Math 4680 - Homework \# 5

Analytic functions and derivatives

1. Where are the following functions analytic? Give a formula for $f^{\prime}(z)$ where $f^{\prime}(z)$ exists.
(a) $13 z^{7}-3 z^{4}+1$
(b) $\frac{3 z^{2}-1}{2-z}$
(c) $\frac{\cos (z)}{\sin (z)}$
(d) $\left(\frac{1}{z-1}\right)^{100}$
(e) 5^{z}, defined using the principal branch of the logarithm
(f) $\log (z+1)$, where $\log (u)$ is the principal branch of the logarithm
(g) $z^{(1+i)}$, defined using the principal branch of the logarithm
(h) $\sqrt{z-2}$, defined using the principal branch of the logarithm
2. Show that $f^{\prime}(z)$ does not exist at any point if
(a) $f(z)=|z|$
(b) $f(z)=e^{\bar{z}}$
3. Determine where $f^{\prime}(z)$ exists and find its formula for $f^{\prime}(z)$ where it exits. Where is $f(z)$ analytic?
(a) $f(x+i y)=x^{2}+i y^{2}$
(b) $f(z)=z \cdot \operatorname{Im}(z)$
4. Let

$$
f(z)= \begin{cases}(\bar{z})^{2} / z & \text { when } z \neq 0 \\ 0 & \text { when } z=0\end{cases}
$$

Show that $f^{\prime}(0)$ does not exist.
5. Let g be analytic on an open set A. Let $B=\{z \in A \mid g(z) \neq 0\}$. Show that (i) B is open and (ii) $1 / g$ is analytic on B.

