Math 4680 - Homework \# 2
 Elementary Functions

1. Express the following in the form $x+i y$.
(a) e^{2+i}
(b) $\sin (2-i)$
(c) $e^{3-\pi i}$
(d) $\cos (3 \pi+i)$.
2. For each problem, first find all possible values for the expression. Then calculate the value when the branch of the argument is $[0,2 \pi)$ and when the branch of the argument is $[-\pi, \pi)$.
(a) $\log (1)$
(b) $\log (i)$
(c) $\log (-1)$
(d) $\log (1+i)$
(e) $(-i)^{i}$
(f) $(-1)^{i}$
(g) 2^{i}
3. Find all the values of $z \in \mathbb{C}$ that solve the following equations.
(a) $e^{z}=-1$
(b) $e^{z}=1+i \sqrt{3}$
(c) $\cos (z)=4$
(d) $\sin (z)=4$.
4. What does the function $f(z)=z^{3}$ map the first quadrant onto?
5. What does the function $f(z)=1 / z$ map the inside of the unit circle to?
6. What does the function $f(z)=e^{z}$ map the following set onto?

$$
S=\{x+y i \mid x \in \mathbb{R},-\pi / 4 \leq y<0\}
$$

7. What does the logarithm function do to the following set? Pick the branch of the logarithm corresponding to the argument in the range $[0,2 \pi)$.

$$
R=\left\{r e^{i(3 \pi / 4)} \mid r \in \mathbb{Z}, r>0\right\}
$$

8. Prove the following formulas for $z \in \mathbb{C}$.
(a) $\sin ^{2}(z)+\cos ^{2}(z)=1$
(b) $\sin (-z)=-\sin (z)$
(c) $\cos (-z)=\cos (z)$
9. (a) Let $a, b, c \in \mathbb{C}$. Prove that $a^{b} a^{c}=a^{b+c}$ using any fixed branch of the logarithm.
(b) Let $a, b, c \in \mathbb{C}$. Prove that $(a b)^{c}=a^{c} b^{c}$ if you chose a branch of the $\operatorname{logarithm}$ such that $\log (a b)=\log (a)+\log (b)$ (with no extra $2 \pi n i$).
(c) Find $a, b, c \in \mathbb{C}$ where $(a b)^{c} \neq a^{c} b^{c}$. [Hint: Start by choosing a branch of the logarithm so that $\log (a b) \neq \log (a)+\log (b)$ for your chosen a, b, c.]
10. Is it true that $|\sin (z)| \leq 1$ for all $z \in \mathbb{C}$?
11. Prove that $\sin (z)=0$ if and only if $z=n \pi$ where $n=0, \pm 1, \pm 2, \ldots$.
12. Let $z \in \mathbb{C}$ with $z \neq 0$. Prove that $\log (z)=0$ if and only if $z=1$, using the branch of the argument with $-\pi \leq \arg (z)<\pi$.
