Math 4680 - Homework \# 9
 Cauchy's Theorem

1. Evaluate the following integrals.
(a) $\int_{\gamma}\left(z^{2}-z+10\right) d z$ where γ is the upper half of the unit circle oriented counterclockwise.
(b) $\int_{\gamma}\left(z^{2}-z+10\right)$ where γ is the unit circle.
(c) $\int_{\gamma} e^{1 / z} d z$ where γ is a circle of radius 2 centered at $2+i$.
(d) $\int_{\gamma} \frac{1}{\sin (z)} d z$ where γ is the box with corners at $\frac{1}{2}, \frac{5}{2}, \frac{5}{2}+3 i$, and $\frac{1}{2}+3 i$. Orient γ in the counterclockwise direction.
(e) $\int_{\gamma} z^{i} d z$ where γ is the curve composed of line segments from $1-i$ to $1+i$ to $-1+i$ to -1 . Here to define z^{i} choose the branch of the logarithm corresponding to $-\frac{\pi}{2}<\arg (z)<\frac{3 \pi}{2}$.
2. Let γ_{1} be the circle of radius 1 and let γ_{2} be the circle of radius 2 (both oriented counterclockwise and centered at the origin). Show that

$$
\int_{\gamma_{1}} \frac{d z}{z^{10}\left(z^{2}+9\right)} d z=\int_{\gamma_{2}} \frac{d z}{z^{10}\left(z^{2}+9\right)} d z
$$

