$\begin{array}{c} {\rm Math}\ 455\\ {\rm Homework}\ \#\ 5\ \text{-}\ {\rm Symmetric}\ {\rm Group} \end{array}$

- 1. Consider the group S_3 .
 - (a) Compute the group table for S_3 .
 - (b) Compute the orders of all the elements in S_3 .
 - (c) Compute the inverse of each element in S_3 .
- 2. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$ be elements of S_5 .
 - (a) Draw a picture of σ .
 - (b) Draw a picture of τ .
 - (c) Compute $\sigma\tau$.
 - (d) Compute σ^2 .
 - (e) Compute σ^{-1} and τ^{-1} .
 - (f) Compute $\tau \sigma^2 \tau^3$.
 - (g) Compute the order of σ and $\langle \sigma \rangle$.
 - (h) Compute the order of τ .

3. Given the following elements of S_n , decompose the permutation as the product of disjoint cycles, and then as a product of transpositions. Is the permutation even or odd?

(a)	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\frac{2}{7}$	$\frac{3}{4}$	$\frac{4}{3}$	51	6 6	75	$\binom{8}{8}$
(b)	$\begin{pmatrix} 1\\ 3 \end{pmatrix}$	2 1	$\frac{3}{4}$	$\frac{4}{5}$	$5 \\ 2$	$6 \\ 7$	7 8	$\binom{8}{6}$

(c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 5 & 3 & 7 & 1 & 4 & 2 & 9 & 8 & 10 \end{pmatrix}$

Λ	
±	•

- (a) Let G be a group and let $g \in G$. Define $\phi_g : G \to G$ by $\phi_g(x) = g^{-1}xg$. Prove that ϕ_g is an isomorphism.
- (b) Let $G = \mathbb{Z}_5$ and $g = \overline{3}$. Draw a picture of ϕ_g from part 1 above.
- (c) Let $G = D_{10}$ and g = r. Draw a picture of ϕ_g from part 1 above.
- (d) Let $G = D_{10}$ and g = s. Draw a picture of ϕ_g from part 1 above.

5. Use the technique from Cayley's theorem to find a subgroup of $S_{\mathbb{Z}_5}$ that \mathbb{Z}_5 is isomorphic to.

6. Use the technique from Cayley's theorem to find a subgroup of S_{D_4} that D_4 is isomorphic to.

7. Prove that S_n is not abelian when $n \geq 3$.