Math 4680 - Homework \# 1
 Complex numbers

1. For each complex number z, do the following: graph z, calculate \bar{z}, graph \bar{z}, and calculate $|z|$.
(a) $z=1+i$
(b) $z=-1-3 i$
(c) $z=\frac{1}{2}-\pi i$
2. Express the following complex numbers in the form $a+b i$.
(a) $\frac{2+3 i}{4+i}$
(b) $(\sqrt{2}-i)(1-i \sqrt{2})$
(c) $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}$
(d) $(1-i)^{4}$
(e) $\left(2+\frac{1}{1-i}\right)^{2}$
3. Find the absolute value of the following complex numbers.
(a) $\frac{i(2+4 i)(1-2 i)}{(2-i)}$
(b) $\frac{(3 i)^{2}}{(-3+i)^{6}}$
4. For each pair $z_{1}, z_{2} \in \mathbb{C}$ do the following: (i) write each element in polar form and graph the polar coordinates, (ii) compute the polar form of $z_{1} \cdot z_{2}$ and graph it.
(a) $z_{1}=1+i$ and $z_{2}=\overline{z_{1}}=1-i$.
(b) $z_{1}=1+i$ and $z_{2}=-1$
5. Solve the following equations.
(a) $z^{2}-i=0$
(b) $z^{4}+i=0$
(c) $z^{6}=-64$
(d) $z^{3}+(1+i)=0$
6. Describe and sketch each of the following sets of complex numbers.
(a) $S=\{z \in \mathbb{C} \mid \operatorname{Im}(z+5)=0\}$
(b) $S=\left\{z \in \mathbb{C}| | z^{2} \mid \geq 4\right\}$
(c) $S=\{z \in \mathbb{C}| | z-2+i \mid \leq 3\}$
(d) $S=\{z \in \mathbb{C}-\{0\} \mid \operatorname{Re}(1 / z) \geq 1 / 2\}$
7. Find the real and imaginary parts of the following where $z=x+i y$
(a) $\frac{1}{z^{2}}$
(b) $\frac{z-1}{3 z+2}$
8. Prove the following for $z, w \in \mathbb{C}$.
(a) $\overline{z+w}=\bar{z}+\bar{w}$
(b) $\overline{z w}=\bar{z} \cdot \bar{w}$
(c) $|z|^{2}=z \bar{z}$
(d) $|z w|=|z||w|$
(e) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ if $w \neq 0$.
(f) Show that $\operatorname{Re}(i z)=-\operatorname{Im}(z)$ and that $\operatorname{Im}(i z)=\operatorname{Re}(z)$.
9. Prove: For all $z_{1}, z_{2}, z_{3}, z_{4} \in \mathbb{C}$ with $\left|z_{3}\right| \neq\left|z_{4}\right|$ we have that

$$
\left|\frac{z_{1}+z_{2}}{z_{3}+z_{4}}\right| \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|}
$$

10. Prove the following.
(a) Let $z \in \mathbb{C} . z$ is real if and only if $\bar{z}=z$.
(b) Let $z \in \mathbb{C}$. z is either real or pure imaginary if and only if $(\bar{z})^{2}=$ z^{2}.
11. Let $n \geq 2$ be an integer. Let $w \in \mathbb{C}$ be an n -th root of unity (that is $w^{n}=1$) with $w \neq 1$. Prove that $1+w+w^{2}+\cdots+w^{n-1}=0$

THE NEXT TWO AREN'T NECESSARY TO DO. Just do them if you feel like it, or read the solutions to see how the proofs go.
A. (De Moivre's Formula) If $z=r[\cos (\theta)+i \sin (\theta)]$ and n is a positive integer, then $z^{n}=r^{n}[\cos (n \theta)+i \sin (n \theta)]$.
B. Let $w=r[\cos (\theta)+i \sin (\theta)]$ where $w \neq 0$. The n-th roots of w, that is the solutions to $z^{n}=w$, are given by

$$
z_{k}=r^{1 / n}\left[\cos \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)+i \sin \left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)\right]
$$

where $k=0,1,2, \ldots, n-1$.

