$$
\frac{\text { math } 2120}{4 / 22 / 20}
$$

$\frac{\text { From last time }}{\theta=\beta \uparrow}$

make sure:

$$
0<\beta-\alpha \leq 2 \pi
$$

$\beta>\alpha \quad \beta \& \alpha$ anent more than 2π apart

Ex: Find the area of one petal in (?)

$$
\begin{aligned}
& =\int_{5 \pi / 4}^{7 \pi / 4} \frac{1}{2} \cos ^{2}(2 \theta) d \theta \\
& =\int_{5 \pi / 4}^{7 \pi / 4} \frac{1}{2}\left[\frac{1}{2}+\frac{1}{2} \cos (4 \theta)\right] d \theta \\
& \cos ^{2}(u)=\frac{1}{2}+\frac{1}{2} \cos (2 u) \\
& =\int_{5 / 4}^{7 \pi / 4}[\frac{1}{4}+\frac{1}{4} \underbrace{\cos (4 \theta)}] d \theta \\
& =\left[\frac{1}{4} \theta+\frac{1}{4}\left[\frac{1}{4} \sin (4 \theta)\right] \operatorname{s\pi /4}\right. \\
& =\frac{1}{4}\left(\frac{7 \pi}{4}\right)+\frac{1}{16} \sin (4.7 \pi / 4) \sin ^{7}(7 \pi)=0 \\
& -\left[\frac{1}{4}\left(\frac{5 \pi}{4}\right)+\frac{1}{16}\left(\sin \left(4 \cdot \frac{5 \pi}{4}\right)\right]\right. \\
& =\frac{1}{4}\left(\frac{7 \pi}{4}\right)-\frac{1}{4}\left(\frac{5 \pi}{4}\right)=\frac{1}{4}\left[\frac{2 \pi}{4}\right]=\frac{\pi}{8} \approx 0.3926 .
\end{aligned}
$$

$1.5-$ Lines and Curves in space
A vector-valued function in $3 d$ is a function of the form

$$
\vec{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

where $t, x(t), y(t), z(t)$ are real numbers.
Idea is: As you plug in various t you get vectors and their end-points trace out a curve in Sd.

Equation of a line in $3 d$

Let L be a line in $3 d$. Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the line, Let $\vec{V}=\langle a, b, c\rangle$ be a vector in the direction of L, ie let \vec{v} be parallel to L. Let $P(x, y, z)$ be another point on L. Pick t such that $t \vec{V}=\overrightarrow{P_{0} P}$. Then $\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \vec{V}$.

$$
\begin{aligned}
& =\left\langle x_{0}, y_{0}, z_{0}\right)+t\langle a, b, c\rangle \\
& =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+\langle t a, t b, t c\rangle \\
& =\langle\underbrace{x_{0}+t a}, \underbrace{y_{0}+t b}, \underbrace{\left.z_{0}+t c\right\rangle}
\end{aligned}
$$

Eqn of a line in $3 d$
An equation of the line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of the vector $\vec{V}=\langle a, b, c\rangle$ is given by

$$
\begin{aligned}
& \text { given by } \\
& \vec{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \vec{v}
\end{aligned}
$$

where t is any real number
(0)

$$
\begin{aligned}
& x=x_{0}+t a \\
& y=y_{0}+t b \\
& z=z_{0}+t c
\end{aligned}
$$

where t is any real number
Workswe

Chapter 9 stuff
9,2.- Find the interval of convergence of $\sum a_{n}(x-a)^{n}$ using the ratio test and testing endpoints

- Find ing power series via integration and differentiation
9,3-. Finding Taylor/Maclauson series either by 9.2 methods or explicitly calculating $f_{\infty}^{(k)}(a)$ and using the formula $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
9.4 - Using the power series to solve limit problems
- differentiate power series ($\left.\begin{array}{l}\text { \#25- } \\ 32\end{array}\right)$
- Given a pow series turn it into a function (Hu\#55,57,59)
(57) Identify

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{4^{k}} \\
& \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{4^{k}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{k}}{4^{k}} \\
& =\sum_{k=0}^{\infty}\left(\frac{-x^{2}}{4}\right)^{k}=\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}=\left(\frac{1}{1+\frac{x^{2}}{4}}-2 \times x<2\right.
\end{aligned}
$$

if $\left|\frac{-x^{2}}{4}\right|<1$

$$
\begin{aligned}
& \left|x^{2}\right|<4 \\
& -\begin{array}{l}
x^{2}<4 \\
-2<x<2
\end{array}
\end{aligned}
$$

9.3
(17) Find the Maclaurin sexier for $f(x)=3^{x}$ and its radius of convergence.

Note: We don't have a function to integrate or differentiate like in the example $\ln (1+4 x)=\frac{1}{4} \int \frac{1}{1+4 x} d x+C$

$$
\begin{aligned}
& =4) 1+4 x \\
& =\frac{1}{4} \int\left(1-4 x+(-4 x)^{2}+\cdot \cdot\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x} 3^{x}=\left(3^{x}\right) \ln (3) \\
& \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}(x-0)^{k}
\end{aligned}
$$

$$
\begin{align*}
& f^{(0)}(x)=3^{x} \\
& f^{(1)}(x)=\ln (3) \cdot 3^{x}\left(\left.\begin{array}{l}
\frac{d}{d x} a^{x}=\ln (a) \cdot a^{x} \\
\frac{d}{x} e^{x}=\ln (e) \cdot e^{x} \\
=1 \cdot e^{x}=e^{x}
\end{array} \right\rvert\,\right. \tag{array}\\
& f^{(2)}(x)=\ln (3) \cdot\left[\ln (3) \cdot 3^{x}\right]=[\ln (3)]^{2} \cdot 3^{x} \\
& f^{(3)}(x)=[\ln (3)]^{2} \cdot \ln (3) \cdot 3^{x}=[\ln (3))^{3} \cdot 3^{x} \\
& \vdots \\
& f^{(k)}(x)=[\ln (3)]^{k} \cdot 3^{x} \\
& \left.f^{(k)}(0)=[\ln (3)]^{k} \cdot 3^{0}=\ln (3)\right]^{k}
\end{align*}
$$

Maclaurin series:

Where does this converge?

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{[\ln (3)]^{k}}{k!} x^{k} \\
& L= \lim _{k \rightarrow \infty}\left|\frac{\frac{[\ln (3)]^{k+1} x^{k+1}}{(k+1)!}}{\frac{(\ln (3)]^{k} x^{k}}{k!}}\right| \\
&= \lim _{k \rightarrow \infty}\left|\frac{\ln (5)^{k} \cdot \ln (3) x^{k} x}{(k+1) \cdot k!} \cdot \frac{k!}{\left(\ln (3)^{k} \cdot x^{k}\right.}\right| \\
&= \lim _{k \rightarrow \infty}\left|\frac{\ln (3)}{k+1}\right||x| \\
&=|x| \lim _{k \rightarrow \infty}\left|\frac{\ln (3)}{k+1}\right|=|x| \cdot 0=0 \\
& \text { Since } 0 \leq L<1, \text { the series converges } \\
& \text { for all } x .
\end{aligned}
$$

Ex: Find a power series for

$$
\left.\left.\begin{array}{l}
f(x)=\frac{x}{\left(1+x^{2}\right)^{2}} \\
\frac{d}{d x} \underbrace{\frac{1}{1+x^{2}}}_{\left(1+x^{2}\right)^{-1}}=-\left(1+x^{2}\right)^{-2} \cdot 2 x \\
S_{0} \frac{x}{\left(1+x^{2}\right)^{2}}=-\frac{1}{2} \frac{d}{d x}\left[\frac{x}{\left(1+x^{2}\right)^{2}}\right] \\
\left.=-\frac{1}{1+x^{2}}\right] \\
\frac{1}{d x}\left[\frac{1}{1-\left(-x^{2}\right)}\right]=-\frac{1}{2} \frac{d}{d x} \sum_{k=0}^{\infty}\left(-x^{2}\right)^{k} \\
k=0
\end{array}\right]=\begin{array}{l}
1-x^{2} \mid<1 \\
\left|x^{2}\right|<1 \\
-1<x<1
\end{array}\right]=>
$$

$$
\begin{aligned}
& =-\frac{1}{2} \frac{d}{d x} \sum_{k=0}^{\infty} \underbrace{(-1)^{k} x^{2 k}}_{\left(-x^{2}\right)^{k}=(-1)^{k}\left(x^{2}\right)^{k}} \\
& \begin{array}{l}
k=\text { doris constant } \\
\text { so change to } k=1
\end{array} \\
& =-\frac{1}{2} \sum_{k=1}^{\infty}(-1)^{k} \cdot 2 k x^{2 k-1}
\end{aligned}
$$

$-1<x<1$
but since differentiated
$S_{e}, \frac{x}{\left(1+x^{2}\right)^{2}}=-\frac{1}{2} \sum_{k=1}^{\infty}(-1)^{k} \cdot 2 k x^{2 k-1}$
for $-1<x<1$. But it might also converge at the endpoints Since we differentiated to find the series.
You can check, it wont converge at $x=1$ or $x=-1$.

