Math 2120

$$
4 / 14 / 20
$$

Let's go to chapter 10 and work on that for a little bit. Then we will come back to the rest of chapter II.

10,1-Panametric Equations (in 20)
Suppose that x and y are both given as functions of a third variable t (called a parameter) by some equations

$$
\begin{aligned}
& \text { some equations } \\
& x=f(t), y=g(t) \Leftarrow\left(\frac{\text { parametric }}{\text { equations }}\right)
\end{aligned}
$$

Each value of t determines a point (x, y), As t varies, the point $(x, y)=(f(t), g(t))$ varies and traces out a curve, which we call a parametric curve.

Ex: Sketch the parametric curve given by

$$
x=t^{2}-2 t, y=t+1
$$

	x	y
	x	y
-2	8	-1
-1	3	0
0	0	1
1	-1	2
2	0	3
3	3	4
4	8	5

You can also "eliminate" t :

$$
\begin{aligned}
& y=t+1 \rightarrow t=y-1 \\
& \rightarrow x=(y-1)^{2}-2(y-1) \stackrel{x=t-2 t}{\leftrightarrows} \\
& \rightarrow x=y^{2}-4 y+3
\end{aligned}
$$

The direction in which the curve is generated as the parameter t increases is called the positive orientation of the curve.
last example

The curve with parametric equations

$$
\begin{aligned}
& c u r v e \text { with }(t), \quad a \leq t \leq b \\
& x=f(t), y=g(t), \quad l
\end{aligned}
$$

has initial point $(x, y)=(f(a), g(a))$
and terminal point

$$
(x, y)=(f(b), g(b))
$$

A parametric set of equations for a circle of radius r centered at (a, b) is:
(counterclockwise direction)

$$
\begin{aligned}
& x=a+r \cos (t) \quad 0 \leqslant t \leqslant 2 \pi \\
& y=b+r \sin (t)
\end{aligned}
$$

Ex: Circle with center $(2,3)$ and radius 1.

$$
\begin{gathered}
x=2+1 \cdot \cos (t) \\
y=3+1 \cdot \sin (t)
\end{gathered} \quad 0 \leq t \leq 2 \pi
$$

Why this formula works

