Math 455
 Homework \# 1 - Groups

1. Compute the addition and multiplication tables for \mathbb{Z}_{3} and \mathbb{Z}_{6}.
2. Calculate the elements of U_{6} and U_{8} and draw a picture of them.
3. Compute the multiplication table for U_{4}. Do you see any similarity between this table and the addition table of Z_{4} ?
4. Determine whether or not $3 \mathbb{Z}=\{3 n \mid n \in \mathbb{Z}\}$ is a group under the operation $a * b=a+b$.
5. Let \mathbb{R}^{+}denote the set of positive real numbers. Determine whether or not \mathbb{R}^{+}is a group under the operation $a * b=\sqrt{a b}$.
6. Let \mathbb{R}^{*} denote the set of nonzero real numbers. Determine whether or not \mathbb{R}^{*} is a group under the operation $a * b=a / b$.
7. Let $G=\mathbb{R} \backslash\{-1\}$. Prove that G is a group under the operation $a * b=$ $a+b+a b$ on G.
8. Let G be a group with operation $*$. We say that x is an idempotent element of G if $x * x=x$. Show that G has only one idempotent element.
9. Let G be a group where every element of the group is its own inverse. Prove that G is abelian.
10. Let G be an abelian group. Let $a, b \in G$. Prove by induction that $(a * b)^{n}=\left(a^{n}\right) *\left(b^{n}\right)$ for all positive integers n.
11. Compute the group table for D_{6}. Compute as much of the group table for D_{8} as you have patience for.
12. Find the inverses of each of the elements of D_{6}. Find the inverses of the following elements in $D_{8}: r, r^{2}, s r$, and $s r^{2}$. What is the inverse of r in $D_{2 n}$? What is the inverse of $s r^{i}$ in $D_{2 n}$?
13. Find the inverse of each element in U_{6}. Do the same thing for U_{8}.
14. Find the inverse of each element in \mathbb{Z}_{6}.
