Math 455
 Homework \# 3 - Homomorphisms

1. Are the following functions homomorphisms? Are they isomorphisms? Prove or disprove. Recall that \mathbb{Z} and \mathbb{Q} are groups under addition; while \mathbb{Q}^{*} and \mathbb{R}^{*} are groups under multiplication.
(a) $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\phi(n)=5 n$.
(b) $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $\phi(n)=2 n-1$.
(c) $\phi: \mathbb{Q} \rightarrow \mathbb{Q}$ be defined by $\phi(x)=x / 5$.
(d) $\phi: \mathbb{Q}^{*} \rightarrow \mathbb{Q}^{*}$ be defined by $\phi(x)=x^{2}$.
(e) $\phi: \mathbb{Q}^{*} \rightarrow \mathbb{Q}^{*}$ be defined by $\phi(x)=3 x$.
(f) $\phi: \mathbb{R} \rightarrow \mathbb{R}^{*}$ be defined by $\phi(x)=e^{x}$.
2. Let n be an integer with $n \geq 2$. Let

$$
n \mathbb{Z}=\{\ldots,-3 n,-2 n,-n, 0, n, 2 n, 3 n, \ldots\}=\{n k \mid k \in \mathbb{Z}\} .
$$

(a) Prove that $n \mathbb{Z}$ is a group under addition.
(b) Prove that $n \mathbb{Z}$ is isomorphic to \mathbb{Z}.
3. Let G and G^{\prime} be groups and $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Prove: If G is cyclic and ϕ is onto, then G^{\prime} is cyclic.
4. Find a subgroup of $D_{2 n}$ that is isomorphic to \mathbb{Z}_{n}. Prove it.
5. Let $\phi: G \rightarrow H$ be a homomorphism. Let x be in G.
(a) Prove that the order of $\phi(x)$ divides the order of x.
(b) If ϕ is an isomorphism, prove that the order of $\phi(x)$ equals the order of x. This shows that given a positive integer n, if G and H are isomorphic then they have the same number of elements of order n.

