(1) (a)

Note that

$$
f(z)=z^{2}-z+10
$$

is a polynomial
so $f(z)$ is analytic
on $A=\mathbb{C}$.
Since γ lives in
\mathbb{C}, we can use FTOC to get that
(1) (b) The unit circle γ is a simple, closed, smooth curve.
The function $f(z)=z^{2}-z+10$ is analytic on all of \mathbb{C} and hence is
 analytic on the unit circle γ and inside γ.
So, by Cauchy's the

$$
\int_{\gamma}\left(z^{2}-z+10\right)=0
$$

$[$ You could also vise FTOC.]
(1) (c)

The function $f(z)=e^{1 / z}$ is analytic everywhere except at

$$
z=0
$$

That is f is analytic on $A=\mathbb{C}-\{0\}$ Since f is analytic on and inside of γ, by Cauchy's theron, $\int_{\gamma} e^{1 / z} d z=0$
(1) (α)

From HW 2, $\sin (z)=0$ iff $z=\pi k$ for $k \in \mathbb{Z}$.
Let

$$
\begin{aligned}
& \text { Let } \\
& A=\mathbb{C}-\{\pi k \mid k \in \mathbb{Z}\}
\end{aligned}
$$

Then $f(z)=\frac{1}{\sin (z)}$
is analytic on A.
Since f is analytic on γ and inside γ, by Cauchy's the oren,

$$
\int_{\gamma} \frac{1}{\sin (z)} d z=0
$$

(1) (e)

Define

$$
\begin{aligned}
f(z) & =z^{i} \\
& =e^{i \log (z)}
\end{aligned}
$$

Where

$$
\begin{aligned}
\log (z) & =\ln |z| \\
& +i \operatorname{long}(z)
\end{aligned}
$$

> and

$$
\text { and } \frac{\pi}{2}<\operatorname{ang}(z)<\frac{3 \pi}{2}
$$

From class, $f(z)=z^{i}$, with this brunch of logarithm is analytic on $A=\mathbb{C}-\{x+i y \mid x=0$ and $y \leq 0\}$.

Note that A is an open set containing γ and $f(z)=z^{i}$ is analytic on γ and its antiderivative $g(z)=\frac{z^{i+1}}{i+1}$ is

continuous on A,
Thus by FTOC,

$$
\begin{aligned}
& \int_{\gamma} z^{i} d z=\left.\frac{z^{i+1}}{i+1}\right|_{1-i} ^{-1}=\frac{1}{i+1}(-1)^{i+1} \\
& =\frac{1}{i+1}\left[(1-i)^{i+1}\right. \\
&
\end{aligned}
$$

$$
\begin{aligned}
& e^{(1+i) \log (-1)}=e^{(1+i)[\ln |-1|+i \pi]} \\
& =e^{i \pi-\pi}=e^{-\pi}[\underbrace{\cos (\pi)+\underbrace{i \sin (\pi)}_{0}]}_{-1} \\
& =-e^{-\pi}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { and } \\
& e^{(1+i) \log (1-i)}=e^{(1+i)[\ln |1-i|+i \operatorname{mg}(1-i)} \\
& \left.=e^{(1+i)[\ln \sqrt{2}+i}(-\pi / 4)\right] \\
& =e^{\ln \left(\sqrt{2} 1-i \frac{\pi}{4}+i \ln \sqrt{2}+\frac{\pi}{4}\right.} \\
& \left.=e^{\ln (\sqrt{2})+\frac{\pi}{4}\left[\cos \left(\ln \sqrt{2}-\frac{\pi}{4}\right)\right.} \quad+i \sin \left(\ln \sqrt{2}-\frac{\pi}{4}\right)\right]
\end{aligned}
$$

$\arg (-1)=\pi$

$$
\text { arg }-\frac{\pi}{2}<\pi<\frac{3 \pi}{2}
$$

$|-1|=1$

Thus,

$$
\begin{aligned}
\int_{\gamma} z^{i} d z & =\frac{1}{i+1}\left[-e^{-\pi}\right] \\
& -e^{\ln (\sqrt{2})+\frac{\pi}{4}} \cos \left(\ln \sqrt{2}-\frac{\pi}{4}\right) \\
& -i e^{\ln \sqrt{2}+\frac{\pi}{4}} \sin \left(\ln \sqrt{2}-\frac{\pi}{4}\right)
\end{aligned}
$$

$-\frac{\pi}{2}<\frac{-\pi}{4}<\frac{3 \pi}{2}$
$|1-i|=\sqrt{2}$
(2)

Note that

$$
f(z)=\frac{1}{z^{10}\left(z^{2}+9\right)}
$$

is analytic except when

$$
\begin{aligned}
& \text { except when } \\
& z^{10}=0 \text { or } z^{2}+9=0,
\end{aligned}
$$

That is, except

when $z=0$
or $z= \pm 3$ 万.
Since f is analytic on
the closed
set consisting of γ.
 and ${ }^{2}$ been them, we have
between $\int_{\gamma_{1}} \frac{d z}{z^{10}\left(z^{2}+9\right)}=\int_{\gamma_{2}} \frac{d z}{z^{10}\left(z^{2}+9\right)}$

