ were determined in [13]. Recently, the exact values of $\chi_{f}\left(Z, D_{m, k, 1}\right)$ and $\chi\left(Z, D_{m, k, 1}\right)$ for all m and k were settled in [2]. We extend the study to general values of s.

Note that it becomes an easy case if $m<(s+1) k$. Define a coloring f of $G\left(Z, D_{m, k, s}\right)$ by: For any $x \in Z, f(x)=x \bmod k$. Since $D_{m, k, s}$ contains no multiples of k, f is a proper coloring. Thus, $\chi\left(Z, D_{m, k, s}\right) \leq k$. As any consecutive k vertices in $G\left(Z, D_{m, k, s}\right)$ form a complete graph, by $\left(^{*}\right), \chi_{f}\left(Z, D_{m, k, s}\right) \geq k$. This implies $\chi\left(Z, D_{m, k, s}\right)=\chi_{f}\left(Z, D_{m, k, s}\right)=k$, if $m<(s+1) k$. Therefore, throughout the article, we assume $m \geq(s+1) k$.

Section 2 determines the fractional chromatic number of $G\left(Z, D_{m, k, s}\right)$ for all values of m, k and s with $m \geq(s+1) k$. This result provides a good lower bound for $\chi\left(Z, D_{m, k, s}\right)$, namely,

$$
\begin{equation*}
\lceil(m+s k+1) /(s+1)\rceil \leq \chi\left(Z, D_{m, k, s}\right) \text {, if } m \geq(s+1) k . \tag{**}
\end{equation*}
$$

This lower bound will be shown to be sharp for some families of $G\left(Z, D_{m, k, s}\right)$ and strict for some others.

Section 3 introduces the pre-coloring method, one of the main tools used in the article. For such a coloring method, we determine when it produces a proper coloring for $G\left(Z, D_{m, k, s}\right)$, and then determine the number of colors used by the produced proper coloring. These characterizations are used intensively in Sections 4 and 5.

Section 4 starts with the result of a general upper bound of $\chi\left(Z, D_{m, k, s}\right)$. For some values of m, k and s, we improve the upper bound to $\lceil(m+s k+1) /(s+1)\rceil+1$. Combining these results with the lower bound $\left({ }^{* *}\right)$ mentioned above, the chromatic numbers for many families of $G\left(Z, D_{m, k, s}\right)$ are determined.

Section 5 focuses on the study of $\chi\left(Z, D_{m, k, s}\right)$ when $s+1$ is a prime number. Using the results obtained in earlier sections, we show that when $s+1$ is prime, $\chi\left(Z, D_{m, k, s}\right)$ is either $\lceil(m+s k+1) /(s+1)\rceil$ or $\lceil(m+s k+1) /(s+1)\rceil+1$. For many families of $G\left(Z, D_{m, k, s}\right)$, we classify their chromatic numbers into one of these two values. Moreover, we completely determine the exact values of $\chi\left(Z, D_{m, k, s}\right)$ for the following cases: If $s=1$ (which was solved recently in [2]); if $s=2$; if $(k, s+1)=1$; and if k is a power of a prime.

2 Lower bounds and fractional chromatic number

In this section, we first determine the fractional chromatic number of $G\left(Z, D_{m, k, s}\right)$ for all values of m, k and s with $m \geq(s+1) k$. This result immediately leads to $\left({ }^{* *}\right)$, a lower bound for $\chi\left(Z, D_{m, k, s}\right)$. Then we prove that in $\left({ }^{* *}\right)$, equality holds for some values of m, k and s; while strict inequality holds for some others.

Theorem 1 For any given integers m, k and s with $m \geq(s+1) k$,

$$
\chi_{f}\left(Z, D_{m, k, s}\right)=(m+s k+1) /(s+1)
$$

Proof. For any i with $0 \leq i \leq m+s k$, let $I_{i}=\{j \in Z: j-i \equiv x k \quad(\bmod m+$ $s k+1), 0 \leq x \leq s\}$. It is straightforward to verify that I_{i} is an independent set in
$G\left(Z, D_{m, k, s}\right)$. It is also easy to verify that any integer is contained in exactly $s+1$ such independent sets. Define a mapping $h: \mathcal{I}\left(G\left(Z, D_{m, k, s}\right)\right) \rightarrow[0,1]$ by

$$
h(I)= \begin{cases}\frac{1}{s+1}, & \text { if } I=I_{i} \text { for } 0 \leq i \leq m+s k \\ 0, & \text { otherwise }\end{cases}
$$

Then h is a fractional coloring of $G\left(Z, D_{m, k, s}\right)$ which has value $\frac{m+s k+1}{s+1}$. Thus, $\chi_{f}\left(Z, D_{m, k, s}\right) \leq \frac{m+s k+1}{s+1}$.

To show $\chi_{f}\left(Z, D_{m, k, s}\right) \geq \frac{m+s k+1}{s+1}$, let G be the subgraph of $G\left(Z, D_{m, k, s}\right)$ induced by the vertices $\{0,1,2, \cdots, m+s k\}$. Then $\chi_{f}(G) \leq \chi_{f}\left(Z, D_{m, k, s}\right)$. It is straightforward to verify that $\alpha(G)=s+1$. Hence, by $\left(^{*}\right), \chi_{f}(G) \geq \frac{|V(G)|}{\alpha(G)}=\frac{m+s k+1}{s+1}$. This completes the proof of Theorem 1 .
Q.E.D.

Since $\chi(G)$ is an integer, by $\left({ }^{*}\right)$, we have $\left\lceil\chi_{f}(G)\right\rceil \leq \chi(G)$. Hence, the following is obtained.

Theorem 2 For any given integers m, k and s with $m \geq(s+1) k$,

$$
\chi\left(Z, D_{m, k, s}\right) \geq\lceil(m+s k+1) /(s+1)\rceil .
$$

The following result indicates that the lower bound of $\chi\left(Z, D_{m, k, s}\right)$ in Theorem 2 is attained by some values of m, k and s, but not attained by some others.

Theorem 3 Suppose $m \geq(s+1) k, k=(s+1)^{a} k^{\prime}$ and $m+s k+1=(s+1)^{b} m^{\prime}$, where both k^{\prime} and m^{\prime} are not divisible by $s+1$. Then

$$
\chi\left(Z, D_{m, k, s}\right) \begin{cases}\geq(m+s k+1) /(s+1)+1, & \text { if } 0<b \leq a ; \\ =(m+s k+1) /(s+1), & \text { if } a<b \text { and }\left(s+1, k^{\prime}\right)=1 .\end{cases}
$$

Proof. Let $n=(m+s k+1) /(s+1)$. Because $b>0, n$ is an integer.
Suppose $0<b \leq a$, we shall show that $G\left(Z, D_{m, k, s}\right)$ is not n-colorable. Assume to the contrary, there exits an n-coloring f of $G\left(Z, D_{m, k, s}\right)$.

For any two integers i and j, let $G[i, j]$ be the subgraph of $G\left(Z, D_{m, k, s}\right)$ induced by the vertex set $\{i+1, i+2, \cdots, j\}$. Then for any integer i, the graph $G[i, i+m+s k+1]$
has $m+s k+1$ vertices and a maximum independent set of size $s+1$. Since f is an $(m+s k+1) /(s+1)$-coloring, exactly $s+1$ vertices of $G[i, i+m+s k+1]$ are colored by the same color. It follows that $f(i)=f(i+m+s k+1)$ for any integer i.

Define a circulant graph G on the set $\{0,1, \cdots, m+s k\}$ with generating set $D_{m, k, s}$, that is, $i j$ is an edge of G if and only if $(j-i) \bmod (m+s k+1) \in D_{m, k, s}$ or $(i-j) \bmod (m+s k+1) \in D_{m, k, s}$. The argument in the previous paragraph shows that f induces a proper n-coloring of G. Moreover, each color class consists of $s+1$ vertices in G. It is not difficult to verify that all $(s+1)$-independent sets of G are of the form $\{i, i+k, \cdots, i+s k\}$. (Here each number is calculated by modulo $m+s k+1$.)

Let $d=(k, m+s k+1)$ and $u=(m+s k+1) / d$. Divide the vertex set of G into d subsets of the form $\{i, i+k, i+2 k, \cdots, i+(u-1) k\} \quad(\bmod m+s k+1)$, each of size u. Then each of these d subsets is the union of some color classes of size $s+1$, so $(s+1)$ divides u. Therefore $m+s k+1$ is a multiple of $(s+1)^{a+1}$, which is impossible since $b \leq a$.

Suppose $a<b$ and $\left(s+1, k^{\prime}\right)=1$, then u is a multiple of $s+1$. One can easily define a proper n-coloring f on G by using $u /(s+1)$ colors to each of the subsets $\{i, i+k, i+2 k, \cdots, i+(u-1) k\} \quad(\bmod m+s k+1)$ as defined in the previous paragraph by: the first $s+1$ vertices in a subset use one color and the next $s+1$ vertices use the next, and continue the process until all vertices are colored. It is easy to check that f is a proper coloring of G. Furthermore, f can be extended to a proper coloring of $G\left(Z, D_{m, k, s}\right)$ by letting $f^{\prime}(y)=f(x)$, where $x=y \bmod (m+s k+1)$. Therefore, $G\left(Z, D_{m, k, s}\right)$ is n-colorable. This completes the proof of Theorem 3 .

3 The pre-coloring method

This section introduces the main tool to be used in the remaining part of this article, namely, the pre-coloring method. A simpler version of this method was originally applied in [2] in determining the chromatic number of $G\left(Z, D_{m, k, 1}\right)$. Here we extend
the idea to a more complex version and use it extensively throughout this article.
Before introducing the pre-coloring method, we note another fact. Let Z^{*} denote the set of non-negative integers. It is known and easy to verify that for any distance set $D, \chi(Z, D)=\chi\left(Z^{*}, D\right)$, where $G\left(Z^{*}, D\right)$ is the subgraph of $G(Z, D)$ induced by Z^{*}. Therefore, to color the graph $G\left(Z, D_{m, k, s}\right)$, it suffices to color the subgraph of $G\left(Z, D_{m, k, s}\right)$ induced by Z^{*}.

There are two steps in the pre-coloring method. First, we partition the set Z^{*} into $s+1$ parts by a mapping $c: Z^{*} \rightarrow\{0,1,2, \cdots, s\}$. Second, for each non-negative integer x, according to the value of $c(x)$, we assign a color to x by the rule defined as follows.

Definition 4 Suppose m, k, s are positive integers. For a given mapping $c: Z^{*} \rightarrow$ $\{0,1,2, \cdots, s\}$, define a coloring c^{\prime} of Z^{*} recursively by:

$$
c^{\prime}(j)= \begin{cases}j, & \text { if } j<k \\ c^{\prime}(j-k), & \text { if } j \geq k \text { and } c(j) \neq 0 \\ n, & \text { if } j \geq k \text { and } c(j)=0,\end{cases}
$$

where n is the smallest non-negative integer (color) not been used in the m vertices preceeding j, that is, $n=\min \left\{t \in Z^{*}: c^{\prime}(j-i) \neq t\right.$ for $\left.i=1,2, \cdots, m\right\}$.

Note that c^{\prime} defined above is uniquely determined by c. We call c the precoloring, and c^{\prime} the coloring induced by c. For any $x \in Z^{*}, c(x)$ and $c^{\prime}(x)$ are called the pre-color and the color of x, respectively.

In order to ensure that the coloring c^{\prime} in Definition 4 to be a proper coloring for $G\left(Z^{*}, D_{m, k, s}\right)$ as desired, the pre-coloring c needs to satisfy certain conditions specified in the following lemma.

Lemma 5 Suppose c is a pre-coloring of Z^{*}. If for any integer $j \geq s k, c(j), c(j-$ $k), c(j-2 k), \cdots$, and $c(j-s k)$ are all distinct, then the induced coloring c^{\prime} is a proper coloring for $G\left(Z, D_{m, k, s}\right)$.

Proof. It is enough to show by induction that for any $j \in Z^{*}, c^{\prime}(j) \neq c^{\prime}(x)$ for any neighbor x of j and $x<j$. If $j<k$, or $j \geq k$ with $c(j)=0$, then this is true by Definition 4.

Now, assume $j \geq k$ and $c(j) \neq 0$. By definition, $c^{\prime}(j)=c^{\prime}(j-k)$. If $j-k<$ $x<j$, then x is adjacent to $j-k$. By the inductive hypotheses, $c^{\prime}(x) \neq c^{\prime}(j-k)$, so $c^{\prime}(x) \neq c^{\prime}(j)$. If $x<j-k$ and x is adjacent to j, then either x is a neighbor of $j-k$ or $x=j-(s+1) k$. In the former case, according to the inductive hypotheses, $c^{\prime}(x) \neq c^{\prime}(j-k)$, hence $c^{\prime}(x) \neq c^{\prime}(j)$. We now consider the case that $x=j-(s+1) k$. Because the pre-colors of $j, j-k, j-2 k, \cdots, j-s k$ are all distinct, exactly one of them is 0 . Suppose $c(j-u k)=0$ for some $0 \leq u \leq s$. Then by Definition 4, $c^{\prime}(j-u k)$ is different from the color of any of the m vertices preceding $j-u k$, hence $c^{\prime}(j-u k) \neq c^{\prime}(j-(s+1) k)$. Because $c(j), c(j-k), \cdots, c(j-(u-1) k) \neq 0$, $c^{\prime}(j)=c^{\prime}(j-k)=c^{\prime}(j-2 k)=\cdots=c^{\prime}(j-u k)$. Therefore, $c^{\prime}(j) \neq c^{\prime}(j-(s+1) k)$, i.e., $c^{\prime}(j) \neq c^{\prime}(x)$. This completes the proof of Lemma 5 .
Q.E.D.

After getting a necessary condition for the pre-coloring c to produce a proper coloring c^{\prime} for the distance graph $G\left(Z^{*}, D_{m, k, s}\right)$, the next natural question to ask is how many colors are used by c^{\prime}. The answer of this question is shown in the following result.

Lemma 6 Suppose c is a pre-coloring and c^{\prime} is the induced coloring. Then the number of colors used by c^{\prime} is at most $k+\ell$, where ℓ is the maximum number of vertices with pre-color 0 , among any $m-k+1$ consecutive integers greater than k.

Proof. We prove, by induction on j, that vertices $0,1,2, \cdots, j$ are colored by the pre-coloring method with at most $k+\ell$ colors. This is trivial when $j<k$, or $j \geq k$ with $c(j) \neq 0$.

Now we assume $j>k$ and $c(j)=0$. It suffices to show that the m vertices preceeding j use at most $k+\ell-1$ colors. For the m vertices preceeding j, the first k
vertices use at most k colors. Among the remaining $m-k$ vertices, only those vertices with pre-color 0 require a new color. Due to the facts that $c(j)=0$, and any set of consecutive $m-k+1$ vertices contains at most ℓ vertices of pre-color 0 , we conclude that among the remaining $m-k$ vertices, there are at most $\ell-1$ vertices with precolor 0 . Therefore, the total number of colors used by the m vertices preceeding j is at most $k+\ell-1$, and hence there is a color for the vertex j.
Q.E.D.

Combining Lemmas 5 and 6, we arrive at the following useful conclusion.

Corollary 7 Given integers m, k and $s, \chi\left(Z, D_{m, k, s}\right) \leq n$ if there exists a pre-coloring c such that the following two conditions are satisfied:
(1) for any integer $j \geq s k, c(j), c(j-k), c(j-2 k), \cdots, c(j-s k)$ are all distinct, and
(2) among any consecutive non-negative $m-k+1$ integers, there are at most $n-k$ vertices with pre-color 0 .

Corollary 7 will be used in many of the proofs in the rest of the article. Instead of finding a proper coloring for the distance graph $G\left(Z, D_{m, k, s}\right)$ with n colors, it is enough to present a pre-coloring c that satisfies (1) and (2) of Corollary 7.

4 Upper bounds

This section shows upper bounds of $\chi\left(Z, D_{m, k, s}\right)$ for different values of m, k and s. Combining these upper bounds with the lower bounds obtained in Section 2 gives the exact value of $\chi\left(Z, D_{m, k, s}\right)$ for some families of $G\left(Z, D_{m, k, s}\right)$. In particular, we prove for many different combinations of m, k and $s, \chi\left(Z, D_{m, k, s}\right)$ is either $\lceil(m+s k+$ $1) /(s+1)\rceil$ or $\lceil(m+s k+1) /(s+1)\rceil+1$.

We start with a general upper bound in the following. For any two integers a and b, let (a, b) denote the greatest common divisor of a and b.

Theorem 8 Suppose $m \geq(s+1) k$ and $(k, m+s k+1)=d$, then $\chi\left(Z, D_{m, k, s}\right) \leq$ $d\lceil(m+s k+1) / d(s+1)\rceil$.

Proof. Define a circulant graph G on the set $\{0,1, \cdots, m+s k\}$ with generating set $D_{m, k, s}$, that is, $i j$ is an edge of G if and only if $(j-i) \bmod (m+s k+1) \in D_{m, k, s}$ or $(i-j) \bmod (m+s k+1) \in D_{m, k, s}$. It is easy to verify that any proper coloring f of G can be extended to a proper coloring f^{\prime} of $G\left(Z, D_{m, k, s}\right)$ by letting $f^{\prime}(y)=f(x)$, where $x=y \bmod (m+s k+1)$. Therefore, it is enough to find a proper n-coloring of G, where $n=d\lceil(m+s k+1) / d(s+1)\rceil$.

Let $u=(m+s k+1) / d$. Divide the vertex set of G into d subsets such that each subset has u vertices and is of the form $\{i, i+k, i+2 k, \cdots, i+(u-1) k\} \quad(\bmod m+$ $s k+1)$. Any consecutive $s+1$ vertices in a subset are independent, so each subset can be partitioned into $\lceil u /(s+1)\rceil=\lceil(m+s k+1) / d(s+1)\rceil$ independent sets of size $s+1$, except the last one whose size might be smaller than $s+1$. Therefore the vertex set of G can be partitioned into $d\lceil(m+s k+1) / d(s+1)\rceil$ independent sets. Hence $\chi\left(Z, D_{m, k, s}\right) \leq d\lceil(m+s k+1) / d(s+1)\rceil$.
Q.E.D.

Combining the upper bound above with the lower bound in Theorem 2, the following two results emerge.

Corollary 9 Suppose $m \geq(s+1) k$ and $(k, m+s k+1)=d$, then

$$
\lceil(m+s k+1) /(s+1)\rceil \leq \chi\left(Z, D_{m, k, s}\right) \leq d\lceil(m+s k+1) / d(s+1)\rceil .
$$

Corollary 10 If $m \geq(s+1) k$ and $(k, m+s k+1)=1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+$ $s k+1) /(s+1)\rceil$.

We note that in Corollary 9, there may exist big gaps between the upper and the lower bounds, depending on the values of $d=(k, m+s k+1)$. However, so far we do not have any example of distance graph $G\left(Z, D_{m, k, s}\right)$ with chromatic number
exceeding $\lceil(m+s k+1) /(s+1)\rceil+1$. The next theorem provides a better upper bound for some families of $G\left(Z, D_{m, k, s}\right)$.

Theorem 11 If $m \geq(s+1) k$ and $s+1$ is a divisor of k, then $\chi\left(Z, D_{m, k, s}\right) \leq$ $\lceil(m+s k+1) /(s+1)\rceil+1$.

Proof. For any $j \in Z^{*}$, we can write j uniquely in the form $j=u k+v(s+1)+w$, where u, v and w are integers such that $0 \leq v<k /(s+1)$ and $0 \leq w \leq s$. Then define a pre-coloring c by $c(j)=u+w \quad(\bmod s+1)$. We only need to show that c satisfies (1) and (2) in Corollary 7, with $n=\lceil(m+s k+1) /(s+1)\rceil+1$.

First we show that for any vertex j, the $s+1$ vertices, $j, j-k, j-2 k, \cdots, j-s k$ have distinct pre-colors. Assume $j=u k+v(s+1)+w$ with $0 \leq v<k /(s+1)$ and $0 \leq w \leq s$. Then $j-i k=(u-i) k+v(s+1)+w, 0 \leq i \leq s$. It follows that $c(j-i k)=(u-i+w) \bmod (s+1)$ which give distinct colors for $0 \leq i \leq s$.

Next we show that among any consecutive $m-k+1$ vertices, there are at most $n-k=\lceil(m-k+1) /(s+1)\rceil+1$ vertices with pre-color 0 . Divide the set of non-negative integers into segments of length $s+1$ by $A_{0}=\{0,1, \cdots, s\}, A_{1}=$ $\{s+1, s+2, \cdots, 2 s+1\}, \cdots, A_{i}=\{i(s+1), i(s+1)+1, \cdots,(i+1)(s+1)-1\}, \cdots$. Then each segment A_{i} contains exactly one vertex of each pre-color. Indeed, it is straightforward to verify that the pre-colors of A_{i} are $\{j, j+1, \cdots, s, 0,1, \cdots, j-1\}$, where $i=u k /(s+1)+v, 0 \leq v<k /(s+1)$ and $j=u \bmod (s+1)$. Any set of consecutive $m-k+1$ vertices intersects at most $\lceil(m-k+1) /(s+1)\rceil+1$ segments, so it contains at most $\lceil(m-k+1) /(s+1)\rceil+1$ vertices of pre-color 0 . This completes the proof.

The following corollary follows from Theorems 3 and 11.

Corollary 12 Suppose $m \geq(s+1) k, k=(s+1)^{a} k^{\prime}$ and $m+s k+1=(s+1)^{b} m^{\prime}$, where both k^{\prime} and m^{\prime} are not divisible by $s+1$. If $0<b \leq a$, then $\chi\left(Z, D_{m, k, s}\right)=$ $(m+s k+1) /(s+1)+1$.

The next result shows another family of $G\left(Z, D_{m, k, s}\right)$ such that the chromatic number reaches the lower bound.

Theorem 13 If $(k, s+1)=1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$ for all $m \geq(s+1) k$.

Proof. Define a pre-coloring c by $c(j)=j \bmod (s+1)$. We prove that c satisfies (1) and (2) of Corollary 7, with $n=\lceil(m+s k+1) /(s+1)\rceil$.

To show that for any vertex $j, c(j), c(j-k), c(j-2 k), \cdots$, and $c(j-s k)$ are all distinct, we assume to the contrary that $c(j-t k)=c\left(j-t^{\prime} k\right)$ for some $0 \leq t<t^{\prime} \leq s$. Then $j-t k \equiv j-t^{\prime} k \quad(\bmod s+1)$, so $\left(t^{\prime}-t\right) k \equiv 0(\bmod s+1)$. This is impossible, because $(k, s+1)=1$ and $0<t^{\prime}-t \leq s$.

Next we show that among any consecutive $m-k+1$ vertices, there are at most $\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 . This is trivial, because the vertices of pre-color 0 are those vertices j for which $j \equiv 0(\bmod s+1)$, so any two vertices with pre-color 0 are exactly $s+1$ vertices apart. This completes the proof. Q.E.D.

5 The case $s+1$ is prime

This section focuses on the study of $\chi_{f}\left(Z, D_{m, k, s}\right)$ when $s+1$ is a prime number. If $s+1$ is prime, then either $s+1$ is a divisor of k or $(k, s+1)=1$. Hence by Theorems 11 and $13, \chi\left(Z, D_{m, k, s}\right)$ is either $\lceil(m+s k+1) /(s+1)\rceil$ or $\lceil(m+s k+1) /(s+1)\rceil+1$. In this section, assuming $s+1$ is prime, we classify the chromatic number for most of the families of the distance graphs $G\left(Z, D_{m, k, s}\right)$ into one of those two possible values.

Similarly to Theorem 3, we let $k=(s+1)^{a} k^{\prime}$ and $m+s k+1=(s+1)^{b} m^{\prime}$, where k^{\prime} and m^{\prime} are not divisible by $(s+1)$. As $s+1$ is prime, $\left(s+1, k^{\prime}\right)=1$. Therefore, the following result can be derived immediately from Theorems 3 and 13, and Corollary 12.

Theorem 14 Suppose $m \geq(s+1) k, s+1$ is prime, and m, k, a, b are defined as above. Then

$$
\chi\left(Z, D_{m, k, s}\right)= \begin{cases}\lceil(m+s k+1) /(s+1)\rceil, & \text { if } a=0 \text { or } a<b ; \\ (m+s k+1) /(s+1)+1, & \text { if } 0<b \leq a .\end{cases}
$$

Suppose k is a power of a prime, $k=p^{a}$. If $p \neq s+1$, by Theorem 14, $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$ for all $m \geq(s+1) k$. If $p=s+1$, that is, $k=(s+1)^{a}$, then the chromatic number of $G\left(Z, D_{m, k, s}\right)$ can be completely determined as follows.

Corollary 15 Suppose $m \geq(s+1) k$, $s+1$ is prime, $k=(s+1)^{a}$, and $m+s k+1=$ $(s+1)^{b} m^{\prime}$, where m^{\prime} is not a multiple of $s+1$. Then

$$
\chi\left(Z, D_{m, k, s}\right)= \begin{cases}\lceil(m+s k+1) /(s+1)\rceil, & \text { if } b=0 \text { or } a<b ; \\ (m+s k+1) /(s+1)+1, & \text { if } 0<b \leq a .\end{cases}
$$

Proof. By Theorem 14, we only have to show the case as $b=0$, which implies $(k, m+s k+1)=1$. Hence by Corollary 10, the prove is complete.
Q.E.D.

Note that when $s+1$ is prime, Theorem 14 determines the value of $\chi\left(Z, D_{m, k, s}\right)$ unless $a>0$ and $b=0$. Thus, for the rest of this section, we shall assume that $a>0$ and $b=0$, that is, k is a multiple of $s+1$ but $m+s k+1$ is not. Our next result completely settles the case for $a=1$.

Theorem 16 Suppose $s+1$ is prime, let m, s, k, a, b be integers same as defined in Theorem 3. If $a=1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$ for all $m \geq(s+1) k$.

Proof. Let $r=\lceil(m+s k+1) /(s+1)\rceil \bmod (s+1)$. We consider two cases.
Case 1. $r=0$. There exists an integer $\bar{m} \geq m$ such that $(\bar{m}+s k+1) /(s+1)=$ $\lceil(m+s k+1) /(s+1)\rceil$. The distance graph $G\left(Z, D_{m, k, s}\right)$ is a subgraph of $G\left(Z, D_{\bar{m}, k, s}\right)$, so $\chi\left(Z, D_{m, k, s}\right) \leq \chi\left(Z, D_{\bar{m}, k, s}\right)$. Let $\bar{m}+s k+1=(s+1)^{\bar{b}} \bar{m}^{\prime}$, where \bar{m}^{\prime} is not divisible
by $(s+1)$. Since $(\bar{m}+s k+1) /(s+1) \equiv r \equiv 0(\bmod s+1), \bar{b} \geq 2>1=a$. Thus by Theorems 2 and 3, we have

$$
\lceil(m+s k+1) /(s+1)\rceil \leq \chi\left(Z, D_{m, k, s}\right) \leq \chi\left(Z, D_{\bar{m}, k, s}\right)=(\bar{m}+s k+1) /(s+1)
$$

Therefore, $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$.
Case 2. $1 \leq r \leq s$. Since $s+1$ is a prime, there exists an integer $1 \leq t \leq s$ such that $t r \equiv 1 \quad(\bmod s+1)$. Define a pre-coloring c of the set Z^{*} with $s+1$ colors as follows. For each integer $j \in Z^{*}$, express j uniquely in the form $j=u(s+1)+v$, where $0 \leq v \leq s$. Then let $c(j)=(u t+v) \bmod (s+1)$. We shall show that c satisfies (1) and (2) in Corollary 7 with $n=\lceil(m+s k+1) /(s+1)\rceil$.

Let $j \in Z^{*}$. Assume, contrary to (1) of Corollary $7, c(j-h k)=c\left(j-h^{\prime} k\right)$ for some $0 \leq h<h^{\prime} \leq s$. Let $j-h k=u(s+1)+v$ and $j-h^{\prime} k=u^{\prime}(s+1)+v^{\prime}$, then $u t+v \equiv u^{\prime} t+v^{\prime} \quad(\bmod s+1)$. Because $a=1,(s+1)$ divides k, which implies $j-h k \equiv j-h^{\prime} k \quad(\bmod s+1)$, so $v=v^{\prime}$. Hence, $u t-u^{\prime} t \equiv 0 \quad(\bmod s+1)$. This is impossible because $(t, s+1)=1$ and $0<u^{\prime}-u \leq s$.

Now we show that among any $m-k+1$ consecutive integers, there are at most $\lceil(m-k+1) /(s+1)\rceil$ vertices of pre-color 0 . Similarly to the proof of Theorem 13, we divide the set Z^{*} into segments of length $s+1$ by $A_{0}=\{0,1, \cdots, s\}, A_{1}=\{s+1, s+$ $2, \cdots, 2 s+1\}, \cdots, A_{i}=\{i(s+1), i(s+1)+1, \cdots,(i+1)(s+1)-1\}, \cdots$. Then each of the segments A_{i} contains exactly one vertex of each pre-color. Indeed, it is straightforward to verify that the pre-colors of the segment A_{i} are $\{j, j+1, \cdots, s, 0,1, \cdots, j-1\}$, where $i \equiv v \quad(\bmod s+1), 0 \leq v \leq s$, and $j=v t \bmod (s+1)$.

Let $Y=\{y, y+1, \cdots, y+m-k\}$ be a set of $m-k+1$ consecutive non-negative integers. Suppose $y \in A_{i}$ and $y+m-k \in A_{i^{\prime}}$. If $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right| \geq s+1$, then Y intersects $\lceil(m-k+1) /(s+1)\rceil$ segments. Hence Y contains at most $\lceil(m-k+1) /(s+1)\rceil$ vertices of pre-color 0 .

Assume $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right|<s+1$, then $i^{\prime}-i=\lceil(m-k+1) /(s+1)\rceil \equiv$ $\lceil(m+s k+1) /(s+1)\rceil \equiv r \quad(\bmod s+1)$. Recall that $t r \equiv 1(\bmod s+1)$. Hence, if
A_{i} is pre-colored by colors $\{j, j+1, \cdots, s, 0,1, \cdots, j-1\}$, then $A_{i^{\prime}}$ is pre-colored by colors $\{j+1, j+2, \cdots, s, 0,1, \cdots, j\}$. Since $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right|<s+1$, we conclude that pre-color 0 is used at most once in the set $\left(Y \cap A_{i}\right) \cup\left(Y \cap A_{i^{\prime}}\right)$. Therefore, at most $\lceil(m-k+1) /(s+1)\rceil$ vertices of Y have pre-color 0 . This completes the proof of Theorem 16.

In the next result, we write $m-k+1$ in the form $m-k+1=u(s+1) k+$ $v k+p(s+1)+q$, where u, v, p, q are integers such that $u \geq 0, \quad 0 \leq v \leq s, \quad 0 \leq$ $p<k /(s+1), \quad 0 \leq q \leq s$. It is easy to see that the integers u, v, p, q are uniquely determined by $m-k+1$.

Theorem 17 Suppose $m \geq(s+1) k$, k is a multiple of the prime $s+1$, but $m+s k+1$ is not. Let u, v, p, q be integers defined as above. If $q \leq v+1$, then $\chi\left(Z, D_{m, k, s}\right)=$ $\lceil(m+s k+1) /(s+1)\rceil$.

Proof. It suffices to show that $G\left(Z, D_{m, k, s}\right)$ is $\lceil(m+s k+1) /(s+1)\rceil$-colorable. Define a pre-coloring as follows. First, partition the set of Z^{*} into blocks recursively in such a way that the first k vertices are divided into $k-1$ blocks with $k-2$ singlevertex blocks followed by one block with two vertices. Then repeat the same process to the next k vertices and so on. Next, pre-color the blocks periodically with precolors $\{0,1,2, \cdots, s\}$, that is, every vertex in the first block is pre-colored by 0 and so on. It is enough to show that the pre-coloring satisfies (1) and (2) of Corollary 7, with $n=\lceil(m+s k+1) /(s+1)\rceil$.

First we prove that for any $j \geq s k$, the $s+1$ vertices $j, j-k, \cdots, j-s k$ receive distinct pre-colors. Suppose $0 \leq t<t^{\prime} \leq s$. Let the pre-colors of $j-t^{\prime} k$ and $j-t k$ be x and y, respectively. Because $s+1$ divides k, and $s+1$ is prime, we have $(s+1, k-1)=1$. As $(j-t k)-\left(j-t^{\prime} k\right)=\left(t^{\prime}-t\right) k$ and any consecutive k vertices are divided into $k-1$ blocks, so $y \equiv x+\left(t^{\prime}-t\right)(k-1) \quad(\bmod s+1)$. Hence, we conclude that $x \neq y$, since $1 \leq t^{\prime}-t<s+1$ and $(s+1, k-1)=1$.

Next we prove that among any $m-k+1$ consecutive vertices, there are at most $\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 . Given a set Y of $m-k+1$ consecutive non-negative integers, we may assume that the first two vertices of Y have pre-color 0 . Among the first $u(s+1) k$ vertices of Y, exactly $u k$ of them have pre-color 0 , because any consecutive $(s+1) k$ vertices are evenly pre-colored, i.e., there are exactly k vertices of each pre-color.

The assumption that $m+s k+1$ is not a multiple of $s+1$ implies that $m-k+1$ is not a multiple of $s+1$. Because k is a multiple of $s+1$ while $m-k+1$ is not, $p(s+1)+q \geq 1$. If $p(s+1)+q \geq 2$, then among the remaining $v k+p(s+1)+q$ vertices of Y, there are $v+1$ blocks of size 2 . If we remove one vertex from each of these blocks of size 2 , then the remaining $v k+p(s+1)+q-v-1$ vertices of Y are almost evenly pre-colored, that is, the numbers of vertices with same pre-colors differ by at most one. Hence at most $\lceil(v k+p(s+1)+q-v-1) /(s+1)\rceil$ of them have pre-color 0 . On the other hand, among the removed vertices, exactly one vertex has precolor 0 . Therefore, the total number of vertices of pre-color 0 is at most $u k+1+\lceil(v k+p(s+1)+q-v-1) /(s+1)\rceil=\lceil(m-k+1) /(s+1)\rceil$. Note that the last equality is due to the assumption that $q \leq v+1$.

Finally, we assume $p(s+1)+q=1$. Then it is straightforward to verify that either $v=0$, or the pre-color of the last vertex is not 0 . Consider the remaining $v k+p(s+1)+q=v k+1$ vertices of Y. If $v=0$, then there is one vertex of pre-color 0 . If the pre-color of the last vertex is not 0 , then among the remaining $v k+1$ vertices of Y, there are v blocks of size 2 . If we remove one vertex from each of these blocks of size 2 , then the remaining $v k-v$ vertices of Y are almost evenly pre-colored, so at most $\lceil(v k-v) /(s+1)\rceil$ of them have pre-color 0 . On the other hand, among the vertices taken away, only one has pre-color 0 . Hence, there are at most $1+\lceil(v k-v) /(s+1)\rceil=\lceil(v k+1) /(s+1)\rceil$ (because $v \leq s)$ vertices of pre-color 0 in the remaining $v k+1$ vertices of Y. Therefore, we conclude that Y has at most
$u k+\lceil(v k+1) /(s+1)\rceil=\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 . This completes the proof.
Q.E.D.

Corollary 18 Suppose $m \geq(s+1) k$, k is a multiple of the prime $s+1$, but $m+s k+1$ is not. Let u, v, p, q be the same as defined in Theorem 17. If $v \geq s-1$, or $q \leq 1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$.

Note that when $s=1$, then $v \geq s-1$ is always true, hence we have the following corollary which was proved in [2]:

Corollary 19 Suppose $s=1, m \geq 2 k, k=2^{a} k^{\prime}$ and $m+k+1=2^{b} m^{\prime}$, where k^{\prime} and m^{\prime} are odd. Then

$$
\chi\left(Z, D_{m, k, 1}\right)= \begin{cases}\lceil(m+k+1) / 2\rceil, & \text { if } b=0 \text { or } a<b ; \\ ((m+k+1) / 2)+1, & \text { if } 0<b \leq a .\end{cases}
$$

Proof. The case as $b=0$ follows from Corollary 18; and the case as $b>0$ follows from Theorem 14.
Q.E.D.

Recall that $k=(s+1)^{a} k^{\prime}$ where $a \geq 1$ and k^{\prime} is not divisible by $s+1$, and $m-k+1$ is not divisible by $s+1$. In order to introduce the next result, we need the following definitions and notations. For any factor x of k^{\prime}, define:

$$
\begin{array}{ll}
q(x) & :=\left\lceil(m-k+1) /\left((s+1)^{a} x\right)\right\rceil \bmod (s+1) \\
m(t, x) & :=\max \{t(q(x)-1) \bmod (s+1), t q(x) \bmod (s+1)\}, 1 \leq t \leq s ; \\
f(x) & :=\min \{m(t, x): 1 \leq t \leq s\}
\end{array}
$$

Finally, define $f:=\min \left\{f(x): x\right.$ is a factor of $\left.k^{\prime}\right\}$.
Note that for given m, k and s, the integer f in the above is uniquely determined. Similarly as in Theorem 17, we let $q=(m-k+1) \bmod (s+1)$.

Theorem 20 Given m, k and s where $m \geq(s+1) k$ and $s+1$ is a prime, let f, q be defined as above. If $f+q \leq s+1$, then $\chi\left(Z, D_{m, k, s}\right)=\left\lceil\chi_{f}\left(Z, D_{m, k, s}\right)\right\rceil=\lceil(m+s k+$ 1) $/(s+1)\rceil$.

Proof. Suppose $f=f(x)=m(t, x)$ for some factor x of k^{\prime} and some $1 \leq t \leq s$. Express any integer $j \in Z^{*}$ in the following form:

$$
j=u(s+1)^{a} x+v(s+1)+w,
$$

where $u \geq 0,0 \leq v<(s+1)^{a-1} x$ and $0 \leq w \leq s$.
It is easy to see that for each j, the integers u, v, w in the form above are uniquely determined by j. Define a pre-coloring c using the $s+1$ pre-colors $\{0,1, \cdots, s\}$ by $c(j)=(u t+w) \bmod (s+1)$. In order to prove $G\left(Z, D_{m, k, s}\right)$ is $\lceil(m+s k+1) /(s+1)\rceil$ colorable, it suffices to show that c satisfies (1) and (2) of Corollary 7, with $n=$ $\lceil(m+s k+1) /(s+1)\rceil$.

First, let j be any non-negative integer, we shall show that $c(j), c(j-k), c(j-$ $2 k), \cdots, c(j-s k)$ are all distinct. Let $0 \leq p^{\prime}<p \leq s$. If $j-p k=u(s+1)^{a} x+v(s+$ 1) $+w$, then

$$
\begin{aligned}
j-p^{\prime} k & =u(s+1)^{a} x+v(s+1)+w+\left(p-p^{\prime}\right) k \\
& =u(s+1)^{a} x+v(s+1)+w+\left(p-p^{\prime}\right)(s+1)^{a} k^{\prime} \\
& =u^{\prime}(s+1)^{a} x+v(s+1)+w .
\end{aligned}
$$

Because $\left(s+1, k^{\prime}\right)=\left(p-p^{\prime}, s+1\right)=1$, one has $\left(u^{\prime}-u, s+1\right)=1$. Assume $c(j-p k)=c\left(j-p^{\prime} k\right)$, then $u t+w \equiv u^{\prime} t+w(\bmod s+1)$. Hence $t\left(u^{\prime}-u\right) \equiv 0$ $(\bmod s+1)$, which is impossible, since $s+1$ is prime and $(t, s+1)=\left(u^{\prime}-u, s+1\right)=1$. This proves that c satisfies (1) of Corollary 7.

Next, we prove that among any $m-k+1$ consecutive integers, there are at most $\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 . Divide the vertex set Z^{*} evenly into segments of length $s+1$ by $A_{0}=\{0,1,2, \cdots, s\}, A_{1}=\{s+1, s+2, \cdots, 2 s+1\}, \cdots, A_{i}=$ $\{i(s+1), i(s+1)+1, \cdots,(i+1)(s+1)-1\}, \cdots$. Then each of the segments A_{i} contains exactly one vertex of each pre-color. Indeed, the pre-colors of the segment A_{i} are $\{j, j+1, \cdots, s, 0,1, \cdots, j-1\}$, where $j=u t \bmod (s+1)$, and u is the unique integer such that $i=u(s+1)^{a-1} x+v, 0 \leq v<(s+1)^{a-1} x$.

Let Y be a set of $m-k+1$ consecutive integers, $Y=\{y, y+1, \cdots, y+m-k\}$.

Suppose $y \in A_{i}$ and $y+m-k \in A_{i^{\prime}}$. If $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right| \geq s+1$, then Y has at most $\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 (cf. proof of Theorem 16).

Now we assume that $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right|<s+1$, then $\left|Y \cap A_{i}\right|+\left|Y \cap A_{i^{\prime}}\right|=q$. Suppose $i=u(s+1)^{a-1} x+v$ and $i^{\prime}=u^{\prime}(s+1)^{a-1} x+v^{\prime}$, where $0 \leq v, v^{\prime}<(s+1)^{a-1} x$. Then by the definition of $q(x)$, either $u^{\prime}-u=q(x)$ or $u^{\prime}-u=q(x)-1$. Suppose $\alpha=q(x) t \bmod (s+1)$ and $\beta=(q(x)-1) t \bmod (s+1)$. Then by the choice of x and t, one has $\alpha, \beta \leq f$.

Suppose the pre-colors of A_{i} are $\{j, j+1, \cdots, s, 0,1, \cdots, j-1\}$. Then the precolors of $A_{i^{\prime}}$ are either $\{j+\alpha, j+\alpha+1, \cdots, s, 0,1, \cdots, j+\alpha-1\}$, if $u^{\prime}-u=q(x)$; or $\{j+\beta, j+\beta+1, \cdots, s, 0,1, \cdots, j+\beta-1\}$, if $u^{\prime}-u=q(x)-1$.

Any other segment different from A_{i} and $A_{i^{\prime}}$ is either disjoint from Y or contained in Y. As each segment contains exactly one vertex of each color, to prove that Y has at most $\lceil(m-k+1) /(s+1)\rceil$ vertices with pre-color 0 , it suffices to show that the pre-color 0 is used at most once in the union $\left(Y \cap A_{i}\right) \cup\left(Y \cap A_{i^{\prime}}\right)$. Assume that 0 is used in both $Y \cap A_{i}$ and $Y \cap A_{i^{\prime}}$. Without loss of generality, we may assume that the pre-colors of $A_{i^{\prime}}$ are $\{j+\alpha, j+\alpha+1, \cdots, s, 0,1, \cdots, j+\alpha-1\}$. Then one has $\left|Y \cap A_{i}\right| \geq j$ and $\left|Y \cap A_{i^{\prime}}\right| \geq s+1-(j+\alpha-1)$. It follows that $q=\left|\left(Y \cap A_{i}\right) \cup\left(Y \cap A_{i^{\prime}}\right)\right| \geq s+2-\alpha$, contrary to the assumption that $\alpha+q \leq f+q \leq s+1$. Therefore c satisfies (2) of Corollary 7, with $n=\lceil(m+s k+1) /(s+1)\rceil$. This completes the proof of Theorem 20.
Q.E.D.

Corollary 21 If $m \geq(s+1) k, s+1$ is prime, and there is a factor x of k^{\prime} such that $q(x) \leq 1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$. In particular, if $\lceil(m-k+1) / k\rceil$ $\bmod (s+1) \leq 1$, then $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$.

Proof. According to definition, if $q(x)=1$, then $m(1, x)=1$; if $q(x)=0$, then $m(t, x)=1$ for some t such that $t s \equiv 1(\bmod s+1)$. (Such a t exists, because
$(s, s+1)=1$.) In any of the two cases, $f=1$, so $f+q \leq s+1$. Therefore, $\chi\left(Z, D_{m, k, s}\right)=\lceil(m+s k+1) /(s+1)\rceil$ by Theorem 20.
Q.E.D.

Applying Theorem 14 and Corollaries 18 and 21, we are able to completely settle the case $s=2$.

Corollary 22 Suppose $s=2$, $m \geq 3 k, k=3^{a} k^{\prime}$ and $m+2 k+1=3^{b} m^{\prime}$, where k^{\prime} and m^{\prime} are not multiples of 3 . Then

$$
\chi\left(Z, D_{m, k, 2}\right)= \begin{cases}\lceil(m+2 k+1) / 3\rceil, & \text { if } b=0 \text { or } a<b \\ (m+2 k+1) / 3+1, & \text { if } 0<b \leq a\end{cases}
$$

Proof. According to Theorem 14, we only have to show the case as $b=0$. Suppose $m-k+1=u(s+1) k+v k+p(s+1)+q$. If $v \neq 0$, then the conclusion follows from Corollary 18. If $v=0$, then the conclusion follows from Corollary 21. (Because $\lceil(m-k+1) / k\rceil \bmod (s+1) \leq 1$.

Remarks. New results related to this topic have been obtained since the submission of this paper. In [5], it was proved that $\chi\left(G\left(Z, D_{m, k, s}\right)\right) \leq\lceil(m+s k+1) /(s+1)\rceil+1$ for all $m \geq(s+1) k$. Then in [11], the chromatic numbers of all the graphs $G\left(Z, D_{m, k, s}\right)$ are completely determined. The circular chromatic number of the class of distance graphs $G\left(Z, D_{m, k, s}\right)$ was studied in $[1,11,19]$, and the value of $\chi_{c}\left(Z, D_{m, k, s}\right)$ has been completely determined in [19]. (The circular chromatic number $\chi_{c}(G)$ of a graph G is a refinement of $\chi(G)$, and $\chi(G)=\left\lceil\chi_{c}(G)\right\rceil$ for any graph G. For a survey of research concerning circular chromatic number of graphs, see [20].)

Acknowledgments. The authors are grateful to the referees for many helpful suggestions.

References

[1] G. J. Chang, L. Huang and X. Zhu, The circular chromatic numbers and the fractional chromatic numbers of distance graphs, Europ. J. of Comb., to appear.
[2] G. J. Chang, D. D.-F. Liu and X. Zhu, Distance graphs and T-coloring, J. of Comb. Theory, Series B, to appear.
[3] J. J. Chen, G. J. Chang and K. C. Huang, Integral distance graphs, J. Graph Theory 25 (1997) 287-294.
[4] W. Deuber and X. Zhu, The chromatic number of distance graphs, Disc. Math. 165/166 (1997) 195-204.
[5] W. Deuber and X. Zhu, Chromatic numbers of distance graphs with distance sets missing multiples, manuscript, 1997.
[6] R. B. Eggleton, P. Erdős and D. K. Skilton, Coloring the real line, J. Comb. Theory, Series B 39 (1985) 86-100.
[7] R. B. Eggleton, P. Erdős and D. K. Skilton, Research problem 77, Disc. Math. 58 (1986) 323.
[8] R. B. Eggleton, P. Erdős and D. K. Skilton, Update information on research problem 77, Disc. Math. 69 (1988) 105.
[9] R. B. Eggleton, P. Erdős and D. K. Skilton, Coloring prime distance graphs, Graphs and Comb. 32 (1990) 17-32.
[10] J. R. Griggs and D. D.-F. Liu, The channel assignment problem for mutually adjacent sites, J. Comb. Theory, Series A, 68 (1994) 169-183.
[11] L. Huang and G. J. Chang, Circular chromatic number of distance graphs with distance set missing multiples, manuscript, 1998.
[12] A. Kemnitz and H. Kolberg, Coloring of integer distance graphs, Disc. Math., to appear (1998).
[13] D. D.-F. Liu, T-coloring and chromatic number of distance graphs, Ars. Comb., to appear.
[14] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory, WileyInterscience Series in Discrete Mathematics and Optimization, 1997.
[15] M. Voigt, Coloring of distance graphs, Ars Comb., to appear.
[16] M. Voigt and H. Walther, Chromatic number of prime distance graphs, Disc. Appl. Math. 51 (1994) 197-209.
[17] X. Zhu, Distance graphs on the real line, manuscript, 1996.
[18] X. Zhu, Pattern-periodic coloring of distance graphs, J. of Comb. Theory, Series B, 73 (1998), 195-206.
[19] X. Zhu, The circular chromatic number of a class of distance graphs, manuscript, 1998.
[20] X. Zhu, Circular chromatic number: A survey, manuscript, 1997.

[^0]: *Supported in part by the National Science Foundation under grant DMS 9805945.
 ${ }^{\dagger}$ Supported in part by the National Science Council under grant NSC87-2115-M110-004.

