Math 2120

$$
4 / 9 / 20
$$

(1) I'll grade the tests by this weekend and email your test to you.
(2) The math dept might be standardizing our final across the sections.
If so, they are working on a set of study problems.
continued from last time
we want to "project" \vec{b} onto \vec{a}. We had this picture

length of $\overrightarrow{P S}$:
So,

$$
\begin{aligned}
|\overrightarrow{P S}| & =|\vec{b}| \cos (\theta) \stackrel{+}{=}|\vec{b}| \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\
& =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \quad \text { To make } \overrightarrow{P S}, \text { multiply }
\end{aligned}
$$

a unit vector (length 1) in the direction of \vec{a} by $|\overrightarrow{p s}|$. So, prof $\vec{a}_{\vec{a}}(\vec{b})=\overrightarrow{P S}=\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \cdot \frac{\vec{a}}{|\vec{a}|}$.

$$
\begin{align*}
\operatorname{proj}_{\vec{a}}(\vec{b}) & =\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right) \cdot \frac{\vec{a}}{|\vec{a}|} \\
& =\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}\right) \vec{a}
\end{align*}
$$

Ex: Project $\vec{b}=\langle 0,5,5\rangle$
onto $\vec{a}=\langle 0,3,0\rangle$.

Class question

$$
11.4-\text { Cross products }
$$

Def: A determinant of order 2 is

$$
\left|\begin{array}{cc}
a & b \\
c & d
\end{array}\right|=\begin{array}{cc}
a d-b c \\
4 & 4 \\
\mid a b
\end{array}
$$

Ex:

$$
\begin{aligned}
\left|\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right| & =2 \cdot 3-1 \cdot 5 \\
& =1
\end{aligned}
$$

Def: The cross product of

$$
\begin{aligned}
& \text { Def: The cross product } \\
& \vec{v}=\langle a, b, c\rangle \text { and } \vec{\omega}=\langle d, e, f\rangle \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\vec{v} \times \vec{\omega}=\underbrace{}_{3 \times 3} \begin{array}{lll}
\vec{i} & \vec{j} & \vec{k} \\
a & b & c \\
d & e & f
\end{array} \right\rvert\, \quad\left(\begin{array}{l}
\left(\begin{array}{l}
+-+ \\
-+- \\
+-+
\end{array}\right)
\end{array}\right. \\
& =\vec{i} \underbrace{\left|\begin{array}{ll}
b & c \\
e & f
\end{array}\right|}-\vec{j}\left|\begin{array}{ll}
a & c \\
d & f
\end{array}\right|+\vec{k}\left|\begin{array}{ll}
a & b \\
d & e
\end{array}\right|
\end{aligned}
$$

