$$
\begin{aligned}
& \frac{\text { Math }}{2120-09} \\
& 3 / 16 / 20 \\
& \text { Monday } \\
& \text { class + Workshop }
\end{aligned}
$$

(1) Canvas webpage
(2) Testing

Move test 2 to $4 / 8$
Move test 3 to $4 / 29$
(3) Test 2 will be taken at home
(4) Methods to get the test back to me:
Best: phone scanner - turns test in to pdf.

- tiny scanner $\&$ free
and
and
(5) HW for before spring break.
Scan some two -three pages (from your calc notes or anything) and email it to me as one pdf document.
ashahee@calstatela.edu
(6) These notes will be saved as .pdf and put on the class website.
9.2 continued....

Ex: Find a power series for $\tan ^{-1}(x)$ centered at $a=0$ and find it's radius of convergence.

Recall:

$$
\left.\begin{array}{l}
\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x)+C \\
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{k=0}^{\infty}\left(-x^{2}\right)^{k} \\
\left.\frac{1}{1-r}=\sum_{k=0}^{\infty} r^{k}\right\}|r|<1 \\
=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} \\
=1+r+r^{2}+r^{3}+\ldots
\end{array}\right\}
$$

$$
\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}=1-x^{2}+x^{4}-x^{6}+\cdots
$$

$$
|x|<1
$$

Integrate

$$
\begin{aligned}
& \int \frac{d x}{1+x^{2}}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}+C=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \\
& \tan ^{-1}(x) \\
& \tan ^{-1}(x)=C+\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots
\end{aligned}
$$

To find C, plug in $x=0$.

$$
0=\tan ^{-1}(0)=C+\underbrace{0-\frac{0^{3}}{3}+\frac{0^{5}}{5}}-\cdots
$$

$$
\rightarrow-\frac{\pi}{\tan ^{-1}(x)}
$$

So, $c=0$.

$$
\begin{aligned}
& \text { So, } c=0 . \\
& \left.\left.\tan ^{-1}(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}\right\} \begin{array}{c}
\text { connvages } \\
|x|<1 \\
=x-x^{3} / 3+x^{5} / 5-\cdots
\end{array}\right\}-1<x<1
\end{aligned}
$$

Workshop
8.3
(33) Does this series converge or diverge? If it converses What is its sum.

$$
\left.\begin{array}{rl}
& \sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k} 5^{3-k}=\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k} 5^{3} 5^{-k} \\
= & \sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k} 5^{3}\left(\frac{1}{5}\right)^{k}=\sum_{k=0}^{\infty}\left(\frac{1}{4 \cdot 5}\right)^{k} \cdot 5^{3} \\
= & 5^{3} \sum_{k=0}^{\infty}\left(\frac{1}{20}\right)^{k} \xlongequal{\substack{r=\frac{1}{20}}} 5^{3}\left[\frac{1}{1-\frac{1}{20}}\right] \\
\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r} & -\mid<r<1 \\
1 r \mid<1
\end{array}\right]
$$

