Math 455
 Homework \# 5-Symmetric Group

1. Consider the group S_{3}.
(a) Compute the group table for S_{3}.
(b) Compute the orders of all the elements in S_{3}.
(c) Compute the inverse of each element in S_{3}.
2. Let $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5\end{array}\right)$ and $\tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right)$ be elements of S_{5}.
(a) Draw a picture of σ.
(b) Draw a picture of τ.
(c) Compute $\sigma \tau$.
(d) Compute σ^{2}.
(e) Compute σ^{-1} and τ^{-1}.
(f) Compute $\tau \sigma^{2} \tau^{3}$.
(g) Compute the order of σ and $\langle\sigma\rangle$.
(h) Compute the order of τ.
3. Given the following elements of S_{n}, decompose the permutation as the product of disjoint cycles, and then as a product of transpositions. Is the permutation even or odd?
(a) $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 7 & 4 & 3 & 1 & 6 & 5 & 8\end{array}\right)$
(b) $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 4 & 5 & 2 & 7 & 8 & 6\end{array}\right)$
(c) $\left(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 5 & 3 & 7 & 1 & 4 & 2 & 9 & 8 & 10\end{array}\right)$
4.

(a) Let G be a group and let $g \in G$. Define $\phi_{g}: G \rightarrow G$ by $\phi_{g}(x)=g^{-1} x g$. Prove that ϕ_{g} is an isomorphism.
(b) Let $G=\mathbb{Z}_{5}$ and $g=\overline{3}$. Draw a picture of ϕ_{g} from part 1 above.
(c) Let $G=D_{10}$ and $g=r$. Draw a picture of ϕ_{g} from part 1 above.
(d) Let $G=D_{10}$ and $g=s$. Draw a picture of ϕ_{g} from part 1 above.
5. Use the technique from Cayley's theorem to find a subgroup of $S_{\mathbb{Z}_{5}}$ that \mathbb{Z}_{5} is isomorphic to.
6. Use the technique from Cayley's theorem to find a subgroup of $S_{D_{4}}$ that D_{4} is isomorphic to.
7. Prove that S_{n} is not abelian when $n \geq 3$.

