math 2120
$3-26-20$
Thursday

11.1/11.2 continued...

Notation:

P initial point Q terminal point
scalon (number) multiplication of vectors
Let c be a salon and \vec{v} be a vector.
If $c>0$, then $c \vec{v}$ is the vector pointing in the direction of \vec{v} whose length is c times the length of \vec{V}.
If $c<0$, then $c \vec{v}$ is the vector pointing in the uppusite direction of \vec{J} whose length is $|c|$ times the length of \vec{v}.
If $c=0$, then $c \vec{v}=O \vec{v}=\vec{O}$.

Subtracting vectors: $\vec{u}-\vec{v}$ is defined as $\vec{u}+(-\vec{v})$.

Ex:

Def: Two vectors are parallel
if they are a scala multiple
of each other.

Ex:

\vec{V} and \vec{w} are parallel since

$$
\vec{w}=2 \vec{v}
$$

\vec{v} and \vec{u} are parallel since $\vec{u}=-\vec{v}$.

Ex:
$\vec{u} \downarrow \xrightarrow{\vec{v}}$
not parallel
not multiples
ob each other

In a coordinate system,
We can place a vector so that its inital point is the origin. This is called the standard position of a vector.

Magnitude of vectors
In 2d, if $\vec{V}=\langle a, b\rangle$, then its magnitude, denoted by $|\vec{V}|$ or $\|\vec{v}\|$, is $\quad|\vec{v}|=\sqrt{a^{2}+b^{2}}$
In $3 d$, if $\vec{\omega}=\langle a, b, c\rangle$, then its magnitude, denoted by $|\vec{w}|$ or $\|\vec{w}\|$, is $|\vec{w}|=\sqrt{a^{2}+b^{2}+c^{2}}$

Adding, subtracting, scalar multipicicapos

$$
\text { Ld } \vec{v}=\langle a, b\rangle, \vec{\omega}=\langle e, f\rangle, \alpha \text { is as }
$$

$$
\begin{aligned}
& \vec{v}+\vec{w}=\langle a+e, b+f\rangle \\
& \vec{v}-\vec{w}=\langle a-e, b-f\rangle \\
& \alpha v=\langle\alpha a, \alpha b\rangle
\end{aligned}
$$

(3d) $\vec{v}=\langle a, b, c\rangle, \vec{w}=\langle e, f, g\rangle$ α is a scalar

$$
\begin{aligned}
& \vec{V}+\vec{w}=\langle a+e, b+f, c+g\rangle \\
& \vec{V}-\vec{w}=\langle a-e, b-f, c-g\rangle \\
& \alpha \vec{v}=\langle\alpha a, \alpha b, \alpha c\rangle
\end{aligned}
$$

$\alpha \leftarrow$ alpha greek letter

$$
\begin{aligned}
& \vec{V}=\langle 2,1\rangle \\
& \vec{w}=\langle-1,-3\rangle \\
& \vec{v}+\vec{w}=\langle 2-1,1-3\rangle=\langle 1,-2\rangle \\
& 2 \vec{v}=\langle 2 \cdot 2,2 \cdot 1\rangle=\langle 4,2\rangle \\
& -3 \vec{v}=\langle-3 \cdot 2,-3 \cdot 1\rangle=\langle-6,-3\rangle
\end{aligned}
$$

