Enumeration of 3-Letter Patterns

in Compositions

Silvia Heubach
Department of Mathematics
California State University Los Angeles
joint work with
Toufik Mansour
Department of Mathematics
University of Haifa, Haifa, Israel

Enumerating Compositions

- Alladi \&Hoggatt - $A=\{1,2\}$ in connection with Fibonacci Sequence [1]
- Carlitz \& various co-authors - \# rises, levels, falls in $[n]=\{1,2, \ldots, n\}$ as generalization of permutations [5],[6],[7],[8],[9]
- Carlitz \& Vaughan - \#compositions according to specification, rises, falls and maxima [9]
- Carlitz, Scoville, \& Vaughan - enumeration of pairs of sequences according to rises, levels and falls [8].
- Rawlings - weak rises and falls in connection with restricted words [15]
- Chinn, Grimaldi \& Heubach- \# rises, levels, falls in specific sets A $[10,11,12,13,14]$

Basic Notions

- $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m}=$ composition of $n \in \mathbb{N}$ with m parts where $\sum_{i=1}^{m} \sigma_{i}=n$
- rise $=$ a summand followed by a larger summand
- level $=$ a summand followed by itself
- fall or drop $=$ a summand followed by a smaller summand

Think of these as 2-letter patterns

- level $\leftrightarrow 11$
- rise $\leftrightarrow 12$
- drop $\leftrightarrow 21$
- Look at pairs of levels, rises and drops $\leftrightarrow 3$-letter patterns
- $\tau=\tau_{1} \tau_{2} \tau_{3}$; level + rise $\leftrightarrow 112$
- reversal map $r(\tau)=r\left(\tau_{1} \tau_{2} \tau_{3}\right)=\tau_{3} \tau_{2} \tau_{1} ;\{\tau, r(\tau)\}=$ symmetry class of τ
- patterns in the same symmetry class occur equally often
- Only patterns to consider because of symmetry:

$$
\begin{array}{cccccc}
\text { level+level } & \leftrightarrow & 111 & \text { rise+rise } & \leftrightarrow & 123 \\
\text { level+rise } & \leftrightarrow & 112 & \text { rise+drop=peak } & \leftrightarrow & 121+132+231 \\
\text { level+drop } & \leftrightarrow & 221 & \text { drop+rise=valley } & \leftrightarrow & 212+213+312
\end{array}
$$

Notation

- $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{d}\right\}$ or $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}<a_{2}<\ldots$ are positive integers
- $C_{\tau}(n, r)\left(C_{\tau}(j ; n, r)\right)=\#$ of compositions of n with parts in A (j parts in A) containing pattern τ exactly r times.
- $C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid n, r\right)\left(C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid j ; n, r\right)\right)=$ those that start with $\sigma_{1}, \ldots, \sigma_{\ell}$.
- Generating functions

$$
\begin{align*}
& -C_{\tau}(x, y)=\sum_{n, r \geq 0} C_{\tau}(n, r) x^{n} y^{r} \\
& -C_{\tau}(x, y, z)=\sum_{n, r, j \geq 0} C_{\tau}(j ; n, r) x^{n} y^{r} z^{j} \\
& -C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid x, y\right)=\sum_{n, r \geq 0} C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid n, r\right) x^{n} y^{r} \\
& -C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid x, y, z\right)=\sum_{n, r, j \geq 0} C_{\tau}\left(\sigma_{1} \ldots \sigma_{\ell} \mid j ; n, r\right) x^{n} y^{r} z^{j} \tag{*}
\end{align*}
$$

- $C_{\tau}(x, y, z)=1+\sum_{a \in A} C_{\tau}(a \mid x, y, z)$

The pattern 111 (level+level)

Theorem: Let A be any ordered (finite or infinite) set of positive integers. Then

$$
C_{111}(x, y, z)=\frac{1}{1-\sum_{a \in A} \frac{x^{a} z\left(1+(1-y) x^{a} z\right)}{1+x^{a} z\left(1+x^{a} z\right)(1-y)}}
$$

Proof: Split the compositions that start with a into those that start with $a b$ and $a a$, and then split up the latter into those that start with $a a b$ and $a a a$ and set up recursion.

Thus, gf for \# of compositions in \mathbb{N} that avoid 111 is given by

$$
C_{111}(x, 0,1)=\frac{1}{1-\sum_{i \geq 1} \frac{x^{i}\left(1+x^{i}\right)}{1+x^{i}\left(1+x^{i}\right)}},
$$

and values of the corresponding sequence are $1,1,2,3,7,13,24$, $46,89,170,324,618,1183,2260,4318,8249,15765,30123$, 57556, 109973, 210137...

The patterns 112 (level+rise) and 221 (level+drop)
Theorem: Let A be any ordered subset of \mathbb{N}. Then

$$
C_{112}(x, y, z)=\frac{1}{1-\sum_{j=1}^{d}\left(x^{a_{j}} z \prod_{i=1}^{j-1}\left(1-(1-y) x^{2 a_{i}} z^{2}\right)\right)},
$$

and

$$
C_{221}(x, y, z) \frac{1}{1-\sum_{j=1}^{d}\left(x^{a_{j}} z \prod_{i=j+1}^{d}\left(1-(1-y) x^{2 a_{i}} z^{2}\right)\right)} .
$$

The sequence for the $\#$ of compositions in \mathbb{N} which avoid 112 is given by $1,1,2,4,7,13,24,43,78,142,256,463,838$, $1513,2735,4944,8931,16139,29164,52693,95213, \ldots$, and the one for the $\#$ of compositions in \mathbb{N} which avoid 221 is given by $1,1,2,4,8,15,30,58,113,220,429,835,1627,3169$, 6172, 12023, 23419, 45616, 88853, 173073, 337118,...

Proof: Arguments similar to those in proof for 111 give

$$
\begin{aligned}
& C_{112}(a \mid x, y, z)=\frac{x^{2 a} z^{2}}{1-x^{2 a} z^{2}}+\frac{x^{2 a} z^{2}}{1-x^{2 a} z^{2}} \sum_{b \in A, b<a} C_{112}(b \mid x, y, x) \\
& \quad+\frac{x^{2 a} z^{2} y}{1-x^{2 a} z^{2}} \sum_{b \in A, b>a} C_{112}(b \mid x, y, z)+\frac{x^{a} z}{1+x^{a} z} C_{112}(x, y, z) .
\end{aligned}
$$

Assume A is finite. Let $x_{0}=C_{112}(x, y, z), x_{i}=C_{112}\left(a_{i} \mid x, y, z\right)$, $\alpha_{i}=\frac{x^{2 a_{i}} z^{2}}{1-x^{2 a_{i} z^{2}}}$, and $\beta_{i}=\frac{x^{a_{i} z}}{1+x^{a_{i}}}$, then with Eq. (*) we get a system of $d+1$ equations

$$
\begin{gathered}
x_{i}-\alpha_{i} \sum_{j<i} x_{j}-\alpha_{i} y \sum_{j>i} x_{j}-\beta_{i} x_{0}=\alpha_{i} \quad \text { for } \quad i=1, \ldots, d, \\
x_{0}-\sum_{i=1}^{d} x_{i}=1 .
\end{gathered}
$$

Now use Cramer's rule and messy algebra to compute the determinants. Take limits if A is infinite. Similarly for 221.

The pattern 123 (rise+rise)

Theorem: Let A be any ordered subset of \mathbb{N}, with $|A|=d$. Then

$$
C_{123}(x, y, z)=\frac{1}{1-t^{1}(A)-\sum_{p=3}^{d} \sum_{j=0}^{p-3}\binom{p-3}{j} t^{p+j}(A)(y-1)^{p-2}},
$$

where $t^{p}(A)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq d} z^{p} \prod_{j=1}^{p} x^{a_{i_{j}}}$.

For $\left.A=\mathbb{N}, t^{p}(\mathbb{N})=x^{(p+1}{ }_{2}\right) z^{p} \prod_{j=1}^{p}\left(1-x^{j}\right)^{-1}$, and the sequence for the $\#$ of compositions in \mathbb{N} which avoid 123 is given by $1,1,2,4$, $8,16,31,61,119,232,453,883,1721,3354,6536,12735$, $24813,48344,94189,183506,357518, \ldots$

Proof: (Outline) Define

- $A_{k}=\left\{a_{k+1}, a_{k+2}, \ldots, a_{d}\right\}=A \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ (the index of A indicates the largest element excluded).
- $D^{A_{k}}(x, y, z)=$ gf for $\#$ of compositions σ of n with m parts in A_{k} such that for $a \notin A_{k}, a \sigma$ contains the pattern 123 exactly r times.

Two possibilities: σ does not contain a_{1}, or $\sigma=\bar{\sigma} a_{1} \sigma_{k+1} \ldots \sigma_{m}$, where $\bar{\sigma}$ is a composition with parts from A_{1} :

$$
C_{123}^{A}(x, y, z)=C_{123}^{A_{1}}(x, y, z)+C_{123}^{A_{1}}(x, y, z) C_{123}^{A}\left(a_{1} \mid x, y, z\right)
$$

If σ starts with a_{1}, then two cases: either exactly one occurrence of a_{1}, or a_{1} occurs at least twice in σ, i.e., $\sigma=a_{1} \bar{\sigma} a_{1} \sigma_{k+1} \ldots \sigma_{m}$, where $\bar{\sigma}$ is a (possibly empty) composition with parts from A_{1} :
$C_{123}^{A}\left(a_{1} \mid x, y, z\right)=x^{a_{1}} z D^{A_{1}}(x, y, z)+x^{a_{1}} z D^{A_{1}}(x, y, z) C_{123}^{A}\left(a_{1} \mid x, y, z\right)$.
$\Rightarrow \quad C_{123}^{A}(x, y, z)=\frac{C_{123}^{A_{1}}(x, y, z)}{1-x^{a_{1}} z D^{A_{1}}(x, y, z)}(* *)$
To obtain $D^{A_{1}}(x, y, z)$ look at occurrences of a_{2}.

- σ contains no a_{2}; or $\sigma=\bar{\sigma}^{1} a_{2} \bar{\sigma}^{2} a_{2} \bar{\sigma}^{3} \ldots a_{2} \bar{\sigma}^{\ell+2}$ with $\ell \geq 0$, where $\bar{\sigma}^{j}$ is a (possibly empty) composition with parts in A_{2} for $j=1, \ldots, \ell+2$.
- Four cases $\left(\bar{\sigma}^{j}=\emptyset\right.$ or $\left.\neq \emptyset, j=1,2\right)$
$\Rightarrow \quad D^{A_{1}}=\frac{\left(1-x^{a_{2}} z(1-y)\right) D^{A_{2}}+x^{a_{2}} z(1-y)}{1-x^{a_{2}} z D^{A_{2}}}$.

Using induction and lots of messy algebra gives

$$
D^{A}=\frac{1+\sum_{p=2}^{d} \sum_{j=0}^{p-2}\binom{p-2}{j} t^{p+j}(A)(y-1)^{p-1}}{1-t^{1}(A)-\sum_{p=3}^{d} \sum_{j=0}^{p-3}\binom{p-3}{j} t^{p+j}(A)(y-1)^{p-2}} .
$$

Similar arguments for $\left({ }^{* *}\right)$ finish the proof.

The patterns $\{121,132,231\}$ (peak $=$ rise + drop) and
$\{212,213,312\}$ (valley $=$ drop+rise)

For any $B \subseteq A$ with $|A|=d$, and $s \geq 1$

- $P^{s}(B)=\left\{\left(i_{1}, \ldots, i_{s}\right) \mid a_{i_{j}} \in B, j=1, \ldots, s\right.$, and $i_{2 \ell-1}<i_{2 \ell} \leq$ $i_{2 \ell+1}$ for $\left.1 \leq \ell \leq\lfloor s / 2\rfloor\right\}$
- $Q^{s}(B)=\left\{\left(i_{1}, \ldots, i_{s}\right) \mid a_{i_{j}} \in B, j=1, \ldots, s\right.$, and $i_{2 \ell-1} \leq i_{2 \ell}<$ $i_{2 \ell+1}$ for $\left.1 \leq \ell \leq\lfloor s / 2\rfloor\right\}$
- $M^{s}(B)=z^{s} \sum_{\left(i_{1}, \ldots, i_{s}\right) \in P^{s}(B)} \prod_{j=1}^{s} x^{a_{i_{j}}}$
- $N^{s}(B)=z^{s} \sum_{\left(i_{1}, \ldots, i_{s}\right) \in Q^{s}(B)} \prod_{j=1}^{s} x^{a_{i_{j}}}$

Theorem: Let $A=\left\{a_{1}, \ldots, a_{d}\right\}, P^{s}(A), Q^{s}(A), M^{s}(A)$, and $N^{s}(A)$ be defined as on previous slide. Then
$C_{p e a k}^{A}(x, y, z)=\frac{1+\sum_{j \geq 1} M^{2 j}(A)(1-y)^{j}}{1+\sum_{j \geq 1} M^{2 j}(A)(1-y)^{j}-\sum_{j \geq 0} M^{2 j+1}(A)(1-y)^{j}}$,
and

$$
C_{v a l l e y}^{A}(x, y, z)=\frac{1+\sum_{j \geq 1} M^{2 j}(A)(1-y)^{j}}{1+\sum_{j \geq 1} M^{2 j}(A)(1-y)^{j}-\sum_{j \geq 0} N^{2 j+1}(A)(1-y)^{j}}
$$

The sequence for the \# of compositions in \mathbb{N} which avoid "peak" is given by $1,1,2,4,7,13,22,38,64,107,177,293,481,789$, $1291,2110,3445,5621,9167,14947,24366, \ldots$ and the one for the \# of compositions in \mathbb{N} which avoid "valley" is given by 1 , $1,2,4,8,15,28,52,96,177,326,600,1104,2032,3740$, $6884,12672,23327,42942,79052,145528, \ldots$

Proof: Concentrate on where the largest part occurs. Let $\bar{A}_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$. Four different cases:

- σ does not contain a_{d}
- $\sigma=a_{d} \sigma^{\prime}, \sigma^{\prime}$ possibly empty
- $\sigma=\bar{\sigma} a_{d}$, where $\bar{\sigma}$ is a non-empty composition with parts in \bar{A}_{d-1}
- $\sigma=\bar{\sigma} a_{d} \sigma^{\prime}$, where σ^{\prime} is a non-empty composition with parts in A
$-\sigma^{\prime}$ starts with a_{d}
- σ^{\prime} does not start with a_{d}

Combining all cases and using induction gives

Lemma: For $A=\left\{a_{1}, \ldots, a_{d}\right\}$, and $b_{i}=x^{a_{i}} z$,

$$
C_{p e a k}^{A}(x, y, z)=\frac{1}{1-b_{d}-G_{d}} .
$$

where

$$
G_{d}=\frac{1}{b_{d}(1-y)+\frac{1}{b_{d-1}+\frac{1}{b_{d-1}(1-y)+\frac{1}{\ddots+\frac{1}{b_{2}(1-y)+\frac{1}{b_{1}}}}}} .} .
$$

Next we prove that

$$
G_{d}=\frac{\sum_{j \geq 0} M^{2 j+1}(A)(1-y)^{j}}{1+\sum_{j \geq 1} M^{2 j}(A)(1-y)^{j}}
$$

using induction on d and the recursions below for odd and even s, obtained by conditioning on whether last element is a_{d}.

- s odd \Rightarrow last and second last element can be equal to a_{d}

$$
M^{2 s+1}(A)=b_{d} M^{2 s}(A)+M^{2 s+1}\left(\bar{A}_{d-1}\right)
$$

- s even \Rightarrow second last element can be at most a_{d-1}

$$
M^{2 s}(A)=b_{d} M^{2 s-1}\left(\bar{A}_{d-1}\right)+M^{2 s}\left(\bar{A}_{d-1}\right)
$$

Proof for valley follows similarly, where recursions involve $M^{s}\left(A_{k}\right)$ and $N^{s}\left(A_{k}\right)$.

Asymptotic Behavior

Theorem: The asymptotic behavior for τ-avoiding compositions with parts in \mathbb{N} is given by

$$
\begin{aligned}
C_{111}(n, 0) & =0.499301 \cdot 1.91076^{n}+O\left((10 / 7)^{n}\right) \\
C_{112}(n, 0) & =0.692005 \cdot 1.80688^{n}+O\left((10 / 7)^{n}\right) \\
C_{221}(n, 0) & =0.545362 \cdot 1.94785^{n}+O\left((10 / 7)^{n}\right) \\
C_{123}(n, 0) & =0.576096 \cdot 1.94823^{n}+O\left((10 / 7)^{n}\right) \\
C_{\text {peak }}(n, 0) & =1.394560 \cdot 1.62975^{n}+O\left((10 / 7)^{n}\right) \\
C_{\text {valley }}(n, 0) & =0.728207 \cdot 1.84092^{n}+O\left((10 / 7)^{n}\right)
\end{aligned}
$$

Application to Words

- $[k]=\{1,2, \ldots, k\}=($ totally ordered $)$ alphabet on k letters
- $\operatorname{word}=$ element of $[k]^{n}$
- word σ contains a pattern τ if σ contains a subsequence (order) isomorphic to τ
- complement $c(\tau)$ is the pattern obtained when replacing τ_{i} by $k+1-\tau_{i}$
- $\{\tau, r(\tau), c(\tau), c(r(\tau))\}$ symmetry class of τ
- $C_{\tau}^{[k]}(1, y, z)=$ gf for $\#$ of words of length m on the alphabet $[k]$ with r occurrences of τ.

Obtain known results (see [2],[3]) for patterns 111, 112 (221), and 123 , and new results for peak (valley).

Preprint available from my web site at sheubac@calstatela.edu

References

[1] K. Alladi and V. E. Hoggatt, Jr. Compositions with ones and twos. Fibonacci Quart., 13(3):233-239, 1975.
[2] A. Burnstein and T. Mansour. Words restricted by 3-letter generalized multipermutation patterns. Annals of Combinatorics, $7(1): 1-14,2003$.
[3] A. Burnstein and T. Mansour. Counting occurrences of some subword patterns. Discrete Mathematics and Theoretical Computer Science, 6(1):1-12, 2003.
[4] L. Carlitz. Enumeration of sequences by rises and falls: a refinement of the Simon Newcomb problem. Duke Math. J., 39:267-280, 1972.
[5] L. Carlitz. Enumeration of up-down sequences. Discrete Math., 4:273-286, 1973.
[6] L. Carlitz. Enumeration of compositions by rises, falls and levels. Math. Nachr., 77:361-371, 1977.
[7] L. Carlitz and R. Scoville. Up-down sequences. Duke Math. J., 39:583-598, 1972.
[8] L. Carlitz, R. Scoville, and T. Vaughan. Enumeration of pairs of sequences by rises, falls and levels. Manuscripta Math., 19(3):211-243, 1976.
[9] L. Carlitz and T. Vaughan. Enumeration of sequences of given specification according to rises, falls and maxima. Discrete Math., 8:147-167, 1974.
[10] P. Chinn, R. Grimaldi, and S. Heubach. Rises, levels, drops and "+" signs in compositions: extensions of a paper by Alladi and Hoggatt. The Fibonacci Quarterly, 41(3):229-239, 2003.
[11] P. Chinn and S. Heubach. ($1, k$)-compositions. Congressus Numerantium, 164:183-194, 2003.
[12] P. Chinn and S. Heubach. Compositions of n with no occurrence of k. Congressus Numerantium, 164:33-51, 2003.
[13] R. P. Grimaldi. Compositions with odd summands. Congressus

Numerantium, 142:113-127, 2000.
[14] R. P. Grimaldi. Compositions without the summand 1. Congressus Numerantium, 152: 33-43, 2001.
[15] D. Rawlings. Restricted words by adjacencies. Discrete
Mathematics, 220:183-200, 2000.

