[I](a) $f(z)=13 z^{7}-3 z^{4}+1$ is a polynomial, so by class, is analytic on all of c, So, f is entire.

$$
\begin{aligned}
f^{\prime}(z) & =13.7 z^{6}-3 \cdot 4 z^{3} \\
& =91 z^{6}-12 z^{3} \quad \text { for all } z \in \mathbb{C}
\end{aligned}
$$

(1)(b) $f(z)=\frac{3 z^{2}-1}{2-z}$ is a rational
function so is analytic where the denominator is not zero.

$$
2-z=0 \text { when } z=2
$$

So, f is analytic on $A=\mathbb{C}-\{2\}$

$$
\begin{aligned}
& f^{\prime}(z)=\frac{6 z(2-z)-\left(3 z^{2}-1\right)(-1)}{(2-z)^{2}} \\
& =\frac{12 z-6 z^{2}+3 z^{2}-1}{(2-z)^{2}}=\frac{-3 z^{2}+12 z-1}{(2-z)^{2}}, \forall z e A
\end{aligned}
$$

$\mathbb{N}(c) \quad f(z)=\frac{\cos (z)}{\sin (z)}$
From $H W 2, \sin (z)=0$ if $z=n \pi$ Let $A=\mathbb{C}-\{\pi n \mid n \in \mathbb{Z}\}$, $n \in \mathbb{Z}$.

From class, $\sin (z)$ and $\cos (z)$ are analytic on all of \mathbb{C}. Thess, $f(z)=\frac{\cos (z)}{\sin (z)}$ is analytic where $\sin (z) \neq 0$.
so, $f(z)$ is analytic on A.

$$
\begin{aligned}
& \text { And }) \\
& \begin{aligned}
f^{\prime}(z) & =\frac{(\cos (z))^{\prime} \sin (z)-\cos (t)(\sin (z))^{\prime}}{\sin ^{2}(z)}=(b y y+1 \\
& =\frac{-\sin (z) \sin (z)-\cos (z) \cos (z)}{\sin ^{2}(z)}=\frac{\left(\sin ^{2}(z)+\cos ^{2}(z)\right.}{\sin ^{2}(z)}=-\frac{1}{\sin ^{2}(z)} \quad \forall z \in A
\end{aligned}
\end{aligned}
$$

(1) (d) $f(z)=\left(\frac{1}{z-1}\right)^{100}=(z-1)^{-100}$

Let $g(z)=z^{100}$ and $h(z)=\frac{1}{z-1}$.
Then $f(z)=(g \circ h)(z)=g(h(z))$.
$g(z)$ is entire, it is analytic on all of \mathbb{C}.
$h(z)$ is analytic on $A=\mathbb{C}-\{1\}$
The composition $f(z)$ is analytic on A.
with $f^{\prime}(z)=-100(z-1)^{-101}=\frac{-100}{(z-1)^{10^{1}}} \quad$ for all $\quad z \in A$

Let $f(z)=S^{z}=e^{z \log (5)}$ using the
(1)(e) principal branch of the logarithm m. From class, $f(z)$ is entire and

$$
f^{\prime}(z)=\log (5) \cdot 5^{z}
$$

(IU(f) From class, the principal branch of the logasithm $\log (w)$ is analytic on $A=\mathbb{C}-\{x+i y \mid x \leq 0, y=0\}$ When is $z+1 \notin A$?
Let $z=x+i y$.
Then $z+1=(x+1)+i y$. Then $z+1 \notin A$ iff $x+1 \leq 0, y=0$ iff $x \leq-1, y=0$.
Let $B=\mathbb{C}-\{x+i y \mid x \leq-1, y=0\}$.
Then $f(z)=\log (z+1)$ is analytic on B.

and

$$
\begin{aligned}
f^{\prime}(z) & =(\log (z+1))^{\prime} \\
& =\frac{1}{z+1} \cdot 1=\frac{1}{z+1} \quad \forall z \in B
\end{aligned}
$$

(1) (g) Let $f(z)=z^{1+i}=e^{(1+i) \log (z)}$, where

Let $A=\mathbb{C}-\{x+i y\} x=\begin{array}{ll}\log (z) \text { is } \\ \text { defined as } \\ \text { the principal }\end{array}$ the principal | epronch of |
| :--- |
| branch tog |

From class, f is analytic on A and $f^{\prime}(z)=(1+i) z^{(1+i)-1}$

$$
=(1+i) z^{i} \quad \forall z \in A
$$

(1) $(h) \quad f(z)=(z-2)^{1 / 2}=h(g(z))$

Let $h(z)=z^{1 / 2}=e^{1 / 2 \log (z)}$ defined u sing the brincipal branch of the logarithm and $g(z)=z-2$.
Let $A=\mathbb{C}-\{x+i y \mid x \leqslant 0, y=0\}$
Then, $h(z)$ is analytic on A.
$g(z)=z-\alpha$ is analytic on all of \mathbb{C}.
Let $z=x+i y$. Then $z-2 \notin A$
iff $(x-2)+i y \notin A$ iff $x-2 \leq 0, y=0$ iff $x \leq 2, y=0$.
Set $B=\mathbb{C}-\{x+i y \mid x \leq 2, y=0\}$.
Then, $f(z)=h(g(z))$ is analytic on B.

And $f^{\prime}(z)=\frac{1}{2}(z-2)^{-1 / 2}$
(2) $(a) f(z)=|z|$

$$
f(x+i y)=\sqrt{x^{2}+y^{2}}+i 0
$$

Cauchy -Riemann time:

$$
\begin{aligned}
& \text { Cauchy -Riemann the } \\
& \frac{\partial u}{\partial x}(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot 2 x=\frac{x}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=\frac{y}{\sqrt{x^{2}}} \\
& \frac{\partial v}{\partial x}=0 \\
& \frac{\partial v}{\partial y}=0
\end{aligned}
$$

Cauchy Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

these become
(*) is solved when $x=0$ \& $y \neq 0$.
$(\psi d x)$ is solved when $y=0 \& x \neq 0$.
There are no common solutions to $(*)$ and ($(* x)$ Thus, $f(z)=|z|$ is analytic nowhere.
$[2](b) f(z)=e^{\bar{z}}$

Cauchy -Riemann: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x}$

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=e^{x} \cos (y) \\
\frac{\partial v}{\partial y}=-e^{x} \cos (y)
\end{array}\right\} \xrightarrow{(* 1)} \begin{aligned}
& \text { cauchy-Rieman } \\
& \text { iff } 2 e^{x} \cos (y)=0 \\
& \text { if } \cos (y)=0 \\
& \text { iff } y \in\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{\partial 1}{\partial x}=-e^{x} \cos (y)\right] \\
& \left.\frac{\partial v}{\partial y}=1,1\right]
\end{aligned}
$$

iff $\cos (y)=0$
inf $y \in\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots\right\}$

$$
\frac{\partial u}{\partial y}=-e^{x} \sin (y)
$$

$$
\begin{aligned}
& x \in \mathbb{R} \\
& ((x) x) \frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x} \text { inf }-e^{x} \sin (y)=e^{x} \sin (y) \\
& x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} \text { it }(y)=0 \\
& \text { iff } 2 e^{\sin }(y \in \pi, \pm 2
\end{aligned}
$$

There are no common solutions to $(*)$ and $(* *)$ so $f(z)$ is not analytic anywhere

$$
\begin{aligned}
& \text { Let } z=x+i y \text {. } \\
& \text { Then } \\
& f(z)=e^{\bar{z}}=e^{x-i y}=e^{x} e^{i(-y)} \\
& =e^{x}[\underbrace{\cos (-y)}_{\cos (y)}+i \underbrace{\sin (-y)}_{-\sin (y)}] \\
& =\underbrace{e^{x} \cos (y)}+i[-\underbrace{-e^{x} \sin (y)}] \\
& u(x, y)=e^{x} \cos (y) \\
& v(x, y)=-e^{x} \sin (y)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) }(a) \quad f(x+i y)=x^{2}+i y^{2} \\
& u(x, y)=x^{2} \quad \sim(x, y)=y^{2} \\
& \begin{array}{l}
\frac{\partial u}{\partial x}=2 x \\
\frac{\partial V}{\partial y}=2 y
\end{array} \\
& \left.\begin{array}{l}
\frac{\partial u}{\partial y}=0 \\
-\frac{\partial v}{\partial x}=0
\end{array}\right\} \begin{array}{l}
(x t) \\
\frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x} \\
\text { for all } x, y
\end{array} \\
& \text { for all } x, y \text {, }
\end{aligned}
$$

The common solutions to $(*)$ and $(* *)$ is the set $A=\{x+i y \mid x=y\}$

$$
\begin{aligned}
& =\{x+i y \mid a \in \mathbb{R}\} . \\
& =\{a+i a \mid
\end{aligned}
$$

Note that $u(x, y)=x^{2}$ and $v(x, y)=y^{2}$ are continuous for all (x, y) with $x=y$. Thus, $f(x+i y)=x^{2}+i y^{2}$ is on A. To be analytic at a point you

$$
f^{\prime}(x+i y)=\underbrace{2 x}_{\partial u / \partial x}+i \underbrace{0}_{\partial v / \partial x}=2 x \left\lvert\, \begin{gathered}
\text { must be differentiable } \\
\text { and an pen set } \\
\text { onntaing that } \\
\text { cont. } \\
\text { point. }
\end{gathered}\right.
$$

$$
\begin{aligned}
& (3)(b) f(z)=z \cdot \operatorname{Im}(z) \\
& f(x+i y)=(x+i y) \cdot y=x y+i y^{2} \\
& \underbrace{u}(x, y)=x y \quad \widetilde{v}(x, y)=y^{2} \\
& \begin{array}{l}
\frac{\partial u}{\partial x}=y \\
\frac{\partial v}{\partial y}=2 y
\end{array} \\
& \frac{\partial u}{\partial y}=x \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \text { eff } \quad x=0 \\
& y \in \mathbb{R} \\
& -\frac{\partial v}{\partial x}=0 \\
& \text { (*) } \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { inf } y=2 y \text { ifs } y=0 \\
& x \in \mathbb{R}
\end{aligned}
$$

$(*)$ and $(* *)$ have common solution

$$
\begin{aligned}
& (*) \text { and } \\
& x+i y=0+i 0=0 \text {. }
\end{aligned}
$$

So, f is differentiable only at $z=0$ with $f(x+i y)=\frac{\partial u}{\partial x}(0,0)+i \frac{\partial v}{\partial x}(0,0)$

$$
=0+\bar{\imath} 0=0
$$

Nate that f is not analytic at o since f is not different rule

where f has a derivative in a neighborhood of 0
(4) $f^{\prime}(0)$ if it existed would be equal to

$$
=\lim _{z \rightarrow 0}\left(\frac{\bar{z}}{z}\right)^{2}=\lim _{x+i y \rightarrow 0}\left(\frac{x-i y}{x+i y}\right)^{2}
$$

If the limit exists, then it wouldn't matter what direction we approached O from, we would get the same answer.
Suppose $x+i y \rightarrow 0+i 0$ along the x-axis.
Ie suppose $y=0$, and $x \neq 0$. Then,

$$
\left(\frac{x-i y}{x+i y}\right)^{2}=\left(\frac{x}{x}\right)^{2}=1
$$

So, approaching 0 along the x-axis we get 1 .

Now let's approach 0 along the line $y=x$.
Suppose $y=x$ and $y \neq 0, x \neq 0$, then

So as $x+i y \rightarrow 0$ along the line $y=x$ we get -1 ,

Since we get 1 approaching 0 on the x-axis and -1 approaching 0 on the line $y=x$, the limit $\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}$ dues not exist. Hence, $f^{\prime}(0)$ does not exist.
(5) Let $g: A \rightarrow \mathbb{C}$ be analytic on A where $A \leq \mathbb{C}$ is an open set.

Let $B=\{z \in A \mid g(z) \neq 0\}$.
(i) Let's show that B is open.

Let $z_{0} \in B$.
let's show that to is an interior point of B.
Since g is analytic on A, g is continuous on $A[$ class Thu $]$.
Thus, g is continuous on the open set A containing z_{0} and $g\left(z_{0}\right) \neq 0$.
Therefore, by HW 4, there exists $r>0$ so that $g(z) \neq 0$ for all $z \in D\left(z_{0}, r\right)$ with $D\left(z_{0} ; r\right) \subseteq A$.

Since $g(z) \neq 0 \quad \forall z \in D\left(z_{0} ; r\right)$, and $D\left(z_{0} ; r\right) \subseteq A$, we have that $D\left(z_{0} ; r\right) \subseteq B$.
So, Z_{0} is an interior point of B. Thus, B is open.
(ii) Since 1 is analytic on B, and $g(z)$ is analytic on B, and $g(z) \neq 0$ on B, by the from class $\frac{1}{g(z)}$ is analytic on B.

