KEEPING YOUR DISTANCE IS HARD

Silvia Heubach
California State University Los Angeles

CGTC47, March9, 2016

1

The Basics

- A two-player game is called a combinatorial game if there is no randomness involved and all possible moves are known to each player.
- A combinatorial game is called impartial if both players have the same moves, and partizan otherwise.
- Examples:

- We consider the case where the last player to move wins (normal play).

Distance Games

- GRAPHDISTANCE (D, S) is played on a graph G on which two players, BLue (Left) and Red (Right), alternately place pieces on empty vertices of G according to the restrictions of the sets D and S.
- All vertices are empty at the beginning of the game.
- A BLue piece and a Red piece are not allowed to have distance d if $d \in D \quad$ (D is for "different")
- Two BLue pieces or two Red pieces are not allowed to have distance s if $s \in S \quad(S$ is for "same")
- Pieces may not be removed once they are placed, nor may they be moved.

Known Distance Games

- Col: adjacent vertices cannot have the same color

CoL= GRAPHDISTANCE(\varnothing,\{1\})

- SNORT: adjacent vertices cannot have different colors.

SNORT = GRAPHDISTANCE(\{1\}, \varnothing)

- NodeKayles: adjacent vertices cannot both be colored.

NodeKayles = GRAPHDISTANCE(\{1\},\{1\})

Let's Play a Game (or two)

COL - adjacent vertices cannot have SAME color

Game is over - Red wins!

SNORT - adjacent vertices cannot have DIFFERENT color

Game is over - Blue wins!

How Can We Analyze a Game?

- Strategy stealing, mirroring
COL

- Create a game graph and then recursively label each position, starting from the terminal positions, as to who wins

Complexity of Distance Games

- How hard is is to decide who wins from a given position in GraphDistance(D, S) for general sets D and S?
- We know that Col, Snort, NodeKayles, and Bigraph NODEKAYLES played on graphs are PSPACE-hard
- If we know a game T is PSPACE-hard and want to show that another game Q is also PSPACE-hard, we need to find a function f, called a reduction from T to Q, such that
- \boldsymbol{f} maps the positions of \mathbf{T} to the positions of \mathbf{Q}
- \boldsymbol{f} can be computed in polynomial time
- \boldsymbol{f} preserves winnability

7

Specifics of the Reduction

- The reduction transforms the graph G on which game T is played to a graph G' on which Q is played via insertion of a subgraph called gadget

Game T

Known to be PSPACE-hard

Game Q

To be shown to be PSCPAE-hard

Main Result

THEOREM

The games GraphDistance (D, S) are PSPACE-hard when either S or D equals $\{1,2, \ldots, r\}$ and the other is a subset (or equal) to $\{1,2, \ldots, r\}$.

We will illustrate the proof idea with an example of a generalization of SNORT = GRAPHDISTANCE(\{1\} , \varnothing):

ENSNORT(r) := GRAPHDISTANCE(\{1,2,...,r\}, $\varnothing)$

Example for ENSNORT(3)

Play SNORT
$D=\{1\}, S=\varnothing$

Forbidden vertex gadget ENSNORT(3)

Play EnSNORT(3)
$D=\{1,2,3\}, S=\varnothing$
x

- Works also for $S \subset D$ and $\max (S) \leq r$

Forbidden Vertex Gadget F(r)

Proof of Main Result

THEOREM

The games GraphDistance(D; S) are PSPACE-hard when either S or D equals $\{1,2, \ldots, r\}$ and the other is a subset (or equal) to $\{1,2, \ldots, r\}$.

Proof Outline: For GRAPHDISTANCE(D; S) with

- $D=\{1,2, \ldots, r\}, S \subset D$, and $\max (S)<r$, we reduce from SNORT
- $S=\{1,2, \ldots, r\}, D \subset S$, and $\max (D)<r$, we reduce from COL
- S or D is $\{1,2, \ldots, r\}$ and $\max (D)=\max (S)$, we reduce from NODEKAYLES

Why is case $\max (\mathrm{S})=\max (\mathrm{D})$ different?

Play SNORT
$D=\{1\}, S=\varnothing$

- We can color x and y in the same color in SNORT, but cannot in GRAPHDISTANCE(D,S), so winnability is no longer the same.

Reduction for $\max (\mathrm{S})=\max (\mathrm{D})$

- When $\max (\mathrm{S})=\max (\mathrm{D})=\mathrm{n}$, then the maximal reach for both same and different colors is the same
- NodeKayles = GraphDistance(\{1\},\{1\}) fits the bill
- For the reduction, we replace every edge in G by $\mathrm{n}-1$ gadgets of size n

Reduction for $\max (S)=\max (\mathrm{D})$

Play NodeKayles
$D=\{1\}, S=\{1\}$

Play GRAPHDISTANCE(D,S)
$D=\{1,2,3\}, S=\{1,3\}$
$\xrightarrow{\text { Reduction } f}$

- We cannot color x and y in the same color in NODEKAYLES; likewise in GRAPHDISTANCE(D,S), so winnability is the same.

Open Problem

Problem
Is GraphDistance(D; S) PSPACE-hard for cases not covered by our results?

17

THANK YOU!

sheubac@calstatela.edu

Slides will be posted on my web site
http://web.calstatela.edu/faculty/sheubac/\#presentations

References

1. E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for Your Mathematical Plays Vol. 1-4 (2014) AK Peters Ltd., Wellesley, MA, 2nd edition
2. C.L. Bouton (1901/02) "Nim, a game with a complete mathematical theory." Ann. of Math. (2) 3(1-4):35-39.
3. J.I. Brown, D. Cox, A. Hoefel, N. McKay, R. Milley, R.J. Nowakowski, and A.A. Siegel. "Polynomial profiles of placement games." To appear in: Games of No Chance 5
4. K. Burke and R.A. Hearn. "PSPACE-Complete Two-Color Placement Games." Preprint 2015.
5. E.D. Demaine and R.A. Hearn (2009) "Playing Games with Algorithms: Algorithmic Combinatorial Game Theory." In: M.H. Albert and R.J. Nowakowski (eds) Games of No Chance 3. Mathematical Sciences Research Institute Publications, Vol. 56, Cambridge University Press, pp 3-56.

References

6. S. Faridi, S. Huntemann, and R.J. Nowakowski. "Games and Complexes I: Transformation via Ideals." To appear in: Games of No Chance 5, arXiv:1310.1281
7. A.S. Fraenkel and D. Lichtenstein "Computing a perfect strategy for $\mathrm{n} \times \mathrm{n}$ chess requires time exponential in N." In: Automata, languages and programming (Akko, 1981). pp 278-293.
8. S. Huntemann and R.J. Nowakowski (2014) "Doppelgänger Placement Games." Recreational Mathematics Magazine 1:55-61.
9. C.H. Papadimitriou (1994) "On the complexity of the parity argument and other inefficient proofs of existence." J. Comput. System Sci. 48(3):498-532.
10. T.J. Schaefer (1978) "On the complexity of some two-person perfect-information games." J. Comput. System Sci., 16(2):185225.
