$$
\frac{\text { Math } 2120}{4 / 7 / 20}
$$

Week 11

Test 2
(1) limits of sequences
(3) tests: divergence test integral test
comparison/limit comparison test alternating series test ratio test
p-series
11.3 - The dot product
(20) Given $\vec{v}=\left\langle x_{1}, y_{1}\right\rangle$ and $\vec{\omega}=\left\langle x_{2}, y_{2}\right\rangle$ the dot product of \vec{v} and $\vec{\omega}$ is

$$
\vec{v} \cdot \vec{w}=x_{1} x_{2}+y_{1} y_{2}
$$

(3D) Given $\vec{v}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\vec{w}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ the dot product of \vec{v} and \vec{w} is

$$
\vec{v} \cdot \vec{w}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

$$
\vec{v} \cdot \vec{w}=2 \cdot 0+(-1) \cdot(3)+2 \cdot 2=1
$$

Theorem: If θ is the angle between \vec{V} and \vec{w}, then

$$
\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos (\theta)
$$

where θ is the angle between the representations $\lambda \vec{a}$ and \vec{b} that start at the Ex: Find the angle between orig in, where $\vec{v}=\langle 0,3,2\rangle$ and $\vec{\omega}=\langle 2,-1,2\rangle \quad 0 \leqslant \theta \leqslant \pi$. $\vec{V} \cdot \vec{w}=1$ (from above), $|\vec{v}|=\sqrt{0^{2}+3^{2}+2^{2}}=\sqrt{13}$

$$
\begin{aligned}
& V \cdot w=\sqrt{2^{2}+(-1)^{2}+2^{2}}=\sqrt{9}=3 \\
& |\vec{w}|=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{1}{3 \sqrt{13}} \approx \begin{array}{r}
0.092450032704205 \ldots \\
\cos (\theta)=\cos ^{-1}(0.0924500327 \ldots) \\
\approx 84.6954 \ldots \text { degrees }
\end{array}
\end{aligned}
$$

How could

$$
\vec{V} \cdot \vec{\omega}=|\vec{v}||\vec{\omega}| \cos (\theta)=0 ?
$$

Either $\vec{V}=\overrightarrow{0}$ or $\vec{\omega}=\overrightarrow{0}$ or $\underbrace{\cos (\theta)=0 .}_{\theta=\frac{\pi}{2}\left(90^{\circ}\right)}$
Def: Two nonzero vectors \vec{v} and $\vec{\omega}$ $\vec{v} \neq \overrightarrow{0}$ and $\vec{\omega} \neq \overrightarrow{0}$
are called perpendicular or orthogonal if the angle between them is $\theta=\frac{\pi}{2}$ (ie 90°)

Theorem: Two nonzero vectors \vec{v} and \vec{w} are perpendicular if and only if $\vec{v} \cdot \vec{w}=0$

Ex:

$$
\vec{v} \cdot \vec{w}=(1)(2)+(-2)(1)+(0)(0)=0
$$

So, \vec{V} and $\vec{\omega}$ are perpendicular.
That is $\theta=\frac{\pi}{2}\left(90^{\circ}\right)$.

Projections

Let $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ be representations of two vectors \vec{a} and \vec{b} respectively, ie the vectors have the same initial point
If S is the foot of the projection from R to the line containing $\overrightarrow{P Q}$, then the vector with representation $\overrightarrow{P S}$ is called the vector projection of \vec{b} onto \vec{a} and is denoted by $\operatorname{proj}_{\vec{a}}(\vec{b})$

