Math 2120 4/7/20 Week 11

Ex:

$$y$$

 $\vec{v} = 2 \cdot 0 + (-1) \cdot (3) + 2 \cdot 2 = 1$
Theorem: If θ is the angle between
 $\vec{v} = \vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos(\theta)$
 $\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos(\theta)$
where θ is the angle between the representation θ_i and
 $\vec{w} = |\vec{v}| |\vec{w}| \cos(\theta)$
 $\vec{v} \cdot \vec{w} = |\vec{v}| \vec{v} \cdot \vec{v}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{2} = \sqrt{2}$
 $\vec{v} \cdot \vec{w} = |(from above), |\vec{v}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{2} = 3$
 $\cos(\theta) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{1}{3\sqrt{13}} = \frac{0.092450032704205...}{6\%\cos^2(0.0924500327...)}$
 $\approx 84,6954...$ degrees

How could

$$\vec{V} \cdot \vec{W} = |\vec{V}| |\vec{W}| \cos(\theta) = 0$$
?
Either $\vec{V} = \vec{0}$ or $\vec{W} = \vec{0}$ or $\cos(\theta) = 0$.
 $\theta = \frac{\pi}{2} (90^{\circ})$

/

Def: Two nonzero vectors
$$\vec{v}$$
 and \vec{w}
 $\vec{v} \neq \vec{o}$ and $\vec{w} \neq \vec{o}$
are called perpendicular or
or thogonal if the angle between
them is $\Theta = \vec{\Sigma}$ (ie 90°)
Theorem: Two nonzero vectors \vec{v}
and \vec{w} are perpendicular if
and only if $\vec{v} \cdot \vec{w} = O$

 $\vec{V} \cdot \vec{W} = (1)(2) + (-2)(1) + (0)(0) = 0$ So, V and W are perpendicular. That is $\theta = \frac{\pi}{2} (90^{\circ})$.

(pg S)Projections Let PQ and $P \xrightarrow{PS} S \xrightarrow{Z} Q$ PR be representations of two vectors a and b respectively, ic the vectors have the same initial points If S is the foot of the projection from R to the line containing PQ, then the vector with representation PS is called the vector projection of Bonto a and is denoted by proja(b) Proja(b) Proja(c)