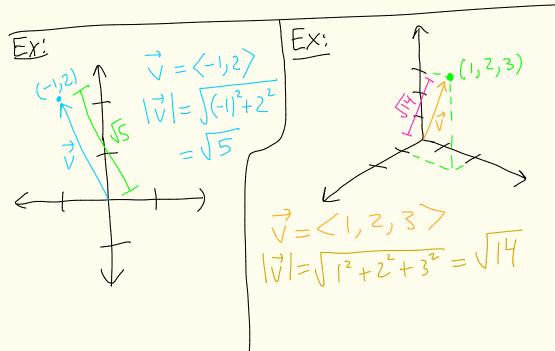
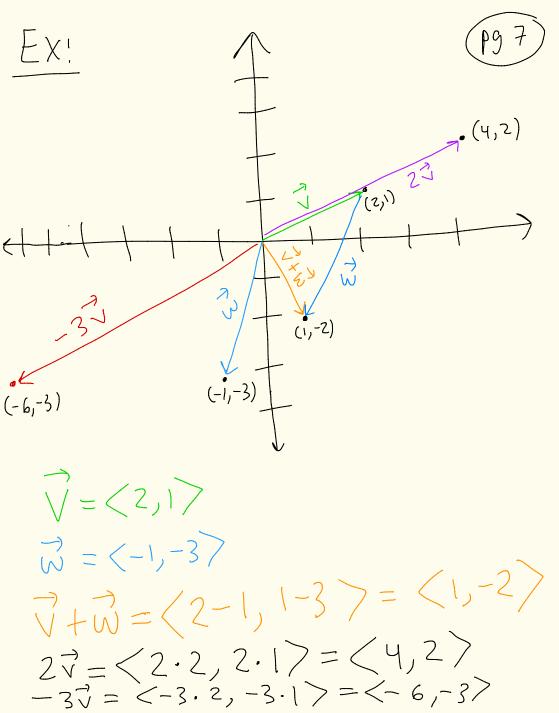
Math 2120 3-26-20 Thursday

(P9.1) 11.1/11.2 continued... RO TQ P initial point Notation: Q terminal point


Scalon (Enumber) multiplication of vectors Let c be a scalor and i be a vector. If C>O, then CV is the vector pointing in the direction of i whose length is a times the length of v. If c<0, then c is the vector pointing in the uppusite direction, of i whose length is [c] times the length of i. If c=0, then cv=0v=0.

$$\frac{(-9.2)}{\sqrt{2}}$$


$$\frac{1}{\sqrt{2}}$$

(pg, 3) Def: Two vectors are parallel it they are a scalar multiple Beach other, V and w are EX' N N parallel since W=ZV J and i are parallel since $\vec{u} = -\vec{V}$. not parallel E_{X} not multiples B each other

In a coordinate system, (pg.4) We can place a vector so that its inital point is the origin. This is called the standard position of a vector. If (a,b) is the , terminal point of V (a,b) in standard position Hen we write $\overline{V} = \langle a, b \rangle$. Two vectors $\vec{w}_1 = \langle a_1, b_1 \rangle$ and $\vec{w}_2 = \langle a_2, b_2 \rangle$ are equal if and only if $a_1 = a_2$ and bi=bz If (a,b,c) is the terminal (a,b,c) point of i then we write ジ= < a, b, c 7 Two vectors $\overline{W}_1 = \langle a_1, b_1, c_1 \rangle$ and $\vec{w}_2 = \langle \alpha_2, b_2 \rangle \langle c_2 \rangle$ are equal if and only if $a_1 = \alpha z_1 b_1 = b_2, \ c_1 = c_2$

Adding, subtracting, scalar multiplic (pg6) 2d $\vec{V} = \langle a, b \rangle, \vec{W} = \langle e, f, d is a salar$ $\vec{v} + \vec{w} = \langle a + e, b + f \rangle$ $\vec{V} - \vec{W} = \langle a - e, b - f \rangle$ $dV = \langle aa, db \rangle$ $3d \quad \vec{v} = \langle q, b, c \rangle, \quad \vec{w} = \langle e, f, g \rangle$ x is a scalar $\vec{v} + \vec{w} = \langle a + e, b + f, c + g \rangle$ $\vec{v} - \vec{\omega} = \langle \alpha - e, b - f, c - g \rangle$ $\vec{x} = \langle x \alpha, x b, x c \rangle$ $\alpha \leftarrow alpha$ greek letter

