Math 4680 - Homework # 5 Analytic functions and derivatives

- 1. Where are the following functions analytic? Give a formula for f'(z) where f'(z) exists.
 - (a) $13z^7 3z^4 + 1$
 - (b) $\frac{3z^2 1}{2 z}$
 - (c) $\frac{\cos(z)}{\sin(z)}$

(d)
$$\left(\frac{1}{z-1}\right)^{100}$$

- (e) 5^z , defined using the principal branch of the logarithm
- (f) $\log(z+1)$, where $\log(u)$ is the principal branch of the logarithm
- (g) $z^{(1+i)}$, defined using the principal branch of the logarithm
- (h) $\sqrt{z-2}$, defined using the principal branch of the logarithm
- 2. Show that f'(z) does not exist at any point if
 - (a) f(z) = |z|(b) $f(z) = e^{\overline{z}}$
- 3. Determine where f'(z) exists and find its formula for f'(z) where it exits. Where is f(z) analytic?
 - (a) $f(x+iy) = x^2 + iy^2$
 - (b) $f(z) = z \cdot \operatorname{Im}(z)$
- 4. Let

$$f(z) = \begin{cases} (\overline{z})^2/z & \text{when } z \neq 0\\ 0 & \text{when } z = 0 \end{cases}$$

Show that f'(0) does not exist.

5. Let g be analytic on an open set A. Let $B = \{z \in A \mid g(z) \neq 0\}$. Show that (i) B is open and (ii) 1/g is analytic on B.