Math 455

Homework \# 4 - Cyclic Groups

1. Suppose that $\phi: U_{5} \rightarrow \mathbb{Z}_{5}$ is a homomorphism with $\phi\left(e^{2 \pi i / 5}\right)=\overline{2}$. Find all the values of ϕ and draw a picture of ϕ.
2. Is there an isomophism $\phi: U_{8} \rightarrow \mathbb{Z}_{8}$ with $\phi\left(e^{\pi i / 4}\right)=\overline{2}$? Explain why or why not.
3. Find all homomorphisms $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$. Which ones are isomorphims?
4. Find all homomorphisms $\phi: \mathbb{U}_{6} \rightarrow \mathbb{Z}_{3}$.
5. Find all homomorphisms $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$.
6. Find all homomorphisms $\phi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{6}$.
7. Find all the subgroups of U_{6}.
8. Find all the subgroups of \mathbb{Z}_{8}.
9. Does there exist a cyclic group with exactly one generator? Does there exist a cyclic group with exactly two generators?
10. Find all the generators of U_{6}.
11. Find all the generators of \mathbb{Z}_{8}.
12. Let G be a group and $x \in G$. Prove that $\langle x\rangle=\left\langle x^{-1}\right\rangle$.
13. Prove that the set of rational numbers \mathbb{Q} under addition is not a cyclic group. This is an example of an infinite abelian group that is not cyclic.
14. Let G be a group and let x be an element of G. Prove that the order of x equals the order of x^{-1}.
15. Find all homomorphisms $\phi: \mathbb{Z}_{6} \rightarrow D_{6}$.
16. Are the following pairs of groups isomorphic? If so, find an isomorphism. If not, explain why no isomorphism exists.
(a) \mathbb{R} and \mathbb{Z}
(b) U_{5} and \mathbb{Z}_{5}
(c) D_{8} and \mathbb{Z}_{8}
(d) $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$.
