Math 4680 - Homework \# 10 Cauchy Integral Formula

1. Evaluate the following integrals.
(a) $\int_{\gamma} \frac{z^{2}}{z-1} d z$ where γ is the circle of radius 2 , centered at 0 , oriented counterclockwise.
(b) $\int_{\gamma} \frac{\sin (z)}{z^{2}} d z$ where γ is the unit circle oriented clockwise.
(c) $\int_{\gamma} \frac{z^{2}-1}{z^{2}+1} d z$ where γ is the circle of radius 2 , centered at 0 , oriented counterclockwise.
(d) $\int_{\gamma} \frac{z^{10}+5 z^{3}+1}{z^{4}} d z$ where γ is the square with vertices $-1-i$, $1-i, 1+i,-1+i$, oriented counterclockwise.
(e) $\int_{\gamma} \frac{1}{\left(z^{2}+z+1\right)^{2}} d z$ where γ is the circle $|z|=2$ oriented counterclockwise.
(f) $\int_{\gamma} \frac{z}{\left(9+z^{2}\right)(z+i)^{2}} d z$ where γ is the circle $|z|=4$ oriented counterclockwise.
2. Let γ be the circle $|z|=3$ oriented counterclockwise. Define

$$
g(w)=\int_{\gamma} \frac{2 z^{2}-z-2}{z-w} d z
$$

for all w with $|w| \neq 3$.
(a) Show that $g(2)=8 \pi i$.
(b) What is the value of $g(w)$ when $|w|>3$?
3. Suppose that f is analytic within and on a simple, closed smooth curve γ. Further suppose that $f(w)=0$ for all w on γ. Prove that $f(z)=0$ for all z inside of γ.

