Math 4680 - Homework # 1 Complex numbers

- 1. For each complex number z, do the following: graph z, calculate \overline{z} , graph \overline{z} , and calculate |z|.
 - (a) z = 1 + i(b) z = -1 - 3i
 - (c) $z = \frac{1}{2} \pi i$
- 2. Express the following complex numbers in the form a + bi.
 - (a) $\frac{2+3i}{4+i}$ (b) $(\sqrt{2}-i)(1-i\sqrt{2})$ (c) $\frac{1+2i}{3-4i} + \frac{2-i}{5i}$ (d) $(1-i)^4$ (e) $\left(2+\frac{1}{1-i}\right)^2$
- 3. Find the absolute value of the following complex numbers.
 - (a) $\frac{i(2+4i)(1-2i)}{(2-i)}$ (b) $\frac{(3i)^2}{(-3+i)^6}$
- 4. For each pair $z_1, z_2 \in \mathbb{C}$ do the following: (i) write each element in polar form and graph the polar coordinates, (ii) compute the polar form of $z_1 \cdot z_2$ and graph it.
 - (a) $z_1 = 1 + i$ and $z_2 = \overline{z_1} = 1 i$.
 - (b) $z_1 = 1 + i$ and $z_2 = -1$
- 5. Solve the following equations.

- (a) $z^2 i = 0$ (b) $z^4 + i = 0$ (c) $z^6 = -64$ (d) $z^3 + (1+i) = 0$
- 6. Describe and sketch each of the following sets of complex numbers.
 - (a) $S = \{z \in \mathbb{C} \mid \text{Im}(z+5) = 0\}$ (b) $S = \{z \in \mathbb{C} \mid |z^2| \ge 4\}$ (c) $S = \{z \in \mathbb{C} \mid |z-2+i| \le 3\}$ (d) $S = \{z \in \mathbb{C} - \{0\} \mid \text{Re}(1/z) \ge 1/2\}$
- 7. Find the real and imaginary parts of the following where z = x + iy

(a)
$$\frac{1}{z^2}$$

(b) $\frac{z-1}{3z+2}$

8. Prove the following for $z, w \in \mathbb{C}$.

- (a) $\overline{z+w} = \overline{z} + \overline{w}$ (b) $\overline{zw} = \overline{z} \cdot \overline{w}$ (c) $|z|^2 = z\overline{z}$ (d) |zw| = |z||w|(e) $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ if $w \neq 0$. (f) Show that $\operatorname{Re}(iz) = -\operatorname{Im}(z)$ and that $\operatorname{Im}(iz) = \operatorname{Re}(z)$.
- 9. Prove: For all $z_1, z_2, z_3, z_4 \in \mathbb{C}$ with $|z_3| \neq |z_4|$ we have that

$$\left|\frac{z_1+z_2}{z_3+z_4}\right| \leq \frac{|z_1|+|z_2|}{||z_3|-|z_4||}$$

- 10. Prove the following.
 - (a) Let $z \in \mathbb{C}$. z is real if and only if $\overline{z} = z$.

- (b) Let $z \in \mathbb{C}$. z is either real or pure imaginary if and only if $(\overline{z})^2 = z^2$.
- 11. Let $n \ge 2$ be an integer. Let $w \in \mathbb{C}$ be an n-th root of unity (that is $w^n = 1$) with $w \ne 1$. Prove that $1 + w + w^2 + \cdots + w^{n-1} = 0$

THE NEXT TWO AREN'T NECESSARY TO DO. Just do them if you feel like it, or read the solutions to see how the proofs go.

A. (De Moivre's Formula) If $z = r[\cos(\theta) + i\sin(\theta)]$ and n is a positive integer, then $z^n = r^n[\cos(n\theta) + i\sin(n\theta)]$.

B. Let $w = r[\cos(\theta) + i\sin(\theta)]$ where $w \neq 0$. The n-th roots of w, that is the solutions to $z^n = w$, are given by

$$z_k = r^{1/n} \left[\cos\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right) + i \sin\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right) \right]$$

where $k = 0, 1, 2, \dots, n - 1$.