$$
\begin{array}{|c|}
\hline \text { Math 2120 } \\
\hline 4 / 23 / 20 \\
\hline
\end{array}
$$

11.5 continued...

Last tine!
The line through the point

$$
\begin{aligned}
& x=x_{0}+t a \\
& y=y_{0}+t b \\
& z=z_{0}+t c
\end{aligned}
$$

t is any real number

Ex: Find an equation for the line L through $P_{0}(0,0,2)$ in the direction of $\vec{V}=\langle 0,3,0\rangle$.

$$
\begin{aligned}
& x=0+0 t=0 \\
& y=0+3 t=3 t \\
& z=2+0 t=2
\end{aligned}
$$

t	(x, y, z)
0	$(0,0,2)$
1	$(0,3,2)$
2	$(0,6,2)$
3	$(0,9,2)$
-1	$(0,-3,2)$
-2	$(0,-6,2)$
$2 / 3$	$(0,2,2)$
$1 / 3$	$(0,1,2)$

Ex: Find an equation for the PG 3 line through the points $P_{0}(2,0,1)$

and $P_{1}(0,2,3)$.
We need a vector in the direction of the line.
How a bout

$$
\overrightarrow{P_{0} P_{1}} ?_{0}
$$

$$
\overrightarrow{P_{0} P_{1}}=\langle 0-2,2-0,3-1\rangle=\langle-2,2,2\rangle
$$

Let's use $P_{0}(2,0,1)$ as the point on the line,

$$
\begin{array}{ll}
x=2-2 t=2-2 t & t \text { any } \\
y=0+2 t=2 t & \text { real } \\
z=1+2 t=1+2 t & \text { number }
\end{array}
$$

11.6 - Calculus of vector-valued PG 4
functions
Let C be the curve traced out
by $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$
where f, g, h are differentiable functions on (a, b). this is where Then \vec{r} has a It could be $(-\infty, \infty)$ derivative (or is differentiable) on (a, b) and

$$
\begin{aligned}
& \text { on }(a, b) \\
& \vec{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle \text {. }
\end{aligned}
$$

If $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$, then $\vec{r}^{\prime}(x)$ is called the tangent vector at the point corresponding to t.

