Math 4680 - Homework # 9 Cauchy's Theorem

- 1. Evaluate the following integrals.
 - (a) $\int_{\gamma} (z^2 z + 10) dz$ where γ is the upper half of the unit circle oriented counterclockwise.
 - (b) $\int_{\gamma} (z^2 z + 10)$ where γ is the unit circle. (c) $\int_{\gamma} e^{1/z} dz$ where γ is a circle of radius 2 centered at 2 + i.
 - (d) $\int_{\gamma} \frac{1}{\sin(z)} dz$ where γ is the box with corners at $\frac{1}{2}$, $\frac{5}{2}$, $\frac{5}{2} + 3i$, and $\frac{1}{2} + 3i$. Orient γ in the counterclockwise direction.
 - (e) $\int_{\gamma} z^i dz$ where γ is the curve composed of line segments from 1-i to 1+i to -1+i to -1. Here to define z^i choose the branch of the logarithm corresponding to $-\frac{\pi}{2} < \arg(z) < \frac{3\pi}{2}$.
- 2. Let γ_1 be the circle of radius 1 and let γ_2 be the circle of radius 2 (both oriented counterclockwise and centered at the origin). Show that

$$\int_{\gamma_1} \frac{dz}{z^{10}(z^2+9)} \, dz = \int_{\gamma_2} \frac{dz}{z^{10}(z^2+9)} \, dz$$