(1)(a) γ is the line segment joining 1 to $2+i$.

Formula:

$$
\begin{aligned}
& \text { Formula i } \\
& z_{1}^{z_{1}} \gamma(t)=z_{0}+t\left(z_{1}-z_{0}\right) \\
& z_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have } \\
& \begin{array}{l}
\gamma(t)=1+t((2+i)-1) \\
\gamma(t)=1+t(1+i) \\
0 \leq t \leq 1 \\
\gamma^{\prime}(t)=(1+i)
\end{array} \\
& \int_{\gamma}\left(z^{2}+2\right) d z=\int_{0}^{1} \underbrace{\left[\begin{array}{l}
\left.1+2 t(1+i)+t^{2}(1+i)\right)^{2} \\
\\
1+2 t+2 i t+2 t+2 i t+2 i(1+2 i)
\end{array}\right.}_{f(1+t(1+i)]^{2}} \underbrace{(1+i) d t}_{\gamma^{\prime}(t)} d t \\
& =\int_{0}^{1}\left[3+2 t+2 i t+2 i t^{2}\right][(1+i)] d t \\
& =3+2 t+2 i t+2 i t^{2}+3 i+2 i t-2 t-2 t^{2} \\
& =\left(3-2 t^{2}\right)+i\left(3+4 t+2 t^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{1}\left(3-2 t^{2}\right) d t+i \int_{0}^{1}\left(3+4 t+2 t^{2}\right) d t \\
& =\left.\left(3 t-\frac{2}{3} t^{3}\right)\right|_{0} ^{1}+\left.i\left(3 t+\frac{4 t^{2}}{2}+\frac{2 t^{3}}{3}\right)\right|_{0} ^{1} \\
& =\left(3-\frac{2}{3}\right)+i\left(3+2+\frac{2}{3}\right) \\
& =\left(\frac{9}{3}-\frac{2}{3}\right)+i\left(\frac{15}{3}+\frac{2}{3}\right) \\
& =\frac{7}{3}+i \frac{17}{3}
\end{aligned}
$$

formula for circle

$$
r(t)=z_{0}+r e^{i t}
$$

$$
0 \leq t \leq 2 \pi
$$

center $=z_{0}$
radius $=r$
once around the circle going countercloclewise

Our problem has $z_{0}=0$ and $r=3$

$$
\begin{aligned}
& \text { our problem has } z_{0}=0,0 \leq t \leq 2 \pi \\
& \gamma(t)=0+3 e^{i t}=3 e^{i t}, 0 \leq \int_{0}^{2 \pi} \frac{\left(\left(3 e^{i t}\right)^{3}+3 e^{i t}\right]}{f(\gamma(t))} \underbrace{3 i(t) d t} \\
& \int_{\gamma}^{i t}\left(z^{3}+z\right) d t \\
& =\int_{0}^{2 \pi}\left[27 e^{3 i t} \cdot 3 i e^{i t}+3 e^{i t} \cdot 3 i e^{i t}\right] d t \\
& =\int_{0}^{2 \pi}\left[81 i e^{4 i t}+9 i e^{2 i t]}\right] d t \\
& =\int_{0}^{2 \pi}[81 i \cos (4 t)+\underbrace{i^{2} 81 \sin (4 t)+9 i[\cos (2 t)+i}_{-81} \sin (2 t)])] d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}(-81 \sin (4 t)-9 \sin (2 t 1) d t \\
& +i \int_{0}^{2 \pi}(8 \mid \cos (4 t)+9 \cos (2 t 1) d t \\
& =\left.\left[\frac{81}{4} \cos (4 t)+\frac{9}{2} \cos (2 t)\right]\right|_{0} ^{2 \pi} \\
& +\left.i\left[\frac{81}{4} \sin (4 t)+\frac{9}{2} \sin (2 t)\right]\right|_{0} ^{2 \pi} \\
& =[\frac{81}{4} \underbrace{\cos (8 \pi)}_{1}+\frac{9}{2} \underbrace{\cos (4 \pi)}_{1}-\frac{81}{4} \underbrace{\cos (0)}_{1}-\frac{9}{2} \underbrace{\cos (0)}_{1}] \\
& +i[\frac{81}{4} \underbrace{\sin (8 \pi)}_{0}+\frac{9}{2} \underbrace{\sin (4 \pi)}_{0}-\frac{81}{4} \underbrace{\sin (0)}_{0}-\underbrace{\frac{9}{2} \sin (0)}_{0}] \\
& =0
\end{aligned}
$$

(1) (c)

$$
\begin{aligned}
& \gamma(t)=z_{0}+t\left(z_{1}-z_{0}\right), \quad 0 \leq t \leq 1 \\
& \gamma(t)=1+t((1+i)-1), \quad 0 \leq t \leq 1 \\
& \gamma(t)=1+i t, 0 \leq t \leq 1 \\
& \gamma^{\prime}(t)=i \quad \uparrow \quad \uparrow \quad 1+i
\end{aligned}
$$

$$
f(x+i y)=x-y
$$

$$
\int_{\gamma}(x-y) d z
$$

γ
$=\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t$
$=\int_{0}^{1} f(\underset{\uparrow}{1}+i t) \cdot i d t$
$=\int_{0}^{1}(\underbrace{x=1 \quad y=t}_{x=-y}) i d t$
$=i \int_{0}^{1}(1-t) d t=i\left[t-\frac{t^{2}}{2}\right]_{0}^{1}$

$$
=i\left[1-\frac{1}{2}\right]=\frac{i}{2}
$$

(2) (al γ is the line segment joining $1+i$ to $-i$.

Formula:

$$
\begin{aligned}
& \text { Formula: } \\
& z_{1} \quad \gamma(t)=z_{0}+t\left(z_{1}-z_{0}\right) \\
& z_{0} \\
& z_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We have } \\
& \gamma(t)=(1+i)+t(-\bar{i}-(1+i)) \\
& \gamma(t)=(1+i)+t(-1-2 i) \\
& 0 \leq t \leq 1
\end{aligned}
$$

We have
$2(b)$
Let γ be the Unit circle traveled once counterclockwise.
Let $F(z)=\frac{1}{2} e^{z^{2}}$ and $F^{\prime}(z)=z e^{z^{2}}$.
Note that $F(z)$ is analytic on the open set \mathbb{C} containing γ
 and $F^{\prime}(z)$ is continuous on \mathbb{C}.
Thus, by the F TO C,

$$
\begin{aligned}
& \text { hus, by the } \\
& \int_{\gamma} z e^{z^{2}} d z=\int_{\gamma} F^{\prime}(z) d z \\
& =\frac{\underbrace{}_{\gamma}(1)-F(1)}{F(t a n t s ~ a n d ~ e n d s ~ a t ~ t h e ~ s a n e ~ p o ~}
\end{aligned}
$$

z stats and ends at the same point
(2) (c)

Note that we cannot use the FTOC here because
If $F^{\prime}(z)=\frac{1}{z-1}$

then $F(z)=\log (z-1)$
which is not analytic on any open set cointaing γ since σ would cut through the branch cut.
So we have to do this one by hand.

$$
\begin{aligned}
& \text { So we have to } 1+2 e^{i t}, 0 \leq t \leq 2 \pi \\
& \gamma(t)=1 \\
& \gamma^{\prime}(t)=2 i e^{t} \\
& \int_{0} \frac{d z}{z-1}=\int_{0}^{2 \pi} \frac{2 i e^{i t}}{\left(1+2 e^{i t}\right)-1} d t=\int_{0}^{2 \pi} i d t \\
& =i \int_{0}^{2 \pi} 1 d t=\left.i z\right|_{0} ^{2 \pi}=2 \pi i
\end{aligned}
$$

Think this: To show $\frac{a}{b} \leq \frac{c}{d}$
you show $a \leq c$ and $b \geqslant d$.
so then $\frac{1}{b} \leq \frac{1}{d}$ and so $\frac{a}{b} \leq \frac{c}{d}$.
(3) Note that if z is on γ then $|z|=2$.
So if z is on γ, then

$$
\begin{aligned}
\left|z^{2}+1\right| \geqslant\left|\left|z^{2}\right|-|1|\right|=\left||z|^{2}-1\right| & =\left|2^{2}-1\right| \\
|a+b| \geqslant||a|-|b|| & =3
\end{aligned}
$$

Let $M=\frac{1}{3}$. If z is on γ then

$$
\begin{aligned}
& \text { Let } M=3 \cdot \text { It }\left|\frac{1}{z^{2}+1}\right|=\frac{1}{\left|z^{2}+1\right|} \leqslant \frac{1}{3}=M . \\
& \text { Thus, } \\
& \mid \int_{\gamma}^{\left|z^{2}+1\right| \geqslant 3} \\
& \frac{1}{\left|z^{2}+1\right|} \leqslant \frac{1}{3} \\
& z^{2}+1
\end{aligned} \leqslant M \cdot \operatorname{arclength}(\gamma)=\frac{1}{3} \operatorname{arclength}(\gamma) .
$$

Here the cunclength is the circumference of the circle. So, anclength $(\gamma)=2 \pi(2)$

$$
=4 \pi .
$$

Let's use the def of arcleng th to show this.

$$
\gamma(t)=2 e^{i t}, 0 \leq t \leq 2 \pi
$$

And 50

$$
\begin{aligned}
& \text { And } 50 \\
& \text { aclength }(\gamma)=\int_{0}^{2 \pi}\left|\gamma^{\prime}(t)\right| d t
\end{aligned}
$$

$$
=\int_{0}^{2 \pi}\left|2 i e^{i t}\right| d t=\int_{0}^{2 \pi} 2 d t=4 \pi
$$

Ok, thus,

$$
\begin{aligned}
& \text { Ok, thess, } \\
& \left|\int_{\gamma} \frac{d z}{z^{2}+1}\right| \leq \frac{1}{3} \operatorname{arclength}(\gamma)=\frac{4 \pi}{3}
\end{aligned}
$$

Think this: To show $\frac{a}{b} \leq \frac{c}{d}$
you show $a \leqslant c$ and $b \geqslant d$.
So then $\frac{1}{b} \leq \frac{1}{d}$ and so $\frac{a}{b} \leq \frac{c}{d}$.
(4)

Suppose z is on γ.
Then, $|z|=1$ and thus

$$
|z+1| \leq|z|+|1|=1+1=2
$$

$|z|=1$

$$
\begin{aligned}
& \left|z^{2}-8\right| \geqslant\left|\left|z^{2}\right|-|8|\right|=\left||z|^{2}-8\right| \\
& =\left|1^{2}-8\right| \\
& =|-7|=7
\end{aligned}
$$

and

So, $\frac{1}{\left|z^{2}-8\right|} \leq \frac{1}{7}$.
Thus, if z is on γ, then

$$
\left|\frac{z+1}{z^{2}-8}\right|=\frac{|z+1|}{\left|z^{2}-8\right|} \leqslant \frac{2}{7}
$$

Let $M=\frac{2}{7}$.
Then,

$$
\left\lvert\, \begin{aligned}
\left\lvert\, \int_{\gamma} \frac{z+1}{z^{2}-8} d z\right. & \leq M \operatorname{arclength}(\gamma) \text {. } \\
& =\frac{2}{7} \operatorname{arclength}(\gamma)
\end{aligned}\right.
$$

You can calculate the arclength as the length of γ with is $\frac{1}{2} 2 \pi(1)=\pi$ or by the integral:

$$
\begin{aligned}
& \text { Let } \gamma(t)=e^{i t}, \pi \leq t \leq 2 \pi \\
& \text { arcengh }(\gamma)=\int_{\pi}^{2 \pi}\left|\gamma^{\prime}(t)\right| d t \\
& =\int_{\pi}^{2 \pi}\left|i e^{i t}\right| d t=\int_{\pi}^{2 \pi} 1 d t \\
& =\pi
\end{aligned}
$$

Thus,

$$
\left|\int_{\gamma} \frac{z+1}{z^{2}-8} d z\right| \leqslant \frac{2}{7} \pi
$$

(5) (a)

Let γ be a closed piece wisc smooth curve lying entirely in $A=\mathbb{C}-\{z \mid \operatorname{Re}(z) \leq 0\}$.
Let $\log (z)$ be the principal branch of the logarithm.
Then $\log (z)$ is
 analytic on A.
And $\frac{1}{z}$ is continuous on A since $0 \notin A$.
Since γ is closed, $\gamma(a)=\gamma(b)$ Where $\gamma:[a, b] \rightarrow \mathbb{C}$.
So, by The FTOC,

$$
\begin{aligned}
& \text { cintiouovs on } A_{\text {R }} \quad \text { Floc cons } \\
& =\log (\gamma(a))-\log (\gamma(a))=0
\end{aligned}
$$

5 (b) Let $A=\mathbb{C}-\{x+i y \mid x \leqslant 0, y=0\}$ and $\gamma:[a, b] \rightarrow \mathbb{C}$. Here $\gamma(b)=\gamma(a)$.

If γ is totally contained in A since $F(z)=\log (z)$ is analytic on A (where $\log (z)$ is the principal branch of
 the (logarithm) and $F^{\prime}(z)=\frac{1}{z}$ is continuous on A, by the FTOC we get that

$$
\begin{aligned}
\int_{\gamma} \frac{d z}{z} & =\log \left(\gamma\left(b_{0}\right)\right)-\log (\gamma(a)) \\
& =\log (\gamma(a))-\log (\gamma(a)) \\
& =0
\end{aligned}
$$

