$\begin{array}{l} {\rm Math}\ 455\\ {\rm Homework}\ \#\ 1\ -\ {\rm Groups} \end{array}$

1. Compute the addition and multiplication tables for \mathbb{Z}_3 and \mathbb{Z}_6 .

2. Calculate the elements of U_6 and U_8 and draw a picture of them.

3. Compute the multiplication table for U_4 . Do you see any similarity between this table and the addition table of Z_4 ?

4. Determine whether or not $3\mathbb{Z} = \{3n \mid n \in \mathbb{Z}\}\$ is a group under the operation a * b = a + b.

5. Let \mathbb{R}^+ denote the set of positive real numbers. Determine whether or not \mathbb{R}^+ is a group under the operation $a * b = \sqrt{ab}$.

6. Let \mathbb{R}^* denote the set of nonzero real numbers. Determine whether or not \mathbb{R}^* is a group under the operation a * b = a/b.

7. Let $G = \mathbb{R} \setminus \{-1\}$. Prove that G is a group under the operation a * b = a + b + ab on G.

8. Let G be a group with operation *. We say that x is an idempotent element of G if x * x = x. Show that G has only one idempotent element.

9. Let G be a group where every element of the group is its own inverse. Prove that G is abelian.

10. Let G be an abelian group. Let $a, b \in G$. Prove by induction that $(a * b)^n = (a^n) * (b^n)$ for all positive integers n.

11. Compute the group table for D_6 . Compute as much of the group table for D_8 as you have patience for.

12. Find the inverses of each of the elements of D_6 . Find the inverses of the following elements in D_8 : r, r^2, sr , and sr^2 . What is the inverse of r in D_{2n} ? What is the inverse of sr^i in D_{2n} ?

13. Find the inverse of each element in U_6 . Do the same thing for U_8 .

14. Find the inverse of each element in \mathbb{Z}_6 .