(1) (a) $S=\{z|1 \leq|z| \leq 2\}$
S is path connected S is not open
So not a region

(1) (b)

 S is not path-connected S is open S is not a region
(1) (c)
S is open
S is path connected
S is a region

(1) (d)
S is not path-cooneded
S is open
S is not a region

(2) Let $f: A \rightarrow \mathbb{C}$ be analytic on A where A is a region (open and path-connected) We are assuming that $f(z)$ is real for all $z \in A$,
Thus, $f(x+i y)=u(x, y)+i 0$ on A for some real valued function $u(x, y)$. By Cauchy -Riemann (with $v=0$) we have that $\frac{\partial u}{\partial x}(x, y)=\frac{\partial v}{\partial y}(x, y)=0$ for all $x+i y \in A$. And since $v(x, y)=0$ on A we get $\frac{\partial v}{\partial x}(x, y)=0$ tor all $x+i y \in A$.
This, $f^{\prime}(x+i y)=\frac{\partial u}{\partial x}(x, y)+i \frac{\partial v}{\partial x}(x, y)$
for all $x+i y \in A$.

So, $f^{\prime}(z)=0, \quad \forall z \in A$
Where A is a region.
By a class theorem, this implies that f is constant on A.

