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Abstract. We define an ordinal valued length for Noetherian mod-
ules which extends the usual definition of composition series length

for finite length modules. Though originally defined by Gulliksen

[1] in the 1970s, this extension has been seldom used in subsequent
research. Despite this neglect, we will show that the ordinal valued

length is a quite natural measure of the size of a Noetherian mod-
ule, and has advantages over more familiar measures such as uniform

dimension, Krull dimension, and reduced rank. We will also demon-

strate how some familiar properties of left Noetherian rings can be
proved efficiently using length and the arithmetic properties of ordi-
nal numbers.

1. Introduction

In the early 1970s, T. H. Gulliksen [1] showed how the definition of
composition series length, defined only for finite length modules, could be
extended to give an ordinal valued length for any Noetherian module. Dur-
ing the same time period, various people (e.g. [2], [3]) defined another
ordinal valued measure for modules, the Krull dimension. This second line
of research culminated in the article Krull Dimension by R. Gordon and
J. C. Robson [4]. Since that time, the paper by Gulliksen has been rarely
cited ([5], [6], [7], [8], [9]), whereas the Gordon and Robson article has been
cited over 175 times.

It is the main purpose of this paper to point out that, contrary to what
one might expect from the above, for a Noetherian module B, its ordinal
valued length, lenB, is a more natural measure of its size than its Krull
dimension, KdimB. Moreover lenB contains more information about the
size of B.

Length and Krull dimension are really measures of the size of the lattice
L(B) of all submodules of B ordered by inclusion. We will write L◦(B) for
the set of submodules of B ordered by reverse inclusion, that is, the dual of
L(B). A module B is Noetherian if and only if L(B) is Noetherian if and
only if L◦(B) is Artinian.
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Suppose B is a Noetherian uniserial module, meaning that L(B) is Noe-
therian and totally ordered. Then L◦(B) is a well ordered set with maxi-
mum element 0. Following the convention of counting the gaps rather than
the modules in a finite chain, we define the length of B, lenB, to be the
ordinal represented by L◦(B) \ {0}. Using this definition and the arith-
metic of ordinal numbers we can then prove various properties of uniserial
modules.

For a simple example, we notice that if 0 → A → B → C → 0 is exact,
then lenB = lenC + lenA. Consider the case when lenB = lenC. Here
lenB = lenB + lenA, and, since ordinal addition is cancellative on the
left, we get lenA = 0 and A = 0. Expressed differently, this says that a
homomorphism ψ on B is injective if (and only if) lenB = lenψ(B). As a
special case, any surjective endomorphism of B is injective.

The definition of length in this paper extends the above definition for
uniserial modules to all Noetherian modules. It is natural because there
is really only one possible way of making this extension: In short, for a
Noetherian module B, we define lenB = λ(0) where λ is the smallest
possible strictly decreasing function from L(B) into the class of ordinal
numbers. This is equivalent to Gulliksen’s original definition. The function
λ can also be defined inductively as follows: First set λ(B) = 0. Suppose,
for an ordinal α, we have already identified those submodules B′ of B such
that λ(B′) < α. Then λ(B′) = α if and only if B′ is maximal among those
submodules of B on which λ has not yet been defined.

Once again ordinal arithmetic comes into play. We will show (4.1) that
if 0 → A → B → C → 0 is an exact sequence of Noetherian modules then
lenC + lenA ≤ lenB ≤ lenC ⊕ lenA. Here ⊕ is the “natural” sum on
ordinals (2.7). We have already noted that if B is uniserial then lenC +
lenA = lenB. The other extreme case occurs if the sequence splits: If
B ∼= A⊕C, then lenB = lenC ⊕ lenA. Since ⊕ is a cancellative operation
(2.8) on ordinals, we have immediately that A ⊕ C ∼= B ⊕ C implies that
lenA = lenB for Noetherian modules A,B and C.

The relationship between lenB and KdimB is a simple one: If B is
nonzero, then the length of B can be written uniquely in the long normal
form lenB = ωγ1 +ωγ2 + · · ·+ωγn where γ1 ≥ γ2 ≥ · · · ≥ γn are ordinals.
Then KdimB = γ1. In fact, the (finite number of) possible values of
lenB′ for a submodule B′ ≤ B, are determined by lenB. In particular, we
have KdimB′ ∈ {−1, γ1, γ2, . . . , γn} (4.6). Thus lenB contains a lot more
information about B than KdimB.
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Much can be proved about Noetherian modules using only ordinal arith-
metic and the above rule about short exact sequences. For more compli-
cated theorems, the existence of the long normal form for ordinals permits
proofs which are finite inductions on the number of terms in such a form.
In the final section of this paper we demonstrate this technique in proving
some familiar properties of left Noetherian rings.

2. The Length of a Partially Ordered Set

As indicated in the introduction, both the length and Krull dimension of
a Noetherian module B, are measures of the size of the lattice of submodules
of B. Thus it is convenient to define these concepts first for lattices, or
indeed for partially ordered sets.

The key concept in this section is the length function on a partially
ordered set L. This is a certain function from L into the class of ordinal
numbers, Ord. We will find it convenient at first to define length functions,
not just on partially ordered sets, but also on partially ordered classes such
as Ord itself and Ord×Ord. Thus we phrase our definitions below in this
generality. Note that Ord only barely fails to be a set in the sense that,
for any ordinal α, the class of elements of Ord which are less than α is a
set.

If L is a partially ordered class and x, y ∈ L, we will use the following
notation:

{≤ x} = {z ∈ L | z ≤ x} [x, y] = {z ∈ L | x ≤ z ≤ y}.

If ψ: K → L is a function between partially ordered classes, then

• ψ is increasing if x ≤ y in K implies ψ(x) ≤ ψ(y) in L.
• ψ is an isomorphism (and K ∼= L) if ψ is a bijection such that ψ

and ψ−1 are increasing. Note that an increasing bijection may not
be an isomorphism.
• ψ is strictly increasing if x < y in K implies ψ(x) < ψ(y) in L.
• ψ is exact if {≤ ψ(x)} ⊆ ψ({≤ x}) for all x ∈ K.

One can easily check that if ψ1: L → M and ψ2: K → L are increasing
(strictly increasing, exact) functions, then so is ψ1 ◦ ψ2: K →M.

We will write L1×L2 for the Cartesian product of two partially ordered
classes L1 and L2, with order given by

(x1, x2) ≤ (y1, y2) ⇐⇒ (x1 ≤ y1 and x2 ≤ y2).

Notice that {≤ (x1, x2)} = {≤ x1} × {≤ x2}. It is easy to show that
L1 × L2

∼= L2 × L1 and (L1 × L2)× L3
∼= L1 × (L2 × L3).
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If ψ1: K1 → L1 and ψ2: K2 → L2 are maps between partially ordered
classes, then we will write ψ1 × ψ2 for the map from K1 × K2 to L1 × L2

given by (ψ1 ×ψ2)(x1, x2) = (ψ1(x1), ψ2(x2)). One can easily check that if
ψ1 and ψ2 are increasing (strictly increasing, exact), then so is ψ1 × ψ2.

A partially ordered class L is Artinian (Noetherian) if every nonempty
subclass has a minimal (maximal) element (equivalently, every strictly de-
creasing (increasing) sequence in L is finite.) If L1 and L2 are Artinian
(Noetherian) partially ordered classes, then so is L1 × L2.

Other notation: N = {1, 2, 3, . . . } is the set of natural numbers, and
Z

+ = {0, 1, 2, 3, . . . } is the set of nonnegative integers.
The theorems in this paper depend heavily on the arithmetic of the

ordinal numbers. For the details of ordinal arithmetic see W. Sierpinski,
Cardinal and Ordinal Numbers [10] or M. D. Potter, Sets, An Introduction
[11]. We collect here a few of those facts that are relevant:

We will use lowercase Greek letters for ordinal numbers. The smallest
infinite ordinal is written ω.

• Ordinal addition is associative but not commutative. For example,
ω + 1 6= 1 + ω = ω.
• Ordinal addition is cancellative on the left: α + β = α + γ =⇒
β = γ. Also α+ β ≤ α+ γ =⇒ β ≤ γ.
• For a fixed ordinal α, the map from Ord to Ord given by β 7→ α+β

is strictly increasing.
• If α ≤ β, then β − α is the unique ordinal γ such that β = α + γ,

hence β = α+(β−α). For any α, β ∈ Ord, we have β = (α+β)−α.
• For a fixed ordinal α, the map from {β ∈ Ord | α ≤ β} to Ord

given by β 7→ β − α is strictly increasing.
• αn = α+ α+ . . .+ α (n times) when n ∈ N. Note: 3ω = ω 6= ω3.

The most important property of ordinal numbers is that any nonzero
ordinal α can be expressed uniquely in long normal form

α = ωγ1 + ωγ2 + · · ·+ ωγn

where γ1 ≥ γ2 ≥ · · · ≥ γn are ordinals. By collecting together terms which
have identical exponents, this same form can be written

α = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where now γ1 > γ2 > · · · > γn and n1, n2, . . . , nn ∈ N. This we will call
the short normal form for α.

Certain parameters in these normal forms will have an important role in
our discussion of Noetherian modules in later sections:
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Definition 2.1. For a nonzero ordinal α = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn
in short normal form we define the Krull dimension of α by Kdimα = γ1

and the Krull rank of α by Krankα =
∑n
i=1 ni. For i = 1, 2, . . . , n, the

number ni will be called the γi-length of α, written lenγi α. For an ordinal
γ not in {γ1, γ2, . . . , γn} we define lenγ α = 0. By convention Kdim 0 = −1,
Krank 0 = 0, and lenγ 0 = 0.

If α = ωγ1 +ωγ2 + · · ·+ωγn in long normal form, then Kdimα = γ1 and
Krankα = n.

Most of the arithmetic properties of ordinals we will need are conse-
quences of the fact that to add two ordinals in normal form one needs only
the associativity of addition and the rule that ωγ + ωδ = ωδ if γ < δ. For
example, (ωω + ω3 + ω2 + 1) + (ω3 + ω) = ωω + ω32 + ω. Using this rule
one can readily prove the following:

Lemma 2.2. Suppose α, β, γ ∈ Ord with α > 0 and m,n ∈ Z+.

(1) β + α ≤ α ⇐⇒ β + α = α ⇐⇒ Kdimβ < Kdimα
(2) α = ωγ for some γ ∈ Ord ⇐⇒ β + α = α for all β < α

⇐⇒ Kdimβ < Kdimα for all β < α
(3) β + ωγn < ωγm =⇒ β < ωγ(m− n)

The < symbols are necessary in 3: If β = γ = m = n = 1, then
β + ωγn ≤ ωγm but β � ωγ(m− n).

Now suppose we have a partially ordered class L. We would like to say
something about the size of L by considering certain “order preserving”
functions from L into Ord.

Considering even the case when L is finite and totally ordered, it is easy
to list some properties that such a function λ: L → Ord should have. For
example, we would certainly want λ to be strictly increasing. We would
not want λ to skip any ordinals unnecessarily, that is, if α < λ(x) for some
x ∈ L, then there ought to be some y < x such that λ(y) = α. Thus λ
should be exact.

The key result of this section is that these two conditions suffice to specify
a unique “order preserving” function from L into Ord.

Theorem 2.3. Let L be a partially ordered class. If there exists at least
one strictly increasing function from L to Ord then L is Artinian and there
exists a unique function λL: L → Ord satisfying the following equivalent
conditions:

(1) λL is strictly increasing, and, if λ: L → Ord is a strictly increasing
function, then λL(x) ≤ λ(x) for all x ∈ L.

(2) For all x ∈ L and α ∈ Ord, λL(x) = α if and only if x is minimal
in Kα = {y ∈ L | λL(y) ≥ α}.
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(3) λL is strictly increasing and exact.

Proof. Any strictly increasing function from L to Ord, maps infinite strictly
decreasing sequences in L to infinite strictly decreasing sequences in Ord.
Since no such sequences exist in Ord, there are no infinite strictly decreas-
ing sequences in L either.

Define

λL(x) = min{λ(x) | λ: L → Ord is strictly increasing}
for all x ∈ L. Since we are assuming that at least one strictly increasing
function exists, λL is well defined by this equation. If x < y in L, then there
is some strictly increasing function λ: L → Ord such that λ(y) = λL(y),
so λL(x) ≤ λ(x) < λ(y) = λL(y). Thus λL is itself strictly increasing and
satisfies condition 1. The uniqueness of λL is immediate from condition 1.

We now show the equivalence of 1, 2 and 3:
1⇒ 2: Suppose λL(x) = α. Then x ∈ Kα. Since λL is strictly increasing,

for any y < x, we have λL(y) < λL(x) = α and so y /∈ Kα. Hence x is
minimal in Kα.

Now suppose x is minimal in Kα. In particular α ≤ λL(x). Define
λ: L → Ord by

λ(y) =

{
λL(y) y 6= x

α y = x

It is easy to check that λ is strictly increasing. From our hypothesis on λL
we get λL(x) ≤ λ(x) = α, and so λL(x) = α.

2⇒ 3: Suppose y < x in L and λL(x) = α. Since x is minimal in Kα we
have y /∈ Kα and hence λL(y) < α = λL(x). Thus λL is strictly increasing.

For exactness we need to show {≤ λL(y)} ⊆ λL({≤ y}) for all y ∈ L.
Suppose then we have α ≤ λL(y). Then y ∈ Kα, and, since L is Artinian,
there is some x ≤ y which is minimal in Kα. By hypothesis, λL(x) = α as
desired.

3 ⇒ 1: Let λ: L → Ord be strictly increasing. We will show that
λL(x) ≤ λ(x) for all x ∈ L.

Suppose to the contrary that K = {x ∈ L | λ(x) < λL(x)} is nonempty.
Let x be chosen in K so that λ(x) is minimum in λ(K).

For any y < x we have λ(y) < λ(x), so y /∈ K and λL(y) ≤ λ(y) <
λ(x) < λL(x). Thus we have an ordinal α = λ(x) such that α < λL(x) but
there is no y < x with λL(y) = α. This contradicts exactness. �

Definition 2.4. The function λL: L → Ord (when it exists) will be called
the length function on L. If L has a maximum element >, then we define
the length of L by lenL = λL(>). In addition, the Krull dimension,
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Krull rank and γ-length of L are defined by KdimL = Kdim(lenL),
KrankL = Krank(lenL) and lenγ L = lenγ(lenL).

Theorem 2.3(2) suggests that we could define λL inductively using the
relationship

λL(x) = α if and only if x is minimal in Kα = {y ∈ L | λL(y) ≮ α}.
Notice in particular that, from this definition, λL(x) = 0 if and only if

x is minimal in L.
Certainly, if L has a length function then, from 2.3, this definition pro-

duces the length function of L. If L is not known to have a length func-
tion then this definition will produce the length function of some (possibly
empty) subclass of L.
Theorem 2.5. Let L be an Artinian partially ordered class. If {≤ x} is
a set for all x ∈ L, then L has a length function.

Proof. Let λL be defined inductively as above. Suppose x ∈ L is minimal
among elements for which λL is undefined. Then for every z < x, λL(z) is
defined. Let α = sup{λL(z) + 1 | z < x}. This is well defined since any
subset of Ord has a supremum [12, Section 20]. It is then easy to show
that x is minimal in Kα = {y ∈ L | λL(y) ≮ α} and so λL(x) = α. This
contradicts our assumption that λL(x) is undefined. Consequently, λL is
defined on all of L, and then by 2.3, λL is the length function of L. �

From the proof of this theorem we notice that for any x ∈ L,

λL(x) = sup{λL(z) + 1 | z < x}.

This equation could also be used inductively to define λL. In fact, this for-
mula, written in terms of the lattice of submodules of a Noetherian module,
is part of Gulliksen’s original definition of the length of a Noetherian mod-
ule.
Lemma 2.6. Let L and K be partially ordered classes with length functions
and maximum elements.

(1) For all x ∈ L, len{≤ x} = λL(x).
(2) For all x ≤ y ∈ L, len{≤ x}+ len[x, y] ≤ len{≤ y}.
(3) For any ordinal α ≤ lenL, there is some x ∈ L such that λL(x) =

α.
(4) If λ : L → K is a strictly increasing function, then lenL ≤ lenK.

Proof. (1) It is easy to see that the restriction of λL to {≤ x} is strictly
increasing and exact, so by 2.3, λL = λ{≤x} on {≤ x}. In particular,
λL(x) = λ{≤x}(x) = len{≤ x}.
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(2) Define λ: [x, y]→ Ord by λ(z) = λL(z)−λL(x). The function λ is
strictly increasing, so

len[x, y] ≤ λ(y) = λL(y)− λL(x) = len{≤ y} − len{≤ x}.
Hence len{≤ x}+ len[x, y] ≤ len{≤ y}.

(3) This follows immediately from the exactness of λL.
(4) The function λK◦λ: L → Ord is strictly increasing, so, from 2.3(1),

λL(x) ≤ λK(λ(x)) for all x ∈ L. In particular,

lenL = λL(>) ≤ λK(λ(>)) ≤ λK(>) = lenK.
�

The identity map on Ord is strictly increasing and exact, so we have
λOrd(α) = α for all ordinals α. In addition, len{≤ α} = α and len[α, β] =
β − α for all ordinals α ≤ β, as can be easily checked.

Now consider Ord ×Ord. This partially ordered class is Artinian and
for any (α, β) ∈ Ord ×Ord we have that {≤ (α, β)} ∼= {≤ α} × {≤ β} is
a set. Thus Ord×Ord has a length function λOrd×Ord which we can use
to define a new operation on ordinals:
Definition 2.7. Define the natural sum of ordinals α and β by

α⊕ β = λOrd×Ord(α, β).

Note that, from 2.6(1), α⊕ β = len{≤ (α, β)} = len({≤ α} × {≤ β}).
The natural sum of ordinals was originally defined by G. Hessenberg [13,

pages 591-594] as in Definition 2.11 (see also [10, page 363]). In 2.12, we
will show that these two definitions for the natural sum are equivalent.
Lemma 2.8. The operation ⊕ is commutative, associative and, for all
α, β, γ ∈ Ord,

(1) α⊕ β = α⊕ γ =⇒ β = γ
(2) α⊕ β ≤ α⊕ γ =⇒ β ≤ γ

Proof. Since the Cartesian product operation on partially ordered classes is
commutative and associative, ⊕ is a commutative and associative operation
on ordinals. The cancellation properties follow easily from the fact that,
for a fixed α ∈ Ord, the map β 7→ (α, β) 7→ λOrd×Ord(α, β) = α ⊕ β is
strictly increasing and hence injective. �

Notice that, being commutative, ⊕ is cancellative on both sides, unlike
ordinary ordinal addition. Note also that for any α ∈ Ord we have 0⊕α =
α⊕ 0 = len({≤ α} × {0}) = len{≤ α} = α.

The importance of this operation is already apparent in the following
easy theorem.
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Theorem 2.9. Let K and L be partially ordered classes with length func-
tions. Then λK×L(x, y) = λK(x)⊕ λL(y) for all (x, y) ∈ K × L. In partic-
ular, len(K × L) = lenK ⊕ lenL if L and K have maximum elements.

Proof. The map λ: K × L → Ord defined by λ(x, y) = λK(x) ⊕ λL(y)
is the composition of the strictly increasing exact functions λK × λL and
λOrd×Ord, and so is itself strictly increasing and exact. Hence, from 2.3,
we get λ = λK×L. �

It turns out that the natural sum of two ordinals can be calculated very
easily from their normal forms. To show this we need the following lemma.

Lemma 2.10. Let α, β, α1, β1, . . . , αn, βn ∈ Ord.

(1) α+ β ≤ α⊕ β
(2) (α1⊕β1)+· · ·+(αn⊕βn) ≤ (α1+α2+· · ·+αn)⊕(β1+β2+· · ·+βn)
(3) α1 +β1 + · · ·+αn+βn ≤ (α1 +α2 + · · ·+αn)⊕ (β1 +β2 + · · ·+βn)

Proof. For claim 2, set x0 = (0, 0), x1 = (α1, β1), x2 = (α1 + α2, β1 + β2),
. . . , xn = (α1 + α2 + · · · + αn, β1 + β2 + · · · + βn) in Ord ×Ord. Then
for i = 1, 2, . . . , n we have [xi−1, xi] ∼= {≤ αi} × {≤ βi} so len[xi−1, xi] =
αi ⊕ βi.

Applying 2.6(2) inductively to the sequence x0 ≤ x1 ≤ . . . ≤ xn yields

len[x0, x1] + len[x1, x2] + . . .+ len[xn−1, xn] ≤ len[x0, xn].

Rewriting this in terms of αi and βi yields 2.
Claim 1 is a special case of 2: α+β = (α⊕0)+(0⊕β) ≤ (α+0)⊕(0+β) =

α⊕ β. Then, since αi + βi ≤ αi ⊕ βi, for i = 1, 2, . . . , n, the inequality 3 is
immediate from 2. �

Consider now the natural sum of two ordinals which are given in short
normal form, for example, α = ωω + ω3 + ω2 + 1 and β = ω3 + ω. Using
2.10(3), we can interleave the terms of these two normal forms in various
ways and add them to get lower bounds for α ⊕ β. There is a unique way
of doing this so that no terms are lost, namely: Write down the terms
gathered from both the short normal forms in decreasing order and then
add. In the example, we have the six terms ωω, ω3, ω3, ω2, ω, 1 so, from the
lemma,

ωω + ω3 + ω3 + ω2 + ω + 1 = ωω + ω32 + ω3 + 1 ≤ α⊕ β.

We will show that this method actually gives us the natural sum of α
and β, not just a lower bound for it, but first we need to formalize this
construction:
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Definition 2.11. Let α and β be nonzero ordinals. With suitable re-
labeling, the short normal forms for these ordinals can be written using the
same strictly decreasing set of exponents γ1 > γ2 > · · · > γn:

α = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn β = ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn

where ni,mi ∈ Z+, that is, we allow mi, ni to be zero.
Now we define the operation ⊕′ by

α⊕′ β = ωγ1(m1 + n1) + ωγ2(m2 + n2) + · · ·+ ωγn(mn + nn).

This is a well defined operation because of the uniqueness of the normal
forms for ordinals. In addition, we define 0 ⊕′ α = α ⊕′ 0 = α, and
0⊕′ 0 = 0.
Theorem 2.12. The operations ⊕ and ⊕′ are identical.

Proof. From the discussion following 2.10 we have α ⊕′ β ≤ α ⊕ β for any
ordinals α and β. To show the opposite inequality we need only show that
⊕′: Ord×Ord→ Ord is strictly increasing:

Since ⊕′ is commutative and increasing, it suffices to show only that, for
all α, β ∈ Ord, we have α⊕′ (β + 1) > α⊕′ β. But this follows easily from
the definition of ⊕′, in fact, α⊕′ (β + 1) = (α⊕′ β) + 1. �

It is apparent from this theorem and 2.11 that, if α and β are finite
ordinals, then α ⊕ β = α + β and hence both ordinal addition and ⊕
coincide with the usual addition of integers.

Notice also that Krank(α ⊕ β) = Krankα + Krankβ for any ordinals
α, β ∈ Ord, so that, if K and L are partially ordered classes with length
functions and maximum elements, then Krank(L×K) = KrankL+KrankK.

3. The Length of a Bounded Artinian Modular Lattice

We will now specialize to the case of length functions on bounded Ar-
tinian modular lattices. In this section we will no longer need to consider
proper classes, and so we define a lattice to be a partially ordered set L
such that every pair of elements, x, y ∈ L, has a supremum, x ∨ y, and
an infimum, x ∧ y. A bounded lattice is a lattice which has a maxi-
mum element > and a minimum element ⊥. A lattice L is modular if
(x1 ≤ x2 =⇒ (x1 ∨ y) ∧ x2 = x1 ∨ (y ∧ x2) ) for all x1, x2, y ∈ L.
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Lemma 3.1. Let L be a modular lattice and x, y ∈ L.

(1) The map λ: L × L → L × L given by (x, y) 7→ (x ∧ y, x ∨ y), is
strictly increasing.

(2) The maps φ: [x, y ∨ x]→ [y ∧ x, y] given by z 7→ z ∧ y, and ψ: [y ∧
x, y]→ [x, y ∨ x] given by z 7→ z ∨ x are inverse isomorphisms.

Proof. (1) Suppose that (x1, y1) ≤ (x2, y2) with λ(x1, y1) = λ(x2, y2).
Then x1 ≤ x2, y1 ≤ y2, x1 ∧ y1 = x2 ∧ y2 and x1 ∨ y1 = x2 ∨ y2.
Using modularity we get

x2 = (x2∨y2) ∧ x2 = (x1 ∨ y1) ∧ x2 = x1 ∨ (y1 ∧ x2)

≤ x1 ∨ (y2 ∧ x2) = x1 ∨ (y1 ∧ x1) = x1.

Hence x1 = x2, and by symmetry, y1 = y2. Thus (x1, y1) = (x2, y2).
Now suppose (x1, y1) < (x2, y2). Since λ is an increasing func-

tion, we have λ(x1, y1) ≤ λ(x2, y2). From the above argument,
λ(x1, y1) = λ(x2, y2) is impossible, and so we must have λ(x1, y1) <
λ(x2, y2).

(2) [14, Theorem 13, page 13] The functions ψ and φ are clearly in-
creasing.

If z ∈ [x, y ∨ x], then ψ(φ(z)) = (z ∧ y) ∨ x = (y ∨ x) ∧ z = z.
The second equality comes from applying the modularity of L to
the inequality x ≤ z. Thus ψ ◦ φ is the identity map on [x, y ∨ x],
and similarly φ ◦ ψ is the identity map on [y ∧ x, y]. �

From 2.5 we know that a bounded Artinian modular lattice L has a
length function. The main property of the length function in this circum-
stance is that if x ∈ L then len[⊥, x]⊕ len[x,>] is an upper bound for lenL.
Without the hypothesis that L is a modular lattice, we know only a lower
bound, namely len[⊥, x] + len[x,>].

Theorem 3.2. Let x and y be elements of a bounded Artinian modular
lattice L.

(1) len[⊥, x] + len[x,>] ≤ lenL ≤ len[⊥, x]⊕ len[x,>]
(2) len[⊥, x ∧ y] + len[⊥, x ∨ y] ≤ len[⊥, x]⊕ len[⊥, y]

≤ len[⊥, x ∧ y]⊕ len[⊥, x ∨ y]
(3) len[x ∧ y,>] + len[x ∨ y,>] ≤ len[x,>]⊕ len[y,>]

≤ len[x ∧ y,>]⊕ len[x ∨ y,>]

Proof. (1) The first inequality is directly from 2.6(2). To prove the
second inequality, consider the restriction of the map λ from 3.1(1)
to the domain L×{x}. This map is strictly increasing and its image
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is contained in [⊥, x]× [x,>]. From 2.6(4) we get

lenL = len(L × {x}) ≤ len([⊥, x]× [x,>]) = len[⊥, x]⊕ len[x,>].

(2) To prove the first inequality we apply 1 to the lattices [⊥, x ∨ y]
and [⊥, y]. This yields len[⊥, x ∨ y] ≤ len[⊥, x] ⊕ len[x, x ∨ y] and
len[⊥, x ∧ y] + len[x ∧ y, y] ≤ len[⊥, y] respectively. From 3.1(2) we
also have len[x, x ∨ y] = len[x ∧ y, y]. Hence

len[⊥, x ∧ y] + len[⊥, x ∨ y] ≤ len[⊥, x ∧ y] + (len[⊥, x]⊕ len[x, x ∨ y])

= len[⊥, x ∧ y] + (len[⊥, x]⊕ len[x ∧ y, y])

≤ len[⊥, x]⊕ (len[⊥, x ∧ y] + len[x ∧ y, y])

≤ len[⊥, x]⊕ len[⊥, y]

We have also used the fact that α1 + (α2 ⊕ β2) ≤ (α1 + α2) ⊕ β2

which follows from 2.10(2).
To prove the second inequality, consider the restriction of the

map λ from 3.1(1) to the domain [⊥, x]×[⊥, y]. This map is strictly
increasing and its image is contained in [⊥, x∧y]×[⊥, x∨y], and so,
from 2.6(4) we get len[⊥, x]⊕ len[⊥, y] ≤ len[⊥, x∧y]⊕ len[⊥, x∨y].

(3) Proof is similar to that of 2. �

Note that, if lenL is finite, then ordinal addition and ⊕ coincide and all
the inequalities in this theorem become equalities.

One important corollary of this theorem follows from the observation
that for any nonzero ordinals α and β, α+β and α⊕β have the same leading
term in their short normal forms. Further, this leading term depends only
on the leading terms of α and β. For example, if α = ωω +ω3 +ω2 + 1 and
β = ω3 + ω, then α + β = ωω + ω32 + ω and α ⊕ β = ωω + ω32 + ω3 + 1,
both having the leading term ωω.

Formulating this observation in terms of Krull dimension and γ-length
we have, for example, from 3.2(1)

Lemma 3.3. Let L be a bounded Artinian modular lattice, γ = KdimL
and x ∈ L.

(1) KdimL = max{Kdim[⊥, x],Kdim[x,>]}
(2) lenγ L = lenγ [⊥, x] + lenγ [x,>]

We leave it to the reader to write down the corresponding lemma derived
from 3.2(2 and 3).

Theorem 3.2 directs our attention to pairs of ordinals α and β such that
α+ β = α⊕ β. Some easy ordinal arithmetic shows when this happens:
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Lemma 3.4. Suppose α + β = α ⊕ β = ωγ1 + ωγ2 + · · · + ωγn in long
normal form. Then α = 0 or β = 0, or there is some i ∈ {1, 2, . . . , n − 1}
such that α = ωγ1 + ωγ2 + · · ·+ ωγi and β = ωγi+1 + ωγi+2 + · · ·+ ωγn .
Lemma 3.5. Let L be a bounded Artinian modular lattice. Suppose we
have α, β ∈ Ord such that α+ β = α⊕ β.

(1) If lenL = α + β, then there is some x ∈ L such that len[⊥, x] = α
and len[x,>] = β.

(2) If there is x ∈ L such that len[⊥, x] = α and len[x,>] = β, then
lenL = α+ β.

Proof. (1) From 2.6(3), there is some x ∈ L such that len[⊥, x] =
α. From 3.2(1), α + len[x,>] ≤ α + β = α ⊕ β ≤ α ⊕ len[x,>].
Cancellation in the first inequality gives len[x,>] ≤ β. Cancellation
in the second inequality gives β ≤ len[x,>]. Hence len[x,>] = β

(2) This follows directly from 3.2(1). �

For example, if lenL = ωω + ω32 + 1, then the previous two lemmas
guarantee the existence of an x ∈ L such that len[x,>] is any of the following
ordinals:

0, 1, ω3 + 1, ω32 + 1, ωω + ω32 + 1.

Lemma 3.6. Let L be a bounded Artinian modular lattice with lenL 6= 0
(that is, L is nontrivial). Then the following are equivalent:

(1) lenL = ωγ for some γ ∈ Ord
(2) len[x,>] = lenL for all x < >
(3) Kdim[⊥, x] < KdimL for all x < >

Proof. Put α = lenL. Since, by 2.6(3), for any β < α there is some x in L
such that len[⊥, x] = β, the claim is an easy consequence of 3.2(1), 3.3 and
2.2(2). �

Definition 3.7. A nontrivial bounded Artinian modular lattice L is crit-
ical if it satisfies any of the conditions of the previous lemma. More specif-
ically, we will say L is γ-critical if lenL = ωγ .

A critical series for a bounded Artinian modular lattice L, is a sequence

⊥ = z0 < z1 < · · · < zn = >

in L such that [zi−1, zi] is γi-critical for all i, and γ1 ≥ γ2 ≥ · · · ≥ γn.
If lenL = ωγ1 + ωγ2 + · · ·+ ωγn in long normal form, then from 3.4 and

3.5, there is an element z ∈ L such that len[z,>] = ωγn and len[⊥, z] =
ωγ1 +ωγ2 +· · ·+ωγn−1 . In particular, [z,>] is γn-critical. A simple induction
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then shows that any nontrivial bounded Artinian modular lattice has a
critical series:
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Lemma 3.8. Let L be a bounded Artinian modular lattice. Then the
following are equivalent

(1) lenL = ωγ1 + ωγ2 + · · ·+ ωγn in long normal form.
(2) L has a critical series ⊥ = z0 < z1 < · · · < zn = > with [zi−1, zi]

γi-critical for i = 1, 2, . . . , n.

Given a bounded Artinian modular lattice L with a critical series, the
next theorem shows how to construct a critical series for the sublattice
[x,>] for any element x ∈ L.

Theorem 3.9. Let L be a bounded Artinian modular lattice with the crit-
ical series ⊥ = z0 < z1 < · · · < zn = > with [zi−1, zi] γi-critical for
i = 1, 2, . . . , n. Let x ∈ L and set xi = x ∨ zi for i = 0, 1, 2, . . . , n. Then
for i = 1, 2, . . . , n, len[xi−1, xi] is either zero or ωγi . Further, the sequence
x = x0 ≤ x2 ≤ · · · ≤ xn = >, after removal of duplicate entries, is a critical
series for [x,>].

Proof. From 3.1(2) we get [xi−1, zi∨xi−1] ∼= [zi∧xi−1, zi] for i = 1, 2, . . . , n.
Since zi ∨xi−1 = zi ∨ (zi−1 ∨x) = zi ∨x = xi, and, using the modularity of
the lattice, zi ∧ xi−1 = zi ∧ (zi−1 ∨ x) = zi−1 ∨ (zi ∧ x), we get [xi−1, xi] ∼=
[zi−1∨(zi∧x), zi]. We also have zi−1 ≤ zi−1∨(zi∧x) ≤ zi, and so [xi−1, xi]
is isomorphic to a final segment of [zi−1, zi]. Because [zi−1, zi] is γi-critical,
3.6(2) applies and either xi−1 = xi or len[xi−1, xi] = ωγi .

The claim that x = x0 ≤ x2 ≤ · · · ≤ xn = >, after removal of duplicate
entries, is a critical series for [x,>] is then clear. �

From this theorem we see that the factors in a critical series for [x,>]
have lengths which are among the lengths of the factors in a critical series
for L. Combining this with 3.8 we get

Corollary 3.10. Let L be a bounded Artinian modular lattice with lenL =
ωγ1n1 + ωγ2n2 + · · ·+ ωγnnn in short normal form. Then for x ∈ L,

len[x,>] = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

for some mi ∈ Z+ such that mi ≤ ni for all i. In particular,

(1) Krank[x,>] ≤ KrankL with equality if and only if len[x,>] = lenL.
(2) Kdim[x,>] ∈ {−1, γ1, γ2, . . . , γn}.

Continuing with the example lenL = ωω + ω32 + 1, if x ∈ L, then
len[x,>] is one of the following ordinals:

0, 1, ω3, ω3 + 1, ω32, ω32 + 1, ωω, ωω + 1,

ωω + ω3, ωω + ω3 + 1, ωω + ω32, ωω + ω32 + 1
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This result is to be contrasted with the possible values of len[⊥, x] which,
by 2.6(3), include all ordinals less than ωω + ω32 + 1.

The mere fact that len[x,>] can take on only a finite number of different
values is significant. As an application of this we prove a simple property of
complemented lattices: A bounded lattice L is complemented if for every
x ∈ L there is some y ∈ L, called a complement of x, such that x∨ y = >
and x ∧ y = ⊥.

Corollary 3.11. [15, 0.4] Any complemented Artinian modular lattice has
finite length.

Proof. Let L be such a lattice. Then for any α ≤ lenL, there is some x ∈ L
such that len[⊥, x] = α. From 3.1(2) we have len[⊥, x] = len[y,>] where
y is a complement of x. But by 3.10, there are only a finite number of
possible values for len[y,>]. Thus lenL is also finite. �

4. The Length of a Noetherian Module

In this section we apply the results of our study of length functions to
Noetherian modules. Throughout this section, R will be a fixed ring and
R-Noeth the category of Noetherian left R-modules. If A ∈ R-Noeth, we
will write L(A) for the set of submodules of A ordered by set inclusion,
and L◦(A) for the set of submodules of A ordered by reverse set inclusion,
that is, the dual of L(A). Since A is Noetherian, L◦(A) is Artinian. In
addition, both L(A) and L◦(A) are bounded modular lattices. In particular,
in L◦(A), we have A1 ∧A2 = A1 +A2 and A1 ∨A2 = A1 ∩A2 for all A1, A2

in L◦(A). For the details of these claims about L(A), see L. Rowen, Ring
Theory, Volume 1, [16, pages 7-9].

Since L◦(A) is a bounded Artinian partially ordered set, we can define
the length, Krull dimension, Krull rank and γ-length of A by

lenA = lenL◦(A) KdimA = KdimL◦(A)

KrankA = KrankL◦(A) lenγ A = lenγ L◦(A).

If A is a finite length module, then lenA is finite and has the usual meaning
as the length of a composition series for A. We will show in 4.10 that
the definition of Krull dimension here coincides with the usual one for
Noetherian modules.

Let 0→ A→ B → C → 0 be an exact sequence in R-Noeth, and A′ the
image of A in B. Then L◦(C) ∼= [B,A′] ⊆ L◦(B), and L◦(A) ∼= L◦(A′) ∼=
[A′, 0] ⊆ L◦(B). So, from 3.2(1) and 3.3, we get the main result of this
section:
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Theorem 4.1. [1, 2.1] Let 0→ A→ B → C → 0 be an exact sequence in
R-Noeth and γ = KdimB.

(1) lenC + lenA ≤ lenB ≤ lenC ⊕ lenA
(2) KdimB = max{KdimA,KdimC}
(3) lenγ B = lenγ A+ lenγ C

Of course, ifA,B,C are finite length modules, then lenA, lenB and lenC
are finite ordinals; ordinal addition, ⊕ and the usual addition of natural
numbers coincide; and the inequalities in this theorem become equalities.

Corollary 4.2. If A,B ∈ R-Noeth and φ: A→ B, then φ is injective if
and only if lenA = lenφ(A).

Proof. We have the short exact sequence 0 → kerφ → A → φ(A) → 0. So
from 4.1, lenφ(A) + len(kerφ) ≤ lenA. If lenA = lenφ(A), then we can
cancel from this inequality to get len(kerφ) = 0 and hence kerφ = 0. The
converse implication is clear since if φ is injective, then φ(A) ∼= A. �

A simple special case of this corollary is the well known property of
A ∈ R-Noeth that if φ ∈ EndA is surjective, then φ is injective.

From 3.2(2,3) we get the following.

Lemma 4.3. Let A1, A2 ≤ A ∈ R-Noeth.

(1) len(A/(A1 +A2)) + len(A/(A1 ∩A2)) ≤ len(A/A1)⊕ len(A/A2)
≤ len(A/(A1 +A2))⊕ len(A/(A1 ∩A2))

(2) Kdim(A/(A1 ∩A2)) = max{Kdim(A/A1),Kdim(A/A2)}
(3) len(A1 +A2) + len(A1 ∩A2) ≤ lenA1 ⊕ lenA2

≤ len(A1 +A2)⊕ len(A1 ∩A2)
(4) Kdim(A1 +A2) = max{KdimA1,KdimA2}

Claim 3 of this lemma can also be obtained by applying 4.1(1) to the
usual exact sequence 0 → A1 ∩ A2 → A1 ⊕ A2 → A1 + A2 → 0. Claims 2
and 4 are easy consequences of 1 and 3 obtained as in 3.3.

Lemma 4.4. Let A,B,C ∈ R-Noeth and n ∈ N.

(1) len(A⊕B) = lenA⊕ lenB
(2) A⊕ C ∼= B ⊕ C =⇒ lenA = lenB
(3) An ∼= Bn =⇒ lenA = lenB

Proof. (1) The special case of 4.3(3) when A1 ∩A2 = 0.
(2) From A⊕C ∼= B ⊕C and 1 we have lenA⊕ lenC = lenB ⊕ lenC.

Since ⊕ is cancellative (2.8) it follows that lenA = lenB.
(3) Follows, as for 2, from the cancellativity of ⊕. �
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We will write udimA for the uniform (or Goldie) dimension of a module
A [17, 2.2.10]. Krull rank has many properties in common with uniform
dimension.
Lemma 4.5. Let A,B ∈ R-Noeth.

(1) If A ≤ B, then KrankA ≤ KrankB with equality if and only if
lenA = lenB.

(2) Krank(A⊕B) = KrankA+ KrankB
(3) udimA ≤ KrankA

Proof. (1) Immediate from 3.10.
(2) From 4.4(1) and the fact that Krank(α⊕ β) = Krankα+ Krankβ

for any ordinals α, β ∈ Ord.
(3) Any nonzero module has nonzero Krull rank, so if A contains a

direct sum of udimA nonzero submodules, then using 1 and 2, we
must have udimA ≤ KrankA. �

Applying 2.6(3), 3.4, 3.5 and 3.10 to Noetherian modules we get the
following.
Theorem 4.6. Let A ∈ R-Noeth.

(1) For every ordinal α ≤ lenA there exists a submodule A′ ≤ A such
that len(A/A′) = α.

(2) Suppose lenA = ωγ1 +ωγ2 +· · ·+ωγn in long normal form. Then for
ordinals α = ωγ1 +ωγ2 + · · ·+ωγi and β = ωγi+1 +ωγi+2 + · · ·+ωγn ,
for some i ∈ {0, 1, 2, . . . , n − 1} there exists a submodule A′ ≤ A
such that len(A/A′) = α and lenA′ = β.

(3) Suppose lenA = ωγ1n1 + ωγ2n2 + · · · + ωγnnn in short normal
form. Then for any submodule A′ ≤ A we have lenA′ = ωγ1m1 +
ωγ2m2 + · · ·+ ωγnmn for some mi ∈ Z+ such that mi ≤ ni for all
i. In particular, KdimA′ ∈ {−1, γ1, γ2, . . . , γn}.

For example, suppose that lenA = ωω+ω32+1. Then 4.6(2) guarantees
the existence of submodules of A with lengths

0, 1, ω3 + 1, ω32 + 1, ωω + ω32 + 1,

and 4.6(3) says that the length of any submodule of A is one of the following
ordinals:

0, 1, ω3, ω3 + 1, ω32, ω32 + 1, ωω, ωω + 1,

ωω + ω3, ωω + ω3 + 1, ωω + ω32, ωω + ω32 + 1

As we have seen already in 3.11, the fact that there are only a finite
number of possible values for lenA′ when A′ ≤ A is already useful.
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Corollary 4.7. Let A,B ∈ R-Noeth. Then the partially ordered set
K = {kerφ | φ : A→ B} ⊆ L◦(A) has finite length.

Proof. Consider the restriction of λL◦(A) to K. This map is, of course,
strictly increasing, so any chain in K maps injectively into λL◦(A)(K).

Given a homomorphism φ : A → B, we have A/ kerφ ∼= imφ ≤ B and
so λL◦(A)(kerφ) = len(A/ kerφ) = len(imφ). Thus λL◦(A)(K) is contained
in the set of the lengths of all submodules of B. By 4.6(3), this set is finite,
so there is a finite bound on the length of chains in λL◦(A)(K). This same
bound then limits the length of chains in K. �

As a special case of this corollary we have that, if R is a left Noetherian
ring and B ∈ R-Noeth, then the set of annihilators of elements of B has
finite length.

Finally in this section we need to show that, for Noetherian modules,
Krull dimension as we have defined it coincides with the usual definition.
Definition 4.8. The Krull dimension (in the sense of Gordon and
Robson) [4], [18, Chapter 13], of a module A, which we will denote by
Kdim′A ∈ {−1} ∪Ord, is defined inductively as follows:

• Kdim′A = −1 if and only if A = 0.
• Let γ ∈ Ord and assume that we have defined which modules have

Kdim′ equal to δ for every δ < γ. Then Kdim′A = γ if and only if
(a) A does not have Kdim′ less than γ, and
(b) for every countable decreasing chain A1 ≥ A2 ≥ . . . of sub-

modules of A, Kdim′(Ai/Ai+1) < γ for all but finitely many
indices.

This definition does not provide a Kdim′ for all modules. However, any
Noetherian module has a Kdim′. See [18, 13.3].
Lemma 4.9. Let A ∈ R-Noeth with KdimA = γ 6= −1.

(1) For any ordinal δ < γ, there is an infinite sequence A1 ≥ A2 ≥ . . .
of submodules of A such that Kdim(Ai−1/Ai) = δ for all i.

(2) If A1 ≥ A2 ≥ . . . is an infinite sequence of submodules of A, then
Kdim(Ai/Ai+1) < γ for all but a finite number of indices.

Proof. (1) Set A1 = A. Since KdimA1 = γ, we have lenA1 ≥ ωγ > ωδ.
By 4.6(1), there is some A2 ≤ A1 such that len(A1/A2) = ωδ. We
have Kdim(A1/A2) = δ and KdimA1 = max{KdimA2,Kdim(A1/A2)},
so KdimA2 = γ, and we can repeat the process to get A3, A4 . . . as
required.

(2) Since the sequence of ordinals lenA1 ≥ lenA2 ≥ . . . is decreasing,
there is some n ∈ N such that lenAi+1 = lenAn for all i ≥ n. If i ≥
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n, then, from 4.1(1), len(Ai/Ai+1) + lenAi+1 ≤ lenAi = lenAi+1,
and hence, from 2.2(1), Kdim(Ai/Ai+1) < KdimAi+1 ≤ KdimA =
γ. �

Theorem 4.10. For all A ∈ R-Noeth, KdimA = Kdim′A.

Proof. Suppose the claim is not true. Let A be a counterexample of smallest
possible Kdim. Set γ = KdimA. Then γ > −1 and for any module B with
KdimB < γ we have KdimB = Kdim′B.

From 4.9(1), we see that, for any δ < γ, the module A fails part (b) of
the definition of having Kdim′ equal to δ. Thus A does not have Kdim′ less
than γ, and A satisfies part (a) of the definition of having Kdim′A = γ.

Also, by 4.9(2), A satisfies part (b) of this definition. Thus Kdim′A = γ,
and A is not a counterexample. �

Let γ ∈ Ord. Then a module A ∈ R-Noeth is γ-critical [18, page 227]
if KdimA = γ and Kdim(A/A′) < γ for all nonzero submodules A′ ≤ A.
From 3.6 and 3.7 is is clear that a Noetherian module A is γ-critical if and
only if L◦(A) is γ-critical if and only if lenA = ωγ . More generally A 6= 0
is critical if and only if lenA′ = lenA for all nonzero submodules A′ ≤ A.

Notice in particular that from 4.6(2), any nonzero Noetherian module
contains a critical submodule. Specifically, if lenA = ωγ1 +ωγ2 + · · ·+ωγn

in long normal form, then A has a submodule of length ωγn .
A critical series [18, page 229] for a module A is a submodule series

0 = An < An−1 < . . . < A0 = A such that Ai−1/Ai is a γi-critical module
for i = 1, 2, . . . , n and γ1 ≥ γ2 ≥ . . . ≥ γn. Comparison with 3.7, shows
that a submodule series 0 = An < An−1 < . . . < A0 = A is a critical series
if and only if ⊥ = A = A0 < A1 < . . . < An = 0 = > is a critical series in
L◦(A).

From 3.8 we see that an equivalent definition of the length of a nonzero
Noetherian module A is lenA = ωγ1 + ωγ2 + · · · + ωγn where γ1 ≥ γ2 ≥
. . . ≥ γn are the Krull dimensions of the factors in a critical series for A. Of
course, for this to be a useful definition, it is necessary to establish first the
existence of critical series and then the uniqueness of the Krull dimensions
of the factors of such series. See [18, 13.9].

5. Some Applications

In this section we demonstrate the use of length in proving some familiar
properties of left Noetherian rings. The important thing to notice in this
section is that no further use is made of the ascending chain condition.
The main theorems are proved by finite induction on the Krull rank of
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some module involved. The lemmas require only ordinal arithmetic, 4.1
and 4.4 in their proofs.

Many of the results in this section can be seen as providing conditions
under which an ideal or module contains a big cyclic submodule. Here
“big” has the following technical meaning:

Definition 5.1. Given a module A ∈ R-Noeth, any submodule A′ ≤ A
such that lenA′ = lenA is said to be big in A. This situation is denoted
A′ E A.

Of course, if A is a finite length module and A′ E A, then A′ = A. Other
basic properties of this relationship are collected in the next lemma:

Lemma 5.2. Let A,A′, A′′, B,B′ ∈ R-Noeth.

(1) If A′′ ≤ A′ ≤ A, then A′′ E A if and only if A′′ E A′ and A′ E A.
(2) ψ: A→ B and B′ E B =⇒ ψ−1(B′) E A
(3) A′, A′′ E A =⇒ A′ ∩A′′ E A
(4) 0 6= A′ E A =⇒ KdimA/A′ < KdimA
(5) A′ E A =⇒ A′ is essential in A

Proof. (1) Immediate from the definition.
(2) We have B′ ≤ B′ + ψ(A) ≤ B, and so lenB′ = len(ψ(A) + B′) =

lenB. Now consider the exact sequence

0→ ψ−1(B′) σ→ A⊕B′ τ→ ψ(A) +B′ → 0

where σ(a) = (a, ψ(a)) and τ(a, b) = ψ(a) − b for all a ∈ A and
b ∈ B′. Using 4.1(1) and 4.4(1), we get

lenA⊕ lenB′ = len(A⊕B′)
≤ len(ψ−1(B′))⊕ len(ψ(A) +B′) = len(ψ−1(B′))⊕ lenB′.

Cancellation from this inequality yields lenA ≤ len(ψ−1(B′)). Since
ψ−1(B′) ≤ A, the opposite inequality is, of course, true and we have
lenA = len(ψ−1(B′)).

(3) Apply 2 to the inclusion map ψ: A′ → A.
(4) From 4.1 we get len(A/A′) + lenA ≤ lenA, and then 2.2(1) implies

KdimA/A′ < KdimA.
(5) If A′ ⊕ B ≤ A, then lenA′ ⊕ lenB = len(A′ ⊕ B) ≤ lenA. Since

lenA′ = lenA, we can cancel from this inequality to get lenB = 0,
that is, B = 0. �

Essential submodules are not necessarily big — any finite length module
which has a proper essential submodule serves as an example.
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For the remainder of this section, we will suppose that R is a left Noe-
therian ring. If A ∈ R-Noeth, then A is finitely generated and so, from
4.1(2), KdimA ≤ KdimR. For any a ∈ A we will write φa : R → Ra for
the homomorphism defined by r 7→ ra. Of course, since R ∈ R-Noeth,
we can apply the results in the previous section to the exact sequence
0→ ann a→ R

φa→ Ra→ 0.
By definition, any nonzero submodule of a critical module is big. This

fact has some easy consequences for critical left ideals:
Lemma 5.3. Let I, J be critical left ideals in a left Noetherian ring R.

(1) If IJ 6= 0 and len I ≤ len J , then len I = len J and there is some
x ∈ J such that φx is injective on I, I ∼= Ix E Rx E J and
I ⊕ annx E R.

(2) If I2 6= 0 then there is some x ∈ I such that φx is injective on I,
I ∼= Ix E Rx E I and I ⊕ annx E R.

(3) If I is nil, then I2 = 0.

Proof. (1) Let x ∈ J be chosen so that 0 6= Ix ≤ J . Since J is critical
we have len J = len Ix = lenRx. Since Ix = φx(I) is an image of I,
we also have len Ix ≤ len I and so len Ix = len I = lenRx = len J .
From 4.2 we have that φx is injective on I so I ∼= Ix, annx∩ I = 0
and annx⊕ I ≤ R.

From the exact sequence 0 → annx → R → Rx → 0 we get
lenR ≤ (lenRx)⊕(len annx) = len(I⊕annx) and so I⊕annx E R.

(2) The special case of 1 when I = J .
(3) Suppose, contrary to the claim, that I2 6= 0. Then, from 2, there is

some x ∈ I such that φx is an injective map from I to I. But this
is impossible since xn = 0 for some n ∈ N, and hence φnx = 0. �

If I is a critical left ideal in a semiprime left Noetherian ring R, then
I2 6= 0 and so from 5.3(2), there is some x ∈ I such that I ∼= Ix E Rx E I
and I ⊕ annx E R. In the next theorem we extend this result to all left
ideals of R.
Theorem 5.4. Let R be a semiprime left Noetherian ring, and I a left
ideal such that len I = ωγ1 + ωγ2 + . . . + ωγn in long normal form. Then
there are x1, x2, . . . , xn ∈ I such that

(1) Rx1 ⊕Rx2 ⊕ . . .⊕Rxn E I
(2) lenRxi = ωγi for i = 1, 2, . . . , n.
(3) xixj = 0 whenever i < j with i, j = 1, 2, . . . , n.

Setting x = x1 + x2 + . . .+ xn we also have
4. φx is injective on I
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5. I ∼= Ix E Rx E I
6. I ⊕ annx E R
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Proof. Proof by induction on n = Krank I.
From 4.6(2), the left ideal I contains a critical left ideal In of length ωγn .

Since R is semiprime, I2
n 6= 0, and from 5.3(2) there is some xn ∈ In such

that len Inxn = len Ixn = lenRxn = ωγn and annxn ∩Rxn = 0.
Let I ′ = annxn ∩ I. Then I ′ ⊕ Rxn ≤ I, so that len I ′ ⊕ ωγn ≤ len I.

From the obvious short exact sequence 0 → I ′ → I → Ixn → 0 we get
len I ≤ len I ′ ⊕ len Ixn = len I ′ ⊕ ωγn . Thus, in fact, len I = len I ′ ⊕ ωγn .
Canceling ωγn from this equation we get len I ′ = ωγ1 + ωγ2 + . . .+ ωγn−1 ,
and so, Krank I ′ = n− 1 < Krank I = n.

By induction there are x1, x2, . . . , xn−1 ∈ I ′ satisfying the above condi-
tions with respect to I ′. We claim that x1, x2, . . . , xn satisfy these condi-
tions with respect to I:

By induction we have I ′ ∩ ann(x1 + x2 + . . .+ xn−1) = 0. We also have
R(x1 + x2 + . . .+ xn−1) ∩Rxn ⊆ I ′ ∩Rxn = 0, from which it follows that
annx = ann(x1 +x2 + . . .+xn−1)∩annxn. A simple calculation then yields
I ∩ annx = 0. Claims 4, 5 and 6 follow from this as in the proof of 5.3(1).

The remaining claims are easy to check. �

Corollary 5.5. Let R be a semiprime left Noetherian ring, I ≤ R a left
ideal and r ∈ R.

(1) ann r E R ⇐⇒ r = 0
(2) ann r = 0 ⇐⇒ Rr E R ⇐⇒ r is regular.
(3) I is essential in R ⇐⇒ I E R ⇐⇒ I contains a regular element.
(4) If I is nil, then I = 0.
(5) udim I = Krank I.

Proof. (1) Applying 5.4(6) to the left ideal Rr, we see that there is
some s ∈ R such that Rr ∩ ann sr = 0. But ann sr = φ−1

s (ann r),
so from 5.2(2), we have ann sr E R, and, in particular, ann sr is
essential in R. Thus Rr = 0 and r = 0.

(2) Suppose Rr E R. Then by 4.2, the homomorphism φr is injective
and hence ann r = 0. Further, if rs = 0 for some s ∈ R, then
Rr ≤ ann s, and so ann s E R and then, by 1, s = 0. Thus r is
regular. The remaining claims are easy.

(3) If I is essential, then, from 5.4(6), I contains an element x such
that annx = 0. From 2, x is regular. The remaining claims are
easy.

(4) From 5.4(4), there is some x ∈ I such that φx is injective on I.
Since xn = 0 for some n ∈ N, we have φnx = 0 and hence I = 0.

For an alternative proof which avoids 5.4, notice first that if I is
critical, then from 5.3(3), I2 = 0, and then, because R is semiprime,
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I = 0. Thus R has no critical nil left ideals. The claim then follows
from the fact that any nonzero nil left ideal must contain a critical
nil left ideal.

(5) From 5.4(1), I contains a direct sum of Krank I nonzero submod-
ules, and so Krank I ≤ udim I. The opposite inequality is 4.5(3).

�

Notice also that, from 5, I is uniform if and only if it is critical.
We now specialize to left Noetherian prime rings.

Theorem 5.6. If R is a left Noetherian prime ring, then lenRR = ωγn
where γ = KdimRR and n = udimRR. Further, for A ∈ R-Noeth and
m ∈ N we have

(1) ωγm ≤ lenA if and only if A has a submodule isomorphic to a
direct sum of m critical left ideals.

(2) (lenRR)m ≤ lenA if and only if A has a submodule isomorphic to
Rm.

Proof. First we notice that for any two critical left ideals I, J ≤ R we have
IJ 6= 0 and JI 6= 0 and so from 5.3(1), len I = lenJ , I has a submodule
isomorphic to J , and vice versa. In this situation I and J are said to be
subisomorphic [17, 3.3.4].

If lenRR = ωγ1 +ωγ2 + . . .+ωγn in long normal form, then from 5.4(1),
there are critical left ideals of length ωγ1 , ωγ2 , . . . , ωγn . From above, we
must have have γ1 = γ2 = . . . = γn and so we can write lenRR = ωγn
as required. This means, in particular, that any critical left ideal of R has
length ωγ .

(1) Proof by induction on m, the case m = 0 being trivial.
Suppose 0 < m and ωγm ≤ lenA. Then by 4.6(1) there is some

submodule A′ ≤ A such that lenA/A′ = ωγ . Using 4.1(1), we have
ωγm ≤ lenA ≤ len(A/A′) ⊕ lenA′ = ωγ ⊕ lenA′, so by cancella-
tion ωγ(m − 1) ≤ lenA′. By induction, A′ contains a submodule
isomorphic to a direct sum of m− 1 critical left ideals.

Let a ∈ A \ A′. Then len(Ra + A′)/A′ = ωγ . From the exact
sequence

0→ ann(a+A′)→ R→ (Ra+A′)/A′ → 0

and 4.1(1) we get len((Ra+A′)/A)+len(ann(a+A′)) ≤ lenR, that
is, ωγ + len(ann(a+A′)) ≤ ωγn. Cancellation from this inequality
gives len(ann(a+A′)) ≤ ωγ(n− 1) < lenR.

From 5.5(3), ann(a + A′) is not essential in R, and there is a
critical left ideal I of R such that I ∩ ann(a + A′) = 0. The map
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φa+A′ : I → (Ia + A′)/A′ is then an isomorphism. In particular
φa+A′ is injective on I, so for any u ∈ I, ua ∈ A′ implies u = 0.
Thus Ia ∩ A′ = 0, and Ia ∼= Ia + A′/A′ ∼= I is critical. Since
Ia ∩A′ = 0, A contains a direct sum of m critical modules.

(2) In view of 1, to prove 2, it suffices to show that any (external) direct
sum of n critical left ideals, contains a submodule isomorphic to R.
Since critical left ideals are pairwise subisomorphic, it suffices to
show this for any particular direct sum of n critical left ideals.
Now, from 5.4, there are critical left ideals I1, I2, . . . , In such that
I1⊕ I2⊕ . . .⊕ In E R, and x ∈ I1⊕ I2⊕ . . .⊕ In such that Rx ∼= R.
Thus this particular direct sum contains a submodule isomorphic
to R as required. �

We will next show that, for a Noetherian module A over a left Noetherian
prime ring, lenA encodes the reduced rank ρ(A) [16, 3.5.4] [19, 6.3], and
also whether or not A is torsion or torsion free.

By definition, an element a ∈ A is torsion if ann a is essential in R.
From 5.5(3), a is torsion if and only if ann a E R. Applying 4.1 and 2.2
to the exact sequence 0 → ann a → R → Ra → 0 we get a is torsion if
and only if KdimRa < KdimR, if and only if lenRa < ωγ , if and only
if lenγ Ra = 0, where γ = KdimR. The module A is torsion if all its
elements are torsion, and is torsion free if 0 is the only torsion element.
Corollary 5.7. Let R be a left Noetherian prime ring, γ = KdimRR, and
A ∈ R-Noeth.

(1) A is torsion if and only if KdimA < γ.
(2) A is torsion free if and only if lenA = ωγk for some k ∈ Z+.
(3) ρ(A) = lenγ A.

Proof. (1) If KdimA < γ, then for any a ∈ A, we have KdimRa < γ
and hence, from the preceding discussion, a is torsion.

If A is torsion with generators a1, a2, . . . , an, then KdimRai < γ
for i = 1, 2, . . . , n. From 4.3(4), KdimA = maxi{KdimRai} < γ.

(2) Follows from 1, since, KdimA ≤ KdimR = γ and then, by 4.6, A
has no nonzero submodule with Krull dimension less than γ if and
only if lenA = ωγk for some k ∈ Z+.

(3) Set k = lenγ A. Since KdimA ≤ γ we have ωγk ≤ lenA < ωγ(k +
1). From 5.6(1), A contains a submodule A′ isomorphic to a direct
sum of k critical (and hence uniform) left ideals of R. Since uniform
left ideals have reduced rank 1 [19, 6.11(f)] we have ρ(A′) = k.

From 4.1(1), we have lenA/A′+lenA′ ≤ lenA and consequently
lenA/A′ + ωγk ≤ lenA < ωγ(k + 1). From 2.2(3), lenA/A′ < ωγ
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and hence KdimA/A′ < γ. From 1, A/A′ is a torsion module and
so ρ(A/A′) = 0. Since reduced rank respects short exact sequences
we have ρ(A) = ρ(A′) + ρ(A/A′) = k. �

There are two obvious limits on the length of a cyclic module Ra con-
tained in A ∈ R-Noeth: We must have lenRa ≤ lenA and lenRa ≤ lenR,
that is, lenRa ≤ min{lenA, lenR}.

From Theorem 5.6(2) we have that if R is a left Noetherian prime ring,
and A ∈ R-Noeth is such that lenR ≤ lenA, then A contains a cyclic
module Ra with lenRa = lenR. So in this case the maximum possible
length is attained.

When lenA < lenR, there is no guarantee that A has a cyclic submodule
of length lenA — any noncyclic finite length module serves as an example.
On the other hand, we will show that, when R is a simple ring, any module
A ∈ R-Noeth contains a cyclic submodule of maximum possible length.

In the proof of this result we use, not just the fact that any nonzero Noe-
therian module contains a critical submodule, but also the special arith-
metic properties of the lengths of the critical submodule and the factor
module. Specifically, suppose A is a nonzero Noetherian module with
lenA = ωγ1 + ωγ2 + . . . + ωγn in long normal form. Set β = ωγn and
α = ωγ1 + ωγ2 + . . .+ ωγn−1 . Then from 3.4, we have α + β = α ⊕ β, and
from 4.6(2), there is a critical submodule A′ ≤ A such that lenA′ = β and
lenA/A′ = α. Note that KrankA/A′ < KrankA. Moreover, if B′ ≤ B
are any modules such that lenB′ = β and lenB/B′ = α, then, by 4.1(1),
lenB = α+ β = α⊕ β = lenA.

Theorem 5.8. If R is a simple left Noetherian ring and A ∈ R-Noeth,
then there is some a ∈ A such that lenRa = min{lenA, lenR}.

Proof. We prove the claim by induction on KrankA.
Let A′ ≤ A be a critical submodule as described above with lenA′ = β,

lenA/A′ = α, and KrankA/A′ < KrankA. By induction, there is some
a ∈ A such that len(Ra+A′)/A′ = lenA/A′.

If ann a = 0, then Ra ∼= R, so lenR = lenRa ≤ lenA and we have
proved the claim.

This leaves us the case that ann a 6= 0. Because R is simple, we have
annA′ = 0, and there is some r ∈ R and a′ ∈ A′ such that ra = 0 but
ra′ 6= 0.
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Set B = R(a+ a′) and B′ = R(a+ a′) ∩A′ ≤ B. Then

lenB/B′ = len(R(a+ a′)/(R(a+ a′) ∩A′))
= len(R(a+ a′) +A′/A′)

= len(Ra+A′/A′) = α

and 0 6= ra′ = r(a+a′) ∈ R(a+a′)∩A′ = B′ so lenB′ = lenA′ = β. Hence
from the above discussion lenR(a+ a′) = lenB = lenA. �

Of course, if lenA ≤ lenR in this theorem, then Ra E A, so a simple
special case of this theorem is the following: If A is a finite length module
over a simple left Noetherian ring R such that lenA ≤ lenR, then A is a
cyclic module. That is, A has a single generator.

This observation generalizes immediately to modules A which have finite
Krull dimension, because if Ra E A, then, from 5.2(4), A/Ra has strictly
smaller Krull dimension than A. A simple induction argument then yields
Corollary 5.9. If R is a simple left Noetherian ring and A ∈ R-Noeth
is such that lenA ≤ lenRR and KdimA < ω, then A can be generated by
KdimA+ 1 elements.

This corollary is a version of two related results of Stafford [20]: 1) Any
left ideal of a simple left Noetherian ring with finite Krull dimension can be
generated by KdimR+ 1 elements, and 2) Any Noetherian torsion module
A with finite Krull dimension over a simple left Noetherian ring can be
generated by KdimA+ 1 elements.

Since a simple ring is also a prime ring, we can use 5.6(2) to calculate
bounds on the number of generators for larger modules. For example, if R
is a simple left Noetherian ring with lenR = ω34 and A ∈ R-Noeth with
lenA = ω39 + ω2 + 1. Then (lenR)2 ≤ lenA so from 5.6 we know that A
has a submodule A′ isomorphic to R2. In particular, A′ has 2 generators
and length ω38.

We have lenA/A′+lenA′ ≤ lenA < ω310, that is, lenA/A′+ω38 < ω310.
From 2.2(3) we get lenA/A′ < ω32 and then, from 5.9, we know that A/A′

has 4 generators. Since A′ has two generators, A has 6 generators.
We leave the reader the task of checking the details in the following

generalization of the above argument which has been expressed in terms of
reduced rank using 5.7:
Theorem 5.10. Let R be a simple left Noetherian ring with finite Krull
dimension. For A ∈ R-Noeth, define

b(A) =

{
KdimA+ 1 if ρ(A) = 0
KdimR+ dρ(A)/ρ(R)e otherwise
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where dρ(A)/ρ(R)e is the smallest natural number greater than or equal to
ρ(A)/ρ(R). Then A can be generated by b(A) elements.

The reader can check that this theorem and Corollary 5.9 are very special
cases of the Stafford-Coutinho Theorem [16, 3.5.72] on the stable number
of generators of Noetherian modules.
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