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Abstract

Suppose G is a graph and H is a subgraph of G. Let L be a mapping

that assigns to each vertex v of G a set L(v) of positive integers. We say
(G, H) is backbone L-colourable if there is a proper vertex colouring c of G

such that c(v) ∈ L(v) for all v ∈ V , and |c(u) − c(v)| > 2 for every edge
uv in H . We say (G, H) is backbone k-choosable if (G, H) is backbone L-

colourable for any list assignment L with |L(v)| = k for all v ∈ V (G). The
backbone choice number of (G, H), denoted by chBB(G, H), is the minimum

k such that (G, H) is backbone k-choosable. The concept of backbone choice
number is a generalization of both the choice number, and the L(2, 1)-choice
number. Precisely, if E(H) = ∅ then chBB(G, H) = ch(G), where ch(G) is the

choice number of G; if G = H2 then chBB(G, H) is the same as the L(2, 1)-
choice number of H . In this article, we first show that if |L(v)| = dG(v) +

2dH(v) then (G, H) is L-colourable, unless E(H) = ∅ and each block of G is
a complete graph or an odd cycle. This generalizes a result of Erdős, Rubin

and Taylor on degree-choosable graphs. Secondly, we prove that chBB(G, H) 6

max {bmad(G)c+ 1, bmad(G) + 2mad(H)c}, where mad(G) is the maximum

average degree of a graph G. Finally, we establish various upper bounds on
chBB(G, H) in terms of ch(G). In particular, we prove that for a k-choosable

graph G, chBB(G, H) 6 3k if every component of H is unicyclic; chBB(G, H) 6

2k if H is a matching; and chBB(G, H) 6 2k + 1 if H is a disjoint union of
paths with lengths at most two.

1 Introduction

Backbone colouring of graphs is a model for the channel assignment problem. The

task in the channel assignment problem is to assign channels to a set of transmitters

such that interference is avoided. We divide interferences into two types, strong and
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weak. The channels assigned to two transmitters with strong interference should be

far apart, and the channels assigned to two transmitters with weak interference should

be distinct. We construct a graph G whose vertices represent transmitters, and two

vertices are adjacent if the two corresponding transmitters interfere with each other.

We further mark those edges connecting two vertices representing transmitters with

strong interference, and denote by H the subgraph of G induced by the marked edges.

The subgraph H is called the backbone of G; and (G, H) is called a graph pair.

For a graph pair (G, H), a backbone k-colouring of (G, H) is a mapping c : V (G) →

{1, 2, . . . , k} such that c is a proper colouring of G, i.e., adjacent vertices of G receive

distinct colours, and moreover, |c(u)−c(v)| > 2 for every edge uv in H. The backbone

chromatic number of (G, H), denoted by χBB(G, H), is the minimum k for which there

is a backbone k-colouring of (G, H).

Backbone colouring was first introduced by Broersma et al. [1] as a generalization

of distance-two labeling (also known as L(2, 1)-labeling) which, also motivated by

the channel assignment problem, has been studied extensively in the literature (cf.

[6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 22, 23, 24]). A distance-two labeling of a graph

G is a function f that assigns to each vertex v a non-negative integer f(v) so that

|f(u) − f(v)| > 2 if uv ∈ E(G); and f(u) 6= f(v) if dG(u, v) = 2. By letting G = H2

(that is, V (G) = V (H) and uv ∈ E(G) if 1 6 dH(u, v) 6 2), a backbone colouring of

(G, H) is equivalent to a distance two labeling of H.

Backbone colouring of graphs has attracted considerable attention lately (cf. [1,

2, 3, 4, 5, 19]). It is easy to see that for any graph pair (G, H), we have χBB(G, H) 6

2χ(G)−1, where χ(G) is the chromatic number of G. This upper bound is tight even

if H is a spanning tree of G. It was shown in [2] that for any positive integer n, there

exists an n-chromatic graph with a spanning tree T such that χBB(G, T ) = 2n − 1.

The result is strengthened in [19], where it was shown that the graph G can be chosen

to be triangle-free. In [5], the result was further strengthened: there exist n-chromatic

graphs of arbitrary large girth with a spanning tree T such that χBB(G, T ) = 2n− 1.

A list assignment of a graph G is a mapping L which assigns to each vertex v a

set L(v) of positive integers. We say G is L-colourable if there exists a proper vertex

colouring c of G such that c(v) ∈ L(v) for every v ∈ G. A graph G is k-choosable if

G is L-colourable for every list assignment L with |L(v)| = k for all v ∈ V (G). The
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choice number of G, denoted by ch(G), is the minimum k such that G is k-choosable.

We investigate the list version of backbone colouring of graphs. Let (G, H) be a

graph pair. A backbone L-colouring of (G, H) is a backbone colouring c of (G, H) such

that c(v) ∈ L(v) for every vertex v. We say (G, H) is backbone L-colourable if there

exists a backbone L-colouring of (G, H). Given a mapping φ : V (G) → {1, 2, . . .},

we say (G, H) is backbone φ-choosable if for any list assignment L with |L(v)| = φ(v)

for every vertex v, (G, H) is backbone L-colourable. We say (G, H) is backbone k-

choosable if (G, H) is backbone φ-choosable for the constant function φ ≡ k. The

backbone choice number of (G, H), denoted by chBB(G, H), is the minimum k such that

(G, H) is backbone k-choosable. Note that if E(H) = ∅, then chBB(G, H) = ch(G).

If G = H2, then chBB(G, H) is equivalent to the L(2, 1)-choice number of H.

The aim of this article is to generalize several known results concerning the choice

number of graphs and the L(2, 1)-choice number of graphs to the backbone choice

number, and to investigate relations between the backbone choice number of (G, H)

with other parameters of graphs G and subgraphs H.

Denote by dG(v) the degree of v in G. A graph G is called degree-choosable if G is

L-colourable for every list assignment L with |L(v)| = dG(v). It was proved by Erdős,

Rubin and Taylor [9] that every graph G is degree-choosable, unless each block of G

is either a complete graph or an odd cycle. We say a graph pair (G, H) is backbone

degree-choosable if (G, H) is backbone L-colourable for every list assignment L with

|L(v)| = dG(v)+2dH(v). In Section 2, we generalize the above result of Erdős, Rubin

and Taylor to list backbone colouring of graphs by proving that for any connected

graph G and any spanning subgraph H of G, (G, H) is backbone degree choosable,

unless E(H) = ∅ and G is a graph such that each block is an odd cycle or a complete

graph.

The maximum average degree of a graph G is defined as mad(G) = max 2|E(G′)|
|V (G′)|

,

where the maximum is taken over all subgraphs G′ of G. In Section 3, we show that for

any graph pair (G, H), chBB(G, H) 6 max {bmad(G)c + 1, bmad(G) + 2mad(H)c}.

In Section 4, we establish several upper bounds for chBB(G, H) in terms of the choice

number of G and the structure of H. In particular, assuming G is k-choosable we
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prove the following results:

chBB(G, H) 6







2k if H is a matching;
3k if each component of H is unicyclic;
2k + 1 if H is a disjoint union of paths with length one or two.

2 Degree Choosability

Erdős, Rubin, and Taylor [9] proved the following results.

Theorem 1. [9] Let G be a connected graph. Then G is degree-choosable, unless each

block of G is either an odd cycle or a complete graph.

We shall extend this result to list backbone colouring of graphs. For this purpose,

we need a few more definitions and notations. Let G be a graph with vertex set V .

For a subset V ′ of V , we denote G[V ′] the subgraph of G induced by V ′. Let (G, H)

be a graph pair. Assume V ′ ⊂ V (G) and c is a backbone colouring of (G[V ′], H[V ′]).

Let w ∈ V (G) \ V ′. Assume c′ is a backbone colouring of (G[V ′ ∪ {w}], H[V ′ ∪ {w}])

with c′(v) = c(v) for all v ∈ V ′ and c′(w) = i. Then we say c′ extends c, and that i

can be used on w to extend c. In addition, throughout the article, for a graph G with

E ′ ⊂ E(G) and V ′ ⊂ V (G) we denote G−E ′ the subgraph of G obtained by deleting

the edges in E ′; and G− V ′ the subgraph of G induced by the vertices V (G) \V ′. In

case V ′ = {v}, we write G − v for G − V ′.

Lemma 1. Assume G is a connected graph, H is a subgraph of G, and φ is an integer

mapping on V (G). If φ(v) > dG(v) + 2dH (v) for every v ∈ V (G) and the inequality

is strict for some vertex u, then (G, H) is backbone φ-choosable.

Proof. Order the vertices of G as v1, v2, . . . , vn so that u = vn and every vertex vi with

i < n has a neighbour vj with j > i. Such an ordering exists as G is connected. Let

L be a φ-list assignment of G. We colour the vertices greedily in this order. When we

colour vi for some i < n, the number of colours forbidden for vi, due to its coloured

neighbours, is at most a+3b, where a and b denote the number of coloured neighbours

of vi in G−E(H) and in H, respectively. As vi has at least one uncoloured neighbour,

we have

a + 3b < dG−E(H)(vi) + 3dH (vi) = dG(vi) + 2dH (vi) 6 |L(vi)|.
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Therefore there is a colour in L(vi) that can be used on vi to extend the current partial

colouring. At the last step (when we colour vn), because φ(vn) > dG(vn) + 2dH(vn),

the same argument shows that there is a colour in L(vn) that can be used on vn.

Theorem 2. Let G be a connected graph and H a spanning subgraph of G. Then

(G, H) is backbone degree-choosable, unless E(H) = ∅ and every block of G is either

an odd cycle or a complete graph.

Proof. Let φ(v) = dG(v) + 2dH(v). Assume L assigns to each vertex v a list L(v) of

φ(v) permissible colours. If E(H) = ∅, the result follows from Theorem 1. Suppose

xy ∈ E(H). We order the vertices of G as v1, v2, . . . , vn so that x = vn−1, y = vn, and

every vertex vi with i < n− 1 has a neighbour vj with j > i. Such an ordering exists

since G is connected and H is a spanning subgraph of G. By the same argument as

in the proof of Lemma 1, we can find a backbone L-colouring c of G − {x, y} by the

ordering v1, v2, . . . , vn−2. We now extend c to a backbone L-colouring c′ of (G, H).

Let L′(x) (respectively, L′(y)) be the set of colours in L(x) (respectively, in L(y))

that can be used on x (respectively, on y) to extend c. As x and y are adjacent in H,

we have |L′(x)|, |L′(y)| > 3. Let α = max(L′(x) ∪ L′(y)). Assign α to x if α ∈ L′(x),

otherwise assign α to y; then the other vertex has at least one colour available to

complete c′.

3 Bounds in Terms of Maximum Average Degree

The proof of Lemma 1 indeed shows the following result: If the vertices of G can

be ordered as v1, v2, . . . , vn so that d+
G(vi) + 2d+

H (vi) < k, where d+
G(vi) (or d+

H(vi),

respectively) is the number of neighbours vj of vi in G (in H, respectively) with

j < i, then (G, H) is backbone k-choosable. This argument implies that any graph

pair (G, H) is backbone k-choosable with k = bmad(G) + 2mad(H)c + 1. In the

following result we improve this bound by 1.

Theorem 3. Let G be a graph and H a spanning subgraph of G. Then (G, H) is

k-backbone choosable, where k = max {bmad(G)c + 1, bmad(G) + 2mad(H)c} .

Proof. Assume the theorem is not true. Let (G, H) be a counter example with the

minimum number of vertices. For each v ∈ V (G), define w(v) = max{dG(v) +
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1, dG(v) + 2dH(v)}. It is obvious that the result holds if E(H) = ∅. Thus we assume

that H has at least one edge. Denote k = bmad(G) + 2mad(H)c. Let L be a k-list

assignment such that (G, H) is not backbone L-colourable.

Claim 1. For each v ∈ V (G), w(v) > k. Furthermore, if NH(v) = ∅, then w(v) >

k + 1.

Proof. Suppose to the contrary, w(v) 6 k − 1. As (G, H) is a minimal counter

example, and mad(G−v) 6 mad(G), there is a backbone L-colouring of (G−v, H−v).

Assume NH(v) 6= ∅. Since |L(v)| = k > w(v) + 1, there is at least one colour in L(v)

which extends c to a backbone L-colouring of (G, H), a contradiction.

Assume NH(v) = ∅. Then w(v) = dG(v) + 1. If w(v) 6 k, then |L(v)| = k >

dG(v) + 1. Thus, there is at least one colour in L(v) which extends c to a backbone

L-colouring of (G, H). Hence, w(v) > k + 1.

Let Vk = {v ∈ V (G) | w(v) = k}.

Claim 2. If |NH(v) ∩ Vk| = q > 1, then w(v) > k + q + 1.

Proof. Assume to the contrary that w(v) 6 k + q. Let V ∗ = NH(v) ∩ Vk and V ∗∗ =

V ∗∪{v}. As (G, H) is a minimal counter example, there exists a backbone L-colouring

c of (G − V ∗∗, H − V ∗∗). For each x ∈ V ∗∗, let L′(x) be the set of colours in L(x)

which can be used on x to extend c.

For each vertex u ∈ V ∗∗, the number of colours forbidden for u, due to its coloured

neighbours, is at most

|NG(u) \ V ∗∗| + 2|NH(u) \ V ∗∗| = w(u) − dG[V ∗∗](u) − 2dH [V ∗∗](u), implying

|L′(u)| > k − w(u) + dG[V ∗∗](u) + 2dH [V ∗∗](u).

Therefore, |L′(v)| > k − k − q + q + 2q = 2q; and for u ∈ V ∗ we obtain

|L′(u)| > k − k + dG[V ∗∗](u) + 2dH [V ∗∗](u) = dG[V ∗∗](u) + 2dH [V ∗∗](u). (1)

Let G1, G2, . . . , Gs be the connected components of G[V ∗], and for i = 1, 2, . . . , s,

let Hi = Gi ∩ H. Our strategy is to find a colour that can be used on v to extend c

to a backbone L-colouring c′ for (G−V ∗, H −V ∗), and then extend c′ to a backbone

L′-colouring of (Gi, Hi) for each i.
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Note that if (Gi, Hi) is backbone degree choosable, then any extension c′ of c

to (G − V ∗, H − V ∗) can be extended to a backbone L′-colouring of (Gi, Hi). In

addition, if Gi has a vertex u with |L′(u)| > dG[V ∗∗](u) + 2dH [V ∗∗](u), then by Lemma

1, again any c′ can be extended to a backbone L′-colouring of (Gi, Hi). Hence, we

only need to consider those components Gi such that (Gi, Hi) is not backbone degree

choosable, and |L′(u)| = dG[V ∗∗](u) + 2dH [V ∗∗](u) for all u ∈ V (Gi). Without loss of

generality, assume G1, G2, . . . , Gr are such components. By Theorem 2, E(Hi) = ∅

for i = 1, 2, . . . , r.

For i ∈ {1, 2, . . . , r}, select one vertex ui of Gi. Define the set L′′(v) as follows:

L′′(v) = {j ∈ L′(v) : for each i = 1, 2, . . . r, {j − 1, j, j + 1} 6⊆ L′(ui)}. Then

|L′′(v)| > |L′(v)| −
r

∑

i=1

(|L′(ui)| − 2)

> 2q −
r

∑

i=1

(dG[V ∗](ui) + 3 − 2) (by (1))

= 2q − r −
r

∑

i=1

dG[V ∗](ui)

> 2q − r − (q − r) = q > 0.

Let c′ be an extension of c to a backbone L-colouring of (G−V ∗, H−V ∗) by assigning

a colour for v from L′′(v). For each x ∈ V ∗, let L′′(x) be the set of colours in

L(x) which can be used on x to extend c′. By (1), for each x ∈ V ∗, |L′′(x)| >

dG[V ∗∗](x) + 2dH [V ∗∗](x). Moreover, by the definition of L′′(v), we have |L′′(ui)| >

dG[V ∗∗](ui) + 2dH [V ∗∗](ui) + 1 for each i = 1, 2, . . . r. By Lemma 1, c′ can be extended

to a backbone L-colouring of (G, H), a contradiction.

We use discharging method to redistribute the weight of the vertices to obtain a

new weight function w′(v) as follows: Each vertex v with w(v) = k receives a weight

of 1 from each of its neighbours in H.

Assume w(v) = k. By Claim 1, v has at least one neighbour in H; and by Claim 2,

w(v) does not lose any weight in the discharging procedure. Hence w′(v) > k + 1.

Assume w(v) > k. By Claim 2, w′(v) = w(v) − q > k + 1, where q = |NH(v) ∩ Vk|.

Therefore
∑

w(v) =
∑

w′(v) > (k + 1)|V (G)|. (2)

Let V ′ = {v ∈ V (G)|NH(v) = ∅}. By the definition of maximum average degree,
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and noting mad(H) > 1,

∑

v∈V (G)

w(v) =
∑

v∈V (G)

(dG(v) + max{1, 2dH(v)})

= 2|E(G)| + 4|E(H)| + |V ′|

6 mad(G)|V (G)| + 2mad(H)|V (H) \ V ′| + 2mad(H)|V ′|

= (mad(G) + 2mad(H))|V (G)| (Because |V (G)| = |V (H)|)

< (k + 1)|V (G)|.

This contradicts (2), and completes the proof of Theorem 3.

The bound of Theorem 3 is sharp. Let G be an odd cycle and H a spanning forest

of G with δ(H) > 1. By Theorem 3, chBB(G, H) 6 bmad(G) + 2mad(H)c = 4. To

show chBB(G, H) > 3, we assign each vertex v of G the list L(v) = {1, 2, 3}. Then

any backbone colouring of (G, H) can not use the colour 2 on any vertex v because

otherwise the neighbour(s) of v in H would have no legal colour. On the other hand,

since G is an odd cycle G can not be properly coloured with only two colours. Hence,

chBB(G, H) > 3.

4 Bounds in Terms of the Choosability of G

Assume G is k-choosable. Let H be a subgraph of G, and let L be a list assignment

of G. The proof technique to be used throughout this section is as follows. For each

vertex v ∈ V (G) construct a new list S(v) ⊆ L(v) so that the following two conditions

are satisfied:

Condition (A): |S(v)| = k.

Condition (B): If uv ∈ E(H), then i± 1 /∈ S(u) for any i ∈ S(v).

Once such a new list assignment S is obtained we apply the assumption that G is

k-choosable to get a proper colouring of G from S; and Condition (B) will guarantee

that this colouring is a backbone L-colouring of (G, H).

The colouring number of a graph G, denoted by col(G), is the least integer k such

that there is an ordering v1, v2, . . . , vn of V (G) so that each vertex vi has at most

k − 1 neighbours vj with j < i.

Theorem 4. Let G be a k-choosable graph and H a subgraph of G with at least one

edge. Then (G, H) is backbone k(2col(H) − 1)-choosable.
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Proof. Assume L is a list assignment of G with |L(v)| = k(2col(H) − 1) for all

v ∈ V (G). Let v1, v2, . . . , vn be an ordering of V (G) so that for each i, |NH(vi) ∩

{v1, v2, · · · , vi−1}| 6 col(H)− 1. We follow this ordering in assigning each vertex vi a

new list, S(vi) ⊆ L(vi), satisfying Conditions (A) and (B).

First, select any k-subset S(v1) ⊆ L(v1). At stage i, assume we have obtained

S1, S2, · · · , Si−1 that satisfy Conditions (A) and (B). Let

L′(vi) = L(vi)\{a| for some j < i, vivj ∈ E(H), and a+1 ∈ S(vj) or a−1 ∈ S(vj)}.

Since |L(vi)| = k(2col(H) − 1) and |NH(vi) ∩ {v1, v2, · · · , vi−1}| 6 col(H) − 1, we

conclude that |L′(vi)| > k(2col(H) − 1) − 2k(col(H) − 1) = k. Let S(vi) be any

k-subset of L′(vi).

It follows from the construction that the new list assignment S satisfies Conditions

(A) and (B).

Corollary 5. Let G be a k-choosable graph. For any spanning forest T , (G, T ) is

backbone 3k-choosable.

The bound in Corollary 5 can be improved in many special cases. For a graph G,

denote ∆(G) the maximum degree of a vertex in G.

Theorem 6. Let G be a k-choosable graph. For any subgraph H of G, (G, H) is

backbone (∆(H) + 1)k-choosable.

Proof. Assume L is a list assignment of G with |L(v)| = (∆(H)+ 1)k for each vertex

v.

Initially for each v ∈ V (G), set L′(v) = L(v), nv = 1, and S(v) = ∅. Assume

∪v∈V L′(v) ⊆ {1, 2, . . . , m}. For i = 1, 2, · · · , m, repeat the following two steps: (a)

For each vertex v with nv = 1 and i ∈ L′(v), add i to S(v), delete i from L′(v); and

for each u ∈ NH(v) with i + 1 ∈ L′(u), delete i + 1 from L′(u); (b) after completing

(a), if S(v) becomes a k-set for some v, set nv = 0.

By following this algorithm, before S(v) becomes a k-set, at most kdH(v) colours

which are not added to S(v) are deleted from L′(v). Because |L(v)| = (∆(H) + 1)k,

S(v) will eventually become a k-set. Hence, Condition (A) is satisfied. It also follows

easily from the algorithm that Condition (B) is satisfied.
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Corollary 7. If G is k-choosable, and M is a matching in G, then (G, M) is backbone

2k-choosable.

Corollary 8. If G is k-choosable, and H is a disjoint union of cycles and paths, then

(G, H) is backbone 3k-choosable.

We say a graph is unicyclic if it contains at most one cycle.

Corollary 9. If G is k-choosable, and each component of H is unicyclic, then (G, H)

is backbone 3k-choosable.

Proof. Assume L is a list assignment of G with |L(v)| = 3k for all vertices v. For each

component Hi of H, let Ci be the set of vertices of the cycle in Hi; if Hi is acyclic,

let Ci be a singleton set of an arbitrary vertex of Hi. Use the algorithm presented in

the proof of Theorem 6 to obtain a new list S(v) of k colours for each v ∈ Ci.

For the vertices in H which have not yet been assigned a new list, we proceed as

follows. If u has not been assigned a new list and is adjacent, in H, to a vertex v

which has been assigned a new list, take S(u) to be any k-subset of L(u) \ {j|j + 1 ∈

S(v) or j − 1 ∈ S(v)}. As each component of H contains at most one cycle, each u

has only one such neighbour. In addition, because |L(u)| = 3k, so L(u) \ {j|j + 1 ∈

S(v) or j − 1 ∈ S(v)} has size at least k, hence the k-subset S(u) exists, satisfying

Condition (A).

Finally, let S(v) be any k-subset of L(v) for every remaining vertex v in G. It

is easy to check that the new list assignment S of G satisfies Conditions (A) and

(B).

By considering a special family of subgraphs H for Corollary 8, the bound can be

improved as follows.

Theorem 10. If G is k-choosable, and each component of H is a path of length at

most 2, then (G, H) is backbone (2k + 1)-choosable.

Proof. Assume L is a list assignment of G with |L(v)| = 2k +1 for all vertices v of G.

If dH(v) = 0, let S(v) be any k-subset of L(v). If (x1, x2) is a path of length 1 which

is a component of H, then we choose S(x1) and S(x2) as in the proof of Theorem 6.

It remains to consider those components of H which are paths of length 2. Let

(x1, y, x2) be such a component of H, a path of length 2. A triple (Y, X1, X2) is good

if all the following hold:
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(i) Y ⊆ L(y), |Y | 6 k.

(ii) |X1| = |X2| 6 k, and Xi ⊆ L(xi) \ {j ± 1 : j ∈ Y } for i = 1, 2.

(iii) |L(xi) \ {j ± 1 : j ∈ Y }| > |L(xi)| − |Y | for i = 1, 2.

Equivalently, |L(xi) ∩ {j ± 1 : j ∈ Y }| 6 |Y | for i = 1, 2.

(iv) |L(y) \ {j ± 1 : j ∈ X1 ∪ X2}| > |L(y)| − |X1|.

Equivalently, |L(y) ∩ {j ± 1 : j ∈ X1 ∪ X2}| 6 |X1|.

Note that (∅, ∅, ∅) is a trivial good triple. We choose a good triple (Y, X1, X2)

so that |Y | + |X1| + |X2| is maximized. If |Y | = k, then let S(y) = Y and let

S(xi) be any k-subset of L(xi) \ {i ± 1|i ∈ Y }. We are done, as the new list satisfies

Conditions (A) and (B). If |X1| = k, then let S(xi) = Xi and let S(y) be any k-subset

of L(y) \ {i ± 1|i ∈ X1 ∪ X2}, we are done again.

Thus we assume that |Y | < k and |Xi| < k. Let

L′(xi) = L(xi) \ (Xi ∪ {i ± 1 | i ∈ Y });

L′(y) = L(y) \ (Y ∪ {i± 1 | i ∈ X1 ∪ X2}).

By the maximality of (Y, X1, X2), we have

(1) If c ∈ L′(y), then there is a j ∈ {1, 2} such that {c±1} ⊆ L′(xj). For otherwise,

(Y ∪ {c}, X1, X2) is a good triple.

(2) If c ∈ L′(x1)∩L′(x2), then {c±1} ⊆ L′(y). For otherwise, (Y, X1∪{c}, X2∪{c})

is a good triple.

Let c = minL′(y). By (1) and (2), c− 1 ∈ L′(x1)∪L′(x2) and c− 1 /∈ L′(x1)∩L′(x2).

Without loss of generality, we assume c − 1 ∈ L′(x1) \ L′(x2). Let l be the smallest

nonnegative integer such that c + 2l + 1 /∈ L′(x1) ∩ L′(x2).

For two integers a and b of the same parity, we denote [a, b]2 the set of integers

{a, a + 2, a + 4, · · · , b}.

Claim. [c, c + 2l]2 ⊆ L′(y) and |Y ∪ [c, c + 2l]2| < k.

Proof. For the first part, if l = 0, then as c ∈ L′(y), we are done. Assume l > 1. Then

[c + 1, c + 2l − 1]2 ⊆ L′(x1) ∩ L′(x2). By (2) repeatedly, we have [c, c + 2l]2 ⊆ L′(y).
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Now we prove the second part. Assume to the contrary, there exists l′ 6 l such

that |Y ∪ [c, c + 2l′]2| = |Y | + (l′ + 1) = k. By (iii), |L(xi) \ {j ± 1 : j ∈ Y }| >

|L(xi)| − |Y | = 2k + 1 − |Y |. As |L(xi) ∩ {j ± 1 : j ∈ [c, c + 2l′]2| 6 l′ + 2, we have

|L(xi) \ {j ± 1 : j ∈ Y ∪ [c, c + 2l′]2| > 2k + 1 − |Y | − (l′ + 2) = k.

Let S(y) = Y ∪ [c, c + 2l′]2 and S(xi) be any k-subsets of L(xi) \ {j ± 1 : j ∈

Y ∪ [c, c + 2l′]2, we are done. This completes the proof of Claim.

By (1), c+2l +1 ∈ L′(x1)∪L′(x2). If c+2l+1 ∈ L′(x2) \L′(x1), then (Y ∪ [c, c+

2l]2, X1, X2) is a good triple, contrary to our assumption. Thus we have c + 2l + 1 ∈

L′(x1) \ L′(x2).

If |L(x1) \ {j ± 1 : j ∈ Y }| > |L(x1)| − |Y |, then by (iii), (Y ∪ [c, c + 2l]2, X1, X2)

is again good, a contradiction. Thus, |L(x1) \ {j ± 1 : j ∈ Y }| = |L(x1)| − |Y | (or

equivalently, |L(x1) ∩ {j ± 1 : j ∈ Y }| = |Y |), which implies that |L′(x2)| > |L′(x1)|.

As c − 1 ∈ L′(x1) \ L′(x2), we get L′(x2) \ L′(x1) 6= ∅.

Let d = min(L′(x2) \ L′(x1)). We show that d − 1 /∈ L′(y) and d + 1 ∈ L′(y).

First, assume d − 1 ∈ L′(y). By (1), d − 2 ∈ L′(x2). By the minimality of d,

d − 2 ∈ L′(x1) ∩ L′(x2). Then by (2), d − 3 ∈ L′(y). Repeating this argument,

we have d − 1 − 2j ∈ L′(y) and d − 2 − 2j ∈ L′(x1) ∩ L′(x2) for all j, which is

an obvious contradiction (note, if d − 2 − 2j ∈ L′(x1) \ L′(x2) for some j, then we

again get a contradiction with a larger good triple). Hence d − 1 /∈ L′(y). Secondly,

assume d + 1 /∈ L′(y). Then (Y, X1 ∪ {c − 1}, X2 ∪ {d}) is good, a contradiction. So,

d + 1 ∈ L′(y).

Let m be the smallest positive integer such that d + 2m /∈ L′(x1)∩L′(x2). By the

same argument as in the proof of Claim, we can show that [d+1, d+2m−1]2 ⊆ L′(y),

and |Y ∪[d+1, d+2m−1]2| < k. If d+2m /∈ L′(x2), then (Y ∪[d+1, d+2m−1]2, X1, X2)

is good, contrary to the maximality of (Y, X1, X2). Thus, d + 2m ∈ L′(x2) \ L′(x1).

If l + m + 1 6 k − |Y |, then (Y ∪ [c, c + 2l]2 ∪ [d + 1, d + 2m − 1]2, X1, X2) is good,

a contradiction. If l + m + 1 > k − |Y |, then let S(y) = Y ∪ [c, c + 2l]2 ∪ [d + 1, d +

2(k − |Y | − l) − 3]2; and for j = 1, 2, let S(xj) = L(xj) \ {c ± 1|c ∈ S(y)}. It is

straightforward to verify that the new list assignment S of G satisfies Conditions (A)

and (B).
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[15] S. Klavžar and S. Špacapan, The ∆2-conjecture for L(2, 1)-labelings is true for

directed and strong products of graphs, IEEE Trans. Circuits and Systems II 53

(2006) 274 -V 277.
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