Math 455

Homework \# 8 - Homomorphisms and the Kernel

1. For the following functions ϕ, prove that ϕ is a homomorphism. Then find $\operatorname{Ker}(\phi)$ and the image of ϕ.
(a) Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ with $\phi(n)=5 n$.
(b) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}^{\times}$with $\phi(x)=2^{x}$.
(c) Let G be an abelian group. Let $\phi: G \rightarrow G$ with $\phi(g)=g^{-1}$.
2. Let $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$ be the homomorphism with $\phi(1)=\overline{2}$. Calculate $\phi(3)$ and $\phi(-2)$. Calculate $\operatorname{Ker}(\phi)$. Calculate $\phi(\mathbb{Z})$.
3. Let $\phi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{4}$ be the homomorphism with $\phi(\overline{1})=\overline{3}$. Draw a picture of ϕ. Calculate $\operatorname{Ker}(\phi)$. Calculate $\phi\left(\mathbb{Z}_{8}\right)$.

For the following exercises: Let G and G^{\prime} be groups. Let e^{\prime} be the identity of G^{\prime}. The homomorphism $\phi: G \rightarrow G^{\prime}$ defined by $\phi(g)=e^{\prime}$ for all $g \in G$ is called the trivial homomorphism. Any other homomorphism is called non-trivial.
4. Does there exist a non-trivial homomorphism $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{5}$?
5. Does there exist a non-trivial homomorphism $\phi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}$?
6. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Prove that if $|G|$ is prime, then either ϕ is the trivial homomorphism or ϕ is one-to-one.
7. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Prove that $\phi(G)$ is abelian if and only if $x y x^{-1} y^{-1} \in \operatorname{Ker}(\phi)$ for all $x, y \in G$.

