Math 4680 - Homework \# 6 Contour Integrals

1. Compute the following integrals by hand by using the formula

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

Do not use the Fundamental Theorem of Calculus (FTOC).
(a) Evaluate the integral $\int_{\gamma}\left(z^{2}+2\right) d z$ where γ is the line segment joining 1 to $2+i$.
(b) Evaluate the integral $\int_{\gamma}\left(z^{3}+z\right) d z$ where γ is the circle of radius 3 centered at 0 traveled once counterclockwise.
(c) Evaluate the integral $\int_{\gamma}(x-y) d z$ where γ is the line segment joining 1 to $1+i$.
2. Compute the following integrals in whatever way you wish.
(a) Evaluate the integral $\int_{\gamma} \cos (2 z) d z$ where γ is the line segment joining $i+1$ to $-i$.
(b) Evaluate the integral $\int_{\gamma} z e^{z^{2}} d z$ where γ is the unit circle traveled once counterclockwise.
(c) Evaluate the integral $\int_{\gamma} \frac{1}{z-1} d z$ where γ is the circle of radius 2 centered at 1 traveled once counterclockwise.
3. Let γ be the circle $|z|=2$ oriented in the counter-clockwise direction. Show that

$$
\left|\int_{\gamma} \frac{d z}{z^{2}+1}\right| \leq \frac{4 \pi}{3}
$$

4. Let γ be the bottom half of the unit circle going in a counterclockwise direction. Show that

$$
\left|\int_{\gamma} \frac{z+1}{z^{2}-8}\right| \leq \frac{2 \pi}{7}
$$

5. (a) Let γ be a closed piecewise smooth curve lying entirely in $A=$ $\mathbb{C}-\{z \mid \operatorname{Re}(z) \leq 0\}$. Show that $\int_{\gamma}(1 / z) d z=0$.
(b) Give some conditions on a closed piecewise smooth curve that guarantee that $\int_{\gamma}(1 / z) d z=0$.
