$$
\begin{aligned}
& \text { Math } 2120 \\
& 4 / 21 / 20
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
1

$$
\begin{aligned}
& \text { Test } 3 \\
& \text { Ch.9 } \\
& 11.1-11.4
\end{aligned}
$$

Weds

$$
4 / 29
$$

10.3 - Calculus in Polar

Coordinates

Theorem
Suppose we have a polar equation $r=f(\theta)$. Suppose f is differentiable at θ_{0}. Then the slope of the tangent line at $(r, \theta)=\left(f\left(\theta_{0}\right), \theta_{0}\right)$ is

$$
\frac{f^{\prime}\left(\theta_{0}\right) \sin \left(\theta_{0}\right)+f\left(\theta_{0}\right) \cos \left(\theta_{0}\right)}{f^{\prime}\left(\theta_{0}\right) \cos \left(\theta_{0}\right)-f\left(\theta_{0}\right) \sin \left(\theta_{0}\right)}
$$

provided the denominator is not zero.

Ex: Consider

$$
\begin{aligned}
& \left.\begin{array}{l}
r=q \\
r=f(\theta)
\end{array}\right] \\
& f(\theta)=9 \\
& f^{\prime}(\theta)=0 \\
& \text { Slope of the tangent } \\
& \text { line at } \theta_{0} \text { is } \\
& \begin{array}{l}
\frac{f^{\prime}\left(\theta_{0}\right) \sin \left(\theta_{0}\right)+f\left(\theta_{0}\right) \cos \left(\theta_{0}\right)}{f^{\prime}\left(\theta_{0}\right) \cos \left(\theta_{0}\right)-f\left(\theta_{0}\right) \sin \left(\theta_{0}\right)} \\
=\frac{0 \cdot \sin \left(\theta_{0}\right)+9 \cos \left(\theta_{0}\right)}{0 \cos \left(\theta_{0}\right)-9 \sin \left(\theta_{0}\right)}
\end{array} \\
& (r, \theta)=(9,-\pi / 4) \\
& =-\frac{\cos \left(\theta_{0}\right)}{\sin \left(\theta_{0}\right)}=-\cot \left(\theta_{0}\right) \leftarrow \text { slope of tangent } \\
& \text { line at } \theta=\theta_{0} \\
& \theta_{0}=\frac{\pi}{2} \text { : slope is }-\cot \left(\frac{\pi}{2}\right)=-\frac{\cos \left(\frac{\pi}{2}\right)}{\sin \left(\frac{\pi}{2}\right)}=-\frac{0}{1}=0 \\
& \left.\theta_{0}=-\frac{\pi}{4}: \text { slope is }-\cot \left(-\frac{\pi}{4}\right)=-\frac{\cos (-\pi / 4)}{\sin (-\pi / 4)}=-\frac{\sqrt{2}}{\frac{2}{2}} \frac{\sqrt{2}}{2}\right]=1
\end{aligned}
$$

Ex: Last time we graphed

$$
r=\frac{\cos (2 \theta)}{4}
$$

$$
f(\theta)=\cos (2 \theta)
$$

When $\theta=\frac{\pi}{6}, r=\cos \left(2 \cdot \frac{\pi}{6}\right)$

$$
=\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}
$$

What is the slope of the tangent line at $\theta_{0}=\frac{\pi}{6}$?

$$
\begin{aligned}
& f(\theta)=\cos (2 \theta) \\
& f^{\prime}(\theta)=-2 \sin (2 \theta)
\end{aligned}
$$

slope at θ_{0} is

$$
\begin{aligned}
& \frac{f^{\prime}\left(\theta_{0}\right) \sin \left(\theta_{0}\right)+f\left(\theta_{0}\right) \cos \left(\theta_{0}\right)}{f^{\prime}\left(\theta_{0}\right) \cos \left(\theta_{0}\right)-f\left(\theta_{0}\right) \sin \left(\theta_{0}\right)} \\
& =\frac{-2 \sin \left(2 \theta_{0}\right) \sin \left(\theta_{0}\right)+\cos \left(2 \theta_{0}\right) \cos \left(\theta_{0}\right)}{-2 \sin \left(2 \theta_{0}\right) \cos \left(\theta_{0}\right)-\cos \left(2 \theta_{0}\right) \sin \left(\theta_{0}\right)} \\
& \begin{array}{l}
A+ \\
\theta_{0}=\frac{\pi}{6}
\end{array} \cdot \frac{-2\left[\frac{\sqrt{3}}{2}\right]\left[\frac{1}{2}\right]+\left[\frac{1}{2}\right]\left[\frac{\sqrt{3}}{2}\right)}{-2\left[\frac{\sqrt{3}}{2}\right]\left[\frac{\sqrt{3}}{2}\right]-\left[\frac{1}{2}\right]\left[\frac{1}{2}\right]}=\frac{-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4}}{-\frac{3}{2}-\frac{1}{4}}=\frac{-\frac{\sqrt{3}}{4}}{-\frac{7}{4}}
\end{aligned}
$$

Finding areas
Suppose R is a region, bounded by the polar curve $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$. Suppose $f(\theta)$ is positive and continuous and $0<\beta-\alpha \leq 2 \pi$. Then the area of R is given by

$$
\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

α is alpha, β is beta.

Ex: Find the area of the toe half of a circle of radius 10 .

$$
\begin{aligned}
& r=10=f(\theta) \\
& \alpha=0 \\
& \beta=\pi
\end{aligned}
$$

So the area is

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{1}{2}[10]^{2} d \theta \\
& =\frac{10^{2}}{2} \int_{0}^{\pi} d \theta=\left.\frac{10^{2}}{2} \theta\right|_{0} ^{\pi}=\frac{10^{2}}{2}(\pi-0) \\
& \\
& =\frac{10^{2}}{2} \pi=50 \pi
\end{aligned}
$$

