(1) For problem 1 we use this theorem from class:
Given $f(x+i y)=u(x, y)+i v(x, y)$
$z_{0}=x_{0}+i y_{0}, w_{0}=u_{0}+i v_{0}$, then

$$
\lim _{z \rightarrow z_{0}} f(x, y)=u_{0}+i v_{0}=w_{0}
$$

$i f f$

$$
\begin{aligned}
& \text { ff } \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
\end{aligned}
$$

I (a) Let $c=c_{0}+i c_{1}$. Then

$$
\lim _{z \rightarrow z_{0}} c \underbrace{}_{\substack{\text { equal if } \\
\text { the RH :s } \\
\text { exists }}}=\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} c_{0}+i \underbrace{\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} c_{1}}_{\begin{array}{c}
\text { Calc III } \\
\text { limits }
\end{array}}
$$

$$
=c_{0}+i c_{1}=c
$$

Calk III, limit of a constant is a constant)
l(b) Let $a=a_{0}+i a_{1}, b=b_{0}+i b_{1}$,

$$
\begin{aligned}
& z=x+i y \text {, and } z_{0}=x_{0}+i y_{0} \text {. } \\
& \lim (a z+b)=\lim \left(a_{0}+i a_{1}\right)(x+i y)^{\prime} / b \\
& z \rightarrow z_{0} \\
& x+i y \rightarrow x_{0}+i y_{0} \\
& =\lim _{x+i y \rightarrow x_{0}+i y_{0}}\left[\left(a_{0} x-a_{1} y+b_{0}\right)+i\left(a_{1} x+a_{0} y+b_{1}\right)\right. \\
& =\lim \left(a_{0} x-a_{1} y+b_{0}\right) \\
& A(x, y) \rightarrow\left(x_{0}, y_{0}\right) \\
& \text { Canc II } \\
& \left.+\frac{i\left[\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(a_{1} x+a_{0} y+b_{1}\right)\right.}{\lambda}\right] \\
& =\left(a_{0} x_{0}-a_{1} y_{0}+b_{0}\right) \\
& +i\left(a_{1} x_{0}+a_{0} y_{0}+b_{1}\right) \\
& \text { Limits } \\
& \text { of continuous } \\
& =\left(a_{0}+i a_{1}\right)\left(x_{0}+i y_{0}\right) \\
& +\left(b_{0}+i b_{1}\right) \\
& \begin{array}{l}
\text { functions (polynomial } \\
\text { so we car just plug }
\end{array} \\
& \text { in } x_{0}, y_{0}=a z_{0}+b \text {. }
\end{aligned}
$$

I (c) Let $c=c_{0}+i c_{1}, z=x+i y$, $z_{0}=x_{0}+i y_{0}$,

$$
\begin{aligned}
& \text { Then } \\
& \lim _{z \rightarrow z_{0}}\left(z^{2}+c\right)=\lim _{x+i y \rightarrow x_{0}+i y_{0}}\left((x+i y)^{2}+\left(c_{0}+i c_{1}\right)\right) \\
& =\lim _{x+i y \rightarrow x_{0}+i y_{0}}\left[\left(x^{2}-y^{2}+c_{0}\right)+i\left(2 x y+c_{1}\right)\right] \\
& =\lim _{x}\left[x^{2}-y^{2}+c_{0}\right]+i \lim \left[2 x y+c_{1}\right] \\
& \frac{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}{\lambda} \\
& \text { If RHS } \\
& \text { exists } \\
& \text { Case } \frac{\pi 1}{\text { limits of continuous }} \\
& \text { limits of conctilynomials) } \\
& \text { so can plug in } x_{0}, y_{0} \\
& =\left[x_{0}^{2}-y_{0}^{2}+c_{0}\right]+i\left[2 x_{0} y_{0}\right) \\
& =\left(x_{0}+i y_{0}\right)^{2}+\left(c_{0}+i c_{1}\right) \\
& =z_{0}^{2}+c
\end{aligned}
$$

(d) Let $z=x+i y, z_{0}=x_{0}+i y_{0}$

Then,

$$
\begin{aligned}
& \text { hen, } \left.\operatorname{Re}(z)=\lim _{x+i y \rightarrow x_{0}+i y_{0}}^{x}+i 0\right] \\
& \lim _{x+i y \rightarrow x_{0}+i y_{0}} \operatorname{Re}+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \\
& =\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} x+\operatorname{Re}\left(z_{0}\right) \\
& =x_{0}+i 0=\operatorname{lo}
\end{aligned}
$$

(2) Let $z=x+i y$ and

$$
z_{0}=x_{0}+i y_{0}
$$

Using the same theorem that we used in problem I we

$$
\begin{aligned}
& \text { get }: \\
& \lim _{z \rightarrow z_{0}} \bar{z}=\lim _{x+i y \rightarrow x_{0}+i y_{0}} \overline{(x+i y)} \\
& \lim _{x}+i
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} x+i y \rightarrow x_{0}+i y_{0} \\
& =\lim _{x+i y \rightarrow x_{0}+i y_{0}} x-i y=\lim _{p} x+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

$$
=\overline{z_{0}}
$$

Thus, \bar{z} is continuous at all $z_{0} \in \mathbb{C}$, since

$$
\lim _{z \rightarrow z_{0}} \bar{z}=\overline{z_{0}}
$$

3 Same tactic as problem 2.
Let $z=x+i y$ and $z_{0}=x_{0}+i y_{0}$

$$
\begin{aligned}
& \text { Then, } \\
& \lim _{z \rightarrow z_{0}}|z|=\lim _{x+i y \rightarrow x_{0}+i y_{0}}\left[\sqrt{x^{2}+y^{2}}+i 0\right] \\
& =\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \sqrt{x^{2}+y^{2}}+i \underbrace{\lim _{x} 0}_{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}
\end{aligned}
$$

$$
\begin{array}{ll}
=\sqrt{x_{0}^{2}+y_{0}^{2}}+i 0 \\
= & \left|z_{0}\right| . \quad \\
& \text { Since } \lim _{z \rightarrow z_{0}}|z|=\left|z_{0}\right| \\
& \text { form all } z_{0} \in \mathbb{C},
\end{array}
$$

for all $z_{0} \in \mathbb{C}$, $|z|$ is continuous on all of \mathbb{C}.
(4) Suppose the given conditions of the

$$
\lim _{z \rightarrow z_{0}} f(z)=L_{1} \quad \text { and } \lim _{z \rightarrow z_{0}} f(z)=L_{2} \text {. }
$$

Let $\varepsilon>0$.
Since $\lim _{z \rightarrow z_{0}} f(z)=L$, there exists a $\delta_{1}>0$ so that if $z \in A$ and $\underbrace{0<\left|z-z_{0}\right|<\delta_{1}}_{\substack{z_{\text {is }} \delta \text { close to } z_{0} \\ \text { but } \neq z_{0}}}$ then $\left|f(z)-L_{1}\right|<\varepsilon / 2$.
Simiady there exists $\delta_{2}>0$ so that if $z \in A$ and $0<\left|z-z_{0}\right|<\delta$ then $\left|f(z)-L_{2}\right|<\varepsilon / 2$, Thus, if $z \in A$ and

$$
\begin{aligned}
& \text { s, if } z \in A \text { and } \\
& 0<\left|z-z_{0}\right|<\underbrace{\min \left\{\delta_{1}, \delta_{2}\right\}}_{\substack{\text { this means the smaller } \\
\text { of s min }}}
\end{aligned}
$$

then

$$
\begin{aligned}
& \text { Then } \\
& \begin{aligned}
\left|L_{1}-L_{2}\right| & =\left|L_{1}-f(z)+f(z)-L_{2}\right| \\
& \leq\left|L_{1}-f(z)\right|+\left|f(z)-L_{2}\right| \\
& =\left|f(z)-L_{1}\right|+\mid f\left(z\left|-L_{2}\right|\right. \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
\end{aligned}
$$

So, $\left|L_{1}-L_{2}\right|<\varepsilon$
for all positive ε.
Thus, $\left|L_{1}-L_{2}\right|=0$.
So, $L_{1}-L_{2}=0$
Thus, $L_{1}=L_{2}$.
(5) Suppose that $f: A \rightarrow \mathbb{C}$ where A is an open set. Suppose that f is continuous at $z_{0} \in A$ and that $f\left(z_{0}\right) \neq 0$. and that $f\left(z_{0}\right) \neq 0$
First note that since $z_{0} \in A$ and A is open, there exists $r_{0}>0$ so that $D\left(z_{0} ; r_{0}\right) \subseteq A$, We want to show
 exists an r-neighborhood $D\left(z_{0} ; r\right) \leq A$ such that $f(z) \neq 0$ for all $z \in D\left(z_{0} ; r\right)$ We may only consider $r<r_{0}$ since we can always shrink down.
We show this by contradiction.
That is suppose that no such
neighborhood exists. That is,
for every r with $0<r<r_{0}$, there exists $z_{r} \in D$
with $f\left(z_{r}\right)=0$.

We show this contradicts the fact that f is continuous at z_{0}

Let $L=f\left(z_{0}\right) \neq 0$.
Since f is continuous at z_{0} this means that given $\varepsilon=\frac{121}{2}>0$
there exists a $0<\delta<r_{0}$ we may wis be $\delta<r_{0}$ such that if $z \in A$ and

$$
\left|z-z_{0}\right|<\delta
$$

then

But from the previous page there exists $\underbrace{z_{\delta} \in D\left(z_{0} ; \delta\right)}$
with $f\left(z_{\delta}\right)=0$. But then,

$$
|L|=|O-L|=\left|f\left(z_{\delta}\right)-L\right|<\frac{|L|}{2}
$$

So, $|L|<\frac{1 L 1}{2}$. But this can't happen since $L \neq 0$. Contradiction.
(6) Let $f: \mathbb{C} \rightarrow \mathbb{C}$.
\Leftrightarrow Suppose that f is continuous on all of \mathbb{C}.
Let $A \subseteq \mathbb{C}$ be an open set.

(Picture for proof)
We want to show that

$$
\begin{aligned}
& \text { want to show that } \\
& f^{-1}(A)=\{z \in \mathbb{C} \mid f(z) \in A\}
\end{aligned}
$$

is open.
Let $z_{0} \in f^{-1}(A)$. Then $f\left(z_{0}\right) \in A$.
Since A is open and $f\left(z_{0}\right) \in A$,
there exists $\varepsilon>0$ so that $D\left(f\left(z_{0}\right) ; \varepsilon\right) \leq A$.
That is, if $\left|w-f\left(z_{0}\right)\right|<\varepsilon$ then $w \in A$.

Since f is continuous at z_{0}, given $\varepsilon>0$ there exists $\delta>0$ so that if $z \in \mathbb{C}$ and $\frac{\left|z-z_{0}\right|<\delta}{\text { since } \lim _{z \rightarrow z_{0}} \lim _{0}(z)=f\left(z_{0}\right)}\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$.
That means for all $z \in \mathbb{C}$ with $\left|z-z_{0}\right|<\delta$ then $f(z) \in D\left(f\left(z_{0}\right) ; \varepsilon\right)$.
So if $z \in D\left(z_{0} ; \delta\right)$,
then $f(z) \in D\left(f\left(z_{0}\right) ; \varepsilon\right) \subseteq A$.
So, if $z \in D\left(z_{0} ; \delta\right)$, then $\underbrace{z \in f^{-1}(A)}_{\text {since } f(z) \in A}$
Summarizing, if $z_{0} \in f^{-1}(A)$, there exists a δ-neighborhood of z_{0} contained in $f^{-1}(A)$. So, $f^{-1}(A)$ is open.
(($\sqrt{ }$) on the next page)
(\Longleftarrow) Suppose $f^{-1}(A)$ is open for every open set $A \subseteq \mathbb{C}$.

Let $z_{0} \in \mathbb{C}$.
Let's show $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$.
let $\varepsilon>0$.
Let $A=D\left(f\left(z_{0}\right) ; \varepsilon\right)$,
Since A is open $\left(1+w^{3}\right)$, by the as sumption above, $f^{-1}(A)$ is open.
We have that $z_{0} \in f^{-1}(A)$ since $f\left(z_{0}\right) \in A$. Since $f^{-1}(A)$ is open there exists $\delta>0$ so that $D\left(z_{0} ; \delta\right) \subseteq f^{-1}(A)$.
That is, if $z \in D\left(z_{0} ; \delta\right)$ then $z \in f^{-1}(A)$.
That is, if $\left|z-z_{0}\right|<\delta$ then $f(z) \in A$.
That is, if $\left|z-z_{0}\right|<\delta$ then $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$

