$$
\frac{\text { Math } 2120}{4 / 15 / 20}
$$

10.1 -continued...

Suppose we have a line through $\left(x_{0}, y_{0}\right)$ with slope $\frac{b}{a}$ (for now assume its not a vertical line, ie $a \neq 0$). Let
 $\vec{v}=\langle a, b\rangle$. Then \vec{v} has slope $\frac{b}{a}$ and is parallel to the line. Any point (x, y) on the line can be described as

$$
\begin{aligned}
& \langle x, y\rangle= \\
& \left\langle x_{0}, y_{0}\right\rangle+t \vec{v} \\
& =\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle \\
& =\left\langle x_{0}+a t, y_{0}+b t\right\rangle
\end{aligned}
$$

for some number t

So, the line with slope $\frac{b}{a}$ through $\left(x_{0}, y_{0}\right)$ is given by the parametric equations

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t
\end{aligned}
$$

If the line is vertical, that means $a=0$ and b can be any thing and the formula is

$$
\begin{aligned}
& x=x_{0} \\
& y=y_{0}+t
\end{aligned}
$$

Ex: Sketch the line given by

$$
x=3 t-5, y=2 t+1
$$

Then eliminate the variable t to find a cartesian ($x y$) equation for the line.

t	x	y
-2	-11	-3
-1	-8	-1
0	-5	1
1	-2	3
2	1	5
3	4	7

Eliminate t :

$$
\begin{aligned}
& x=3 t-5 \\
& y=2 t+1
\end{aligned} \leftarrow t=\frac{1}{2} y-\frac{1}{2}
$$

$$
\begin{aligned}
\rightarrow x=3\left[\frac{1}{2} y-\frac{1}{2}\right]-5 & =\frac{3}{2} y-\frac{3}{2}-5 \\
x & =\frac{3}{2} y-\frac{13}{2} \\
\frac{1}{2} y-\frac{1}{2} \quad 2 x & =3 y-13
\end{aligned}
$$

(OR) $y=\frac{2}{3} x+\frac{13}{3}$

Thy: Let

$$
x=f(t), y=g(t) \quad a \leq t \leq b
$$

be parametric equations of a curve C where f and g are differentiable in the interval $[a, b]$. Then the slope of the tangent line to the curve C at the point corresponding to t is

$$
\frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)}
$$

provided $f^{\prime}(t) \neq 0$.

Note:
If $f^{\prime}(t)=0$ and $g^{\prime}(t) \neq 0$, then you have a vertical
 this tangent line is $\frac{g^{\prime}(t)}{f^{\prime}(t)}$ tangent line

Ex: Consider the parametric equations given by

$$
x=t \quad y=2 \sqrt{t} \quad \text { for } t \geqslant 0
$$

t	x	y
0	0	0
1	1	2
4	4	4

$x=f(t)=t$
$y=g(t)=2 t^{1 / 2}$
$f^{\prime}(t)=1$
$g^{\prime}(t)=2\left(\frac{1}{2} t^{-1 / 2}\right)$
$=\frac{1}{\sqrt{t}}$
$\frac{g^{\prime}(t)}{f^{\prime}(t)}=\left(\frac{\frac{1}{\sqrt{t}}}{1}\right)=\frac{1}{\sqrt{t}}$
At $t=4$, ie $(x, y)=(4,4)$
the slope of the tangent
line is $\frac{g^{\prime}(4)}{f^{\prime}(4)}=\frac{1}{\sqrt{4}}=\frac{1}{2}$.
So the tangent line at $(4,4)$
is $y-4=\frac{1}{2}(x-4)$
OR $y=\frac{1}{2} x+2 \quad t=0$
What's the tangent line at $(0,0)$?
You cant plug $t=0$ into $\frac{1}{\sqrt{x}}$
But $\lim _{t \rightarrow 0^{+}} \frac{1}{\sqrt{t}}=\infty$. Sp the tangent
$\begin{aligned} & \text { line at }(0,0) \text { is vertical. It's } x=0 \\ & \text { or the } y \text {-axis. }\end{aligned}$

Workshop
11.3
(48) Find all unit vectors or thogonal to $\vec{v}=\langle 3,4,0\rangle$.

Let $\vec{\omega}=\langle a, b, c\rangle$. Then $\vec{\omega}$ is orthogonal to \vec{V} if and only if $\vec{\omega} \cdot \vec{v}=0$.
That is, $\langle a, b, c\rangle \cdot\langle 3,4,0\rangle=0$.
That is, $3 a+4 b+0 c=0$
ie. $\quad 3 a+4 b=0$
So, $a=-\frac{4}{3} b$ where b and c can be any real numbers.

So,

$$
\begin{aligned}
\vec{\omega} & =\langle a, b, c\rangle \\
& =\left\langle-\frac{4}{3} b, b, c\right\rangle
\end{aligned}
$$

where b, c can be any real \#S.
Ex: $b=3, c=1$ we get $\vec{\omega}=\langle-4,3,1\rangle$ and

$$
\begin{aligned}
\vec{w} \cdot \vec{v} & =\langle-4,3,1\rangle \cdot\langle 3,4,0\rangle \\
& =(-4) \cdot 3+3 \cdot 4+1 \cdot 0=0
\end{aligned}
$$

The above formula gives all vectors orthogonal to \vec{V}, We just want the unit vectors. So we need to divide $\vec{\omega}$ by its length to scale it to have length 1 (ie make it a vector

$$
\begin{aligned}
& \vec{u}=\frac{1}{|\vec{w}|} \vec{\omega}=\frac{1}{\sqrt{\left(-\frac{4}{3} b\right)^{2}+b^{2}+c^{2}}}\left\langle-\frac{4}{3} b, b, c\right\rangle \\
& =\frac{1}{\sqrt{\frac{25}{9} b^{2}+c^{2}}}\left\langle-\frac{4}{3} b, b, c\right\rangle \quad \text { where } b \neq 0 \\
& \text { and } c \neq 0
\end{aligned}
$$

10,1
(43) Find a parametric formula for the line through the points $P(-1,-3)$ and $Q(6,-16)$,
Method $1 \quad\left(x_{0}, y_{0}\right)=(-1,-3)$

$$
\begin{aligned}
& \frac{\text { Method } 1}{\text { slope }=\frac{-16-(-3)}{6-(-1)}=\frac{-13}{7}=\frac{b}{a}} \\
& x=x_{0}+a t=-1+7 t \\
& y=y_{0}+b t=-3-13 t
\end{aligned}
$$

t can be any real number
method 2 (vector method)

$$
\begin{aligned}
& \text { ector method } \\
& \begin{aligned}
& \overrightarrow{P Q}=\langle 6-(-1),-1 b-(-3)\rangle \\
&=\langle 7,-13\rangle \\
& \begin{aligned}
\langle x, y\rangle & =\left\langle x_{0}, y_{0}\right\rangle+t \overrightarrow{P Q} \\
& =\langle-1,-3\rangle+t\langle 7,-13\rangle \\
& =\langle-1+7 t,-3-13 t\rangle \\
x & =-1+7 t, y=-3-13 t
\end{aligned}
\end{aligned} .
\end{aligned}
$$

9,2) Find interval of convergence. pg)

$$
\begin{aligned}
& \text { (12) } \sum_{k=0}^{\infty} \frac{(x-1)^{k}}{k!} \\
& L=\lim _{k \rightarrow \infty} \frac{\left|\frac{(x-1)^{k+1}}{(k+1)!}\right|}{\left|\frac{(x-1)^{k}}{k!}\right|}=\lim _{k \rightarrow \infty}\left|\frac{k!)^{k}(x-1)}{(x-1)^{k}} \cdot \frac{(x-1)^{k+1)}}{(k+1)!}\right| \\
& =\lim _{k \rightarrow \infty}\left|\frac{x-1}{k+1}\right|=\underbrace{|x-1|}_{\substack{(k+1) \cdot k!\\
\text { constant } \\
\text { resect to } k}} \lim _{k \rightarrow \infty}\left|\frac{1}{k+1}\right| \\
& =|x-1| \cdot 0=0 \quad \text { for all } x .
\end{aligned}
$$

Since $0 \leq L<1$ no matter what x is, the series converges for all x. So the interval ob convergence is $(-\infty, \infty)$ And the radius of convergence is ∞.

