Avoidance of partially ordered patterns in compositions

S. Heubach¹ S. Kitaev² T. Mansour³

¹Dept. of Mathematics, California State Univ. Los Angeles

²Department of Mathematics, Reykjavik University

³Department of Mathematics, Haifa University

August 27, 2008 Math Colloquium, Dalhousie University, Halifax

Outline

(4) (3) (4) (4) (4)

< 一 →

Outline

(4) (3) (4) (4) (4)

< 一 →

Outline

- 2 Definitions
- 3 Main Result
 - Preliminaries
 - Main Result
- Special Types of Patterns
 - Definitions
 - Results for Multi-patterns
 - Results for Shuffle patterns
 - Non-Overlapping Occurrence of POPs

ъ

★ ∃ → ∢

< 一型

Outline

- Definitions
- 3 Main Result
 - Preliminaries
 - Main Result
- 4 Special Types of Patterns
 - Definitions
 - Results for Multi-patterns
 - Results for Shuffle patterns
 - Non-Overlapping Occurrence of POPs

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs
 - ⇒ Compositions avoiding POPs

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs
 - ⇒ Compositions avoiding POPs

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs
 - ⇒ Compositions avoiding POPs

< □ > < 同 > < 回 > < 回 > < 回 >

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)

Compositions avoiding 3-letter patterns

 Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs

⇒ Compositions avoiding POPs

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs

Compositions avoiding POPs

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs

Compositions avoiding POPs

< ロ > < 同 > < 回 > < 回 > < 回 >

- Permutations avoiding a permutation pattern
- Permutations avoiding general patterns or set of patterns
- Words avoiding general patterns or set of patterns
- Compositions enumerated according to rises, levels and drops (= 2-letter patterns)
- Compositions avoiding 3-letter patterns
- Compositions enumerated according to segmented partially ordered (generalized) patterns = POPs
 - ⇒ Compositions avoiding POPs

< ロ > < 同 > < 回 > < 回 > < 回 >

Compositions

Definition

Let $A = \{a_1, a_2, ..., a_k\}$ be an ordered subset of \mathbb{N} . A composition of *n* with *m* parts in *A* is an ordered sequence $\sigma = \sigma_1 \sigma_2 ... \sigma_m$ with $\sum_{i=1}^m \sigma_i = n$ and $\sigma_i \in A$. We denote the set of all compositions of *n* with (*m*) parts in *A* by C_n^A ($C_{n:m}^A$).

Example

The compositions of 4 (with parts in \mathbb{N}) are 4, 31, 13, 22, 211, 121, 112, 1111.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Compositions

Definition

Let $A = \{a_1, a_2, ..., a_k\}$ be an ordered subset of \mathbb{N} . A composition of *n* with *m* parts in *A* is an ordered sequence $\sigma = \sigma_1 \sigma_2 ... \sigma_m$ with $\sum_{i=1}^m \sigma_i = n$ and $\sigma_i \in A$. We denote the set of all compositions of *n* with (*m*) parts in *A* by C_n^A ($C_{n:m}^A$).

Example

The compositions of 4 (with parts in \mathbb{N}) are 4, 31, 13, 22, 211, 121, 112, 1111.

Definition

Let $[k] = \{1, 2, ..., k\}$. Then the elements in $[k]^n$ are called words of length *n* over [k]. A generalized pattern τ is a word in $[\ell]^k$ that contains each letter from $[\ell]$, possibly with repetitions and dashes.

- pattern with no adjacency requirement = classical pattern
- pattern with no dashes = consecutive or segmented pattern

1234 1-23-4 1-2-3-4

< ロ > < 同 > < 回 > < 回 > < 回 > <

Reduced sequence

Definition

For any sequence $\sigma = \sigma_1 \sigma_2 \dots \sigma_m$, we define its reduced form to be the sequence $s_1 s_2 \dots s_m$, where $s_i = \ell$ if the σ_i is ℓ -th smallest term.

The reduced form just takes into account the relative size of the sequence terms, and maps the sequence to the set [k], where k is the number of distinct terms in the sequence.

Example

The reduced form of the sequence 35237 is 23124, since the terms of the sequence are in order 2 < 3 = 3 < 5 < 7.

Reduced sequence

Definition

For any sequence $\sigma = \sigma_1 \sigma_2 \dots \sigma_m$, we define its reduced form to be the sequence $s_1 s_2 \dots s_m$, where $s_i = \ell$ if the σ_i is ℓ -th smallest term.

The reduced form just takes into account the relative size of the sequence terms, and maps the sequence to the set [k], where k is the number of distinct terms in the sequence.

Example

The reduced form of the sequence 35237 is 23124, since the terms of the sequence are in order 2 < 3 = 3 < 5 < 7.

Reduced sequence

Definition

For any sequence $\sigma = \sigma_1 \sigma_2 \dots \sigma_m$, we define its reduced form to be the sequence $s_1 s_2 \dots s_m$, where $s_i = \ell$ if the σ_i is ℓ -th smallest term.

The reduced form just takes into account the relative size of the sequence terms, and maps the sequence to the set [k], where k is the number of distinct terms in the sequence.

Example

The reduced form of the sequence 35237 is 23124, since the terms of the sequence are in order 2 < 3 = 3 < 5 < 7.

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids 312 241874 contains five occurrences of 1-32:

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids 312

241874 contains five occurrences of 1-32:

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids **312**

241874 contains five occurrences of 1-32:

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids 312 241874 contains five occurrences of 1-32: 241874

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids **312**

241874 contains five occurrences of 1-32:

241874 241874

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids 312

241874 contains five occurrences of 1-32:

241874 241874 241874

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example

241874 avoids **312**

241874 contains five occurrences of 1-32:

241874 241874 241874 241874

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions

Containing and Avoiding Patterns

Definition

A composition σ contains a pattern $\tau = \tau_1 \tau_2 \dots \tau_k$ if the reduced form of any subsequence of *k* consecutive terms of σ equals τ . Otherwise we say that σ avoids the subword pattern τ or is τ -avoiding and write $\sigma \in C_n^A(\tau)$ ($\sigma \in C_{n;m}^A(\tau)$).

Example 241874 avoids 312 241874 contains five occurrences of 1-32: 241874 241874 241874 241874 241874

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions

Partially Ordered Patterns

Definition

A partially ordered pattern POP τ is a word consisting of letters from a partially ordered alphabet T.

- If letters *a* and *b* are incomparable in a POP *τ*, then the relative size of the letters in *σ* corresponding to *a* and *b* is unimportant in an occurrence of *τ* in *σ*.
- Comparable letters have the same number of primes.
- Letters without primes are considered to be comparable to all other letters.

Partially Ordered Patterns

Example

Let $\mathcal{T} = \{1', 1'', 2''\}$ with the only relation 1'' < 2''. Then **113425** contains three occurrences of **1'1''2''** and seven occurrences of **1'-1''2''**

- **113425**, **113425**, **113425**
- 113425, 113425, 113425, 113425
- Avoidance of POPs ↔ multi-avoidance of a set of patterns: avoiding 2'-1-2" ↔ simultaneously avoiding {2-1-2, 3-1-2, 2-1-3}.

< ロ > < 同 > < 回 > < 回 > < □ > <

Partially Ordered Patterns

Example

Let $\mathcal{T} = \{1', 1'', 2''\}$ with the only relation 1'' < 2''. Then **113425** contains three occurrences of **1'1''2''** and seven occurrences of **1'-1''2''**

113425, 113425, 113425

113425, 113425, 113425, 113425

 Avoidance of POPs ↔ multi-avoidance of a set of patterns: avoiding 2'-1-2" ↔ simultaneously avoiding {2-1-2, 3-1-2, 2-1-3}.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Partially Ordered Patterns

Example

Let $\mathcal{T} = \{1', 1'', 2''\}$ with the only relation 1'' < 2''. Then **113425** contains three occurrences of **1'1''2''** and seven occurrences of **1'-1''2''**

- 113425, 113425, 113425
- 113425, 113425, 113425, 113425
- Avoidance of POPs ↔ multi-avoidance of a set of patterns: avoiding 2'-1-2" ↔ simultaneously avoiding {2-1-2, 3-1-2, 2-1-3}.

Partially Ordered Patterns

Example

Let $\mathcal{T} = \{1', 1'', 2''\}$ with the only relation 1'' < 2''. Then **113425** contains three occurrences of **1'1''2''** and seven occurrences of **1'-1''2''**

- 113425, 113425, 113425
- 113425, 113425, 113425, 113425
- Avoidance of POPs ↔ multi-avoidance of a set of patterns: avoiding 2'-1-2" ↔ simultaneously avoiding {2-1-2, 3-1-2, 2-1-3}.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Prelims Main Result

One more Definition

Definition

A composition σ quasi-avoids a consecutive pattern τ if σ has exactly **one** occurrence of τ and the occurrence consists of the $|\tau|$ rightmost parts in σ .

Example

4112234 quasi-avoids 1123 5223411 and 1123346 do not quasi-avoid 1123

Prelims Main Result

Some Notation

Generating functions

•
$$C^{\mathcal{A}}_{\tau}(\mathbf{x}) = \sum_{n \geq 0} |C^{\mathcal{A}}_{n}(\tau)| \mathbf{x}^{n}$$

•
$$C^{\mathcal{A}}_{\tau}(\boldsymbol{x};\boldsymbol{m}) = \sum_{n\geq 0} |C^{\mathcal{A}}_{n;m}(\tau)| \boldsymbol{x}^n$$

•
$$C^{\mathcal{A}}_{\tau}(\mathbf{x}, \mathbf{y}) = \sum_{m \ge 0} C^{\mathcal{A}}_{\tau}(\mathbf{x}; m) \mathbf{y}^m = \sum_{n, m \ge 0} |C^{\mathcal{A}}_{n;m}(\tau)| \mathbf{x}^n \mathbf{y}^m$$

D^A_τ(x, y) = gf for the number of compositions in C^A_{n;m} that quasi-avoid τ

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Prelims Main Result

Lemma

Let τ be a consecutive pattern. Then

$$D^{\mathcal{A}}_{\tau}(x,y) = 1 + C^{\mathcal{A}}_{\tau}(x,y) \left(y \sum_{a \in \mathcal{A}} x^{a} - 1
ight)$$

Proof: Adding the part *a* to the right of a composition with m-1 parts that avoids τ creates either a composition with *m* parts that still avoids τ or one that quasi-avoids τ . Thus, for $m \ge 1$,

$$\left(\sum_{a\in A} x^a\right) C^A_\tau(x;m-1) = C^A_\tau(x;m) + D^A_\tau(x;m).$$

→ ∃ > < ∃ >

< □ > < 同 >

Prelims Main Result

Lemma

Let τ be a consecutive pattern. Then

$$D^{\mathcal{A}}_{\tau}(x,y) = 1 + C^{\mathcal{A}}_{\tau}(x,y) \left(y \sum_{a \in \mathcal{A}} x^{a} - 1
ight)$$

Proof: Adding the part *a* to the right of a composition with m-1 parts that avoids τ creates either a composition with *m* parts that still avoids τ or one that quasi-avoids τ . Thus, for $m \ge 1$,

$$\left(\sum_{a\in A} x^a\right) C^A_{\tau}(x;m-1) = C^A_{\tau}(x;m) + D^A_{\tau}(x;m).$$

→ ∃ > < ∃ >

Prelims Main Result

Lemma

Let τ be a consecutive pattern. Then

$$D^{\mathcal{A}}_{\tau}(x,y) = 1 + C^{\mathcal{A}}_{\tau}(x,y) \left(y \sum_{a \in \mathcal{A}} x^{a} - 1
ight)$$

Proof: Adding the part *a* to the right of a composition with m-1 parts that avoids τ creates either a composition with *m* parts that still avoids τ or one that quasi-avoids τ . Thus, for $m \ge 1$,

$$\left(\sum_{a\in A} x^a\right) C^A_{\tau}(x;m-1) = C^A_{\tau}(x;m) + D^A_{\tau}(x;m).$$

→ ∃ > < ∃ >

< □ > < @ >

Prelims Main Result

Lemma

Let τ be a consecutive pattern. Then

$$D^A_{ au}(x,y) = 1 + C^A_{ au}(x,y) \left(y \sum_{a \in A} x^a - 1
ight)$$

Proof: Adding the part *a* to the right of a composition with m-1 parts that avoids τ creates either a composition with *m* parts that still avoids τ or one that quasi-avoids τ . Thus, for $m \ge 1$,

$$\left(\sum_{a\in A} x^a\right) C^A_{\tau}(x;m-1) = C^A_{\tau}(x;m) + D^A_{\tau}(x;m).$$

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

 $C^{\mathcal{A}}_{\tau}(x,y) = C^{\mathcal{A}}_{\tau_0}(x,y) + D^{\mathcal{A}}_{\tau_0}(x,y)C^{\mathcal{A}}_{\phi}(x,y).$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C^A_{\tau_0}(x, y)$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0
 - σ1σ2 quasi-avoids the pattern m
 - v₃ must avoid φ
 - $\Rightarrow D^{A}(x, y) C^{A}(x, y)$

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

 $\mathcal{C}^{\mathcal{A}}_{ au}(x,y) = \mathcal{C}^{\mathcal{A}}_{ au_0}(x,y) + \mathcal{D}^{\mathcal{A}}_{ au_0}(x,y)\mathcal{C}^{\mathcal{A}}_{\phi}(x,y).$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C^A_{\tau_0}(x, y)$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0
 - $\sigma_1 \sigma_2$ quasi-avoids the pattern τ_0
 - σ_3 must avoid ϕ
 - $\Rightarrow D^A_{\tau_0}(x,y)C^A_{\phi}(x,y)$

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

$$\mathcal{C}^{\mathcal{A}}_{ au}(x,y) = \mathcal{C}^{\mathcal{A}}_{ au_0}(x,y) + \mathcal{D}^{\mathcal{A}}_{ au_0}(x,y)\mathcal{C}^{\mathcal{A}}_{\phi}(x,y)$$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C^{A}_{\tau_0}(\mathbf{x}, \mathbf{y})$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0

• $\sigma_1 \sigma_2$ quasi-avoids the pattern τ_0

• σ_3 must avoid ϕ

 $\Rightarrow D^A_{\tau_0}(x,y)C^A_{\phi}(x,y)$

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

$$C^{\mathcal{A}}_{ au}(\pmb{x},\pmb{y}) = C^{\mathcal{A}}_{ au_0}(\pmb{x},\pmb{y}) + D^{\mathcal{A}}_{ au_0}(\pmb{x},\pmb{y})C^{\mathcal{A}}_{\phi}(\pmb{x},\pmb{y})$$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C_{\tau_0}^{\mathcal{A}}(\mathbf{x}, \mathbf{y})$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0
 - $\sigma_1 \sigma_2$ quasi-avoids the pattern τ_0
 - σ_3 must avoid ϕ

 $\Rightarrow D^A_{\tau_0}(x,y)C^A_{\phi}(x,y)$

< □ > < 同 > < 回 > <

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

$$C^{\mathcal{A}}_{ au}(x,y) = C^{\mathcal{A}}_{ au_0}(x,y) + D^{\mathcal{A}}_{ au_0}(x,y)C^{\mathcal{A}}_{\phi}(x,y)$$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C^{\mathcal{A}}_{\tau_0}(\mathbf{x}, \mathbf{y})$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0
 - $\sigma_1 \sigma_2$ quasi-avoids the pattern τ_0
 - σ_3 must avoid ϕ $\Rightarrow D^A_{\tau_0}(x, y) C^A_0(x, y)$

Prelims Main Result

Main Result

Theorem

Suppose $\tau = \tau_0 - \phi$, where ϕ is an arbitrary POP, and the letters of τ_0 are incomparable to the letters of ϕ . Then for all $k \ge 1$, we have

$$C^{\mathcal{A}}_{ au}(x,y) = C^{\mathcal{A}}_{ au_0}(x,y) + D^{\mathcal{A}}_{ au_0}(x,y)C^{\mathcal{A}}_{\phi}(x,y)$$

Proof: Two possible cases:

- σ avoids $\tau_0 \Rightarrow C_{\tau_0}^{\mathcal{A}}(\mathbf{x}, \mathbf{y})$
- $\sigma = \sigma_1 \sigma_2 \sigma_3$ where σ_2 is the first occurrence of τ_0
 - $\sigma_1 \sigma_2$ quasi-avoids the pattern τ_0
 - σ_3 must avoid ϕ

 $\Rightarrow D^{\mathcal{A}}_{\tau_0}(x,y)C^{\mathcal{A}}_{\phi}(x,y)$

Prelims Main Result

Equivalence of Patterns

Using equivalence of patterns, we will be able to establish results for families of patterns.

- Reversal map $R(\sigma) = R(\sigma_1 \sigma_2 \dots \sigma_k) = \sigma_k \sigma_{k-1} \dots \sigma_1$
- Reversal map R and identity map I are called trivial bijections of C^A_{n:m} to itself
- τ_1 and τ_2 are equivalent, denoted by $\tau_1 \equiv \tau_2$, if $|C_{n;m}^A(\tau_1)| = |C_{n;m}^A(\tau_2)|$ for all *A*, *m* and *n*.
- $\tau \equiv R(\tau)$ for any pattern τ
- $\{\tau, R(\tau)\}$ = symmetry class of τ

3

Definitions Multi-Patterns Shuffle Patterns Application

Definition

Let $\{\tau_0, \tau_1, \dots, \tau_s\}$ be a set of consecutive patterns.

- τ = τ₁-τ₂-···-τ_s is a multi-pattern if each letter of τ_i is incomparable with any letter of τ_j for i ≠ j
- $\tau = \tau_0 a_1 \tau_1 a_2 \cdots \tau_{s-1} a_s \tau_s$ is a **shuffle pattern** if each letter of τ_i is incomparable with any letter of τ_j for $i \neq j$ and the letters a_i are either all greater or all smaller than any letter of τ_j for any *i* and *j*.
- Shuffle pattern without the letters $a_i \rightarrow$ multi-pattern
- 1'-2-1" is a shuffle pattern, and 1'-1" is a multi-pattern.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definitions Multi-Patterns Shuffle Patterns Application

Result for a Specific Multi-Pattern

Simplest non-trivial multi-pattern is $\Phi = 1' - 1''2''$. In this case we can derive the generating function directly:

- First letter can be any of the k letters in A
- All other letters have to be in non-increasing order

$$C^{\mathcal{A}}_{1'-1''2''}(x,y) = 1 + \left(y \sum_{a \in \mathcal{A}} x^a\right) \prod_{a \in \mathcal{A}} \left(\sum_{i \ge 0} (x^a y)^i\right)$$
$$= 1 + \frac{y \sum_{a \in \mathcal{A}} x^a}{\prod_{a \in \mathcal{A}} (1-x^a y)}.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Definitions Multi-Patterns Shuffle Patterns Application

Results for General Multi-Patterns

Theorem

Let
$$\tau = \tau_1 - \tau_2 - \cdots - \tau_s$$
 be a multi-pattern. Then

$$C^{\mathcal{A}}_{\tau}(x,y) = \sum_{j=1}^{s} C^{\mathcal{A}}_{\tau_j}(x,y) \prod_{i=1}^{j-1} \left[\left(y \sum_{a \in \mathcal{A}} x^a - 1 \right) C^{\mathcal{A}}_{\tau_i}(x,y) + 1 \right].$$

Proof: Follows from the lemma and the main result, together with induction.

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Definitions Multi-Patterns Shuffle Patterns Application

Results for General Multi-Patterns

Theorem Let $\tau = \tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_s$ be a multi-pattern. Then $C_{\tau}^A(x, y) = \sum_{j=1}^s C_{\tau_j}^A(x, y) \prod_{i=1}^{j-1} \left[\left(y \sum_{a \in A} x^a - 1 \right) C_{\tau_i}^A(x, y) + 1 \right].$

Proof: Follows from the lemma and the main result, together with induction.

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Definitions Multi-Patterns Shuffle Patterns Application

Results for Families of Multi-Patterns

Theorem

Let $\tau = \tau_0 - \tau_1$ and $\phi = f_1(\tau_0) - f_2(\tau_1)$, where f_1 and f_2 are any of the trivial bijections. Then $\tau \equiv \phi$.

Proof: Claim: τ_0 - $\tau_1 \equiv \tau_0$ - $f(\tau_1)$. If σ avoids τ_0 - τ_1 , then either

- σ has no occurrence of τ_0 , so σ also avoids τ_0 - $f(\tau_1)$
- σ can be written as $\sigma = \sigma_1 \sigma_2 \sigma_3$, where $\sigma_1 \sigma_2$ has exactly one occurrence of τ_0 , namely σ_2 . Then σ_3 must avoid τ_1 , so $f(\sigma_3)$ avoids $f(\tau_1)$ and $\sigma_f = \sigma_1 \sigma_2 f(\sigma_3)$ avoids $\tau_0 - f(\tau_1)$.
- Converse also true ⇒ bijection between class of compositions avoiding τ and those avoiding τ₀-f(τ₁).
- This result and properties of trivial bijections finish proof.

ヘロト 人間 とくほ とくほ とう

Definitions Multi-Patterns Shuffle Patterns Application

Results for Families of Multi-Patterns

Theorem

Let $\tau = \tau_0 - \tau_1$ and $\phi = f_1(\tau_0) - f_2(\tau_1)$, where f_1 and f_2 are any of the trivial bijections. Then $\tau \equiv \phi$.

Proof: Claim: $\tau_0 - \tau_1 \equiv \tau_0 - f(\tau_1)$. If σ avoids $\tau_0 - \tau_1$, then either

- σ has no occurrence of τ_0 , so σ also avoids τ_0 - $f(\tau_1)$
- σ can be written as $\sigma = \sigma_1 \sigma_2 \sigma_3$, where $\sigma_1 \sigma_2$ has exactly one occurrence of τ_0 , namely σ_2 . Then σ_3 must avoid τ_1 , so $f(\sigma_3)$ avoids $f(\tau_1)$ and $\sigma_f = \sigma_1 \sigma_2 f(\sigma_3)$ avoids $\tau_0 - f(\tau_1)$.
- Converse also true ⇒ bijection between class of compositions avoiding τ and those avoiding τ₀-f(τ₁).
- This result and properties of trivial bijections finish proof.

Definitions Multi-Patterns Shuffle Patterns Application

Results for Families of Multi-Patterns

Theorem

Suppose we have multi-patterns $\tau = \tau_1 - \tau_2 - \cdots - \tau_s$ and $\phi = \phi_1 - \phi_2 - \cdots - \phi_s$, where $\tau_1 \tau_2 \dots \tau_s$ is a permutation of $\phi_1 \phi_2 \dots \phi_s$. Then $\tau \equiv \phi$.

Proof: By induction. For s = 2, the previous theorem and properties of reversal maps give that

 $\tau_1 - \tau_2 \equiv \tau_1 - R(\tau_2) \equiv R(R(\tau_2)) - R(\tau_1) \equiv \tau_2 - R(R(\tau_1)) \equiv \tau_2 - \tau_1.$

General case follows with **careful** arguments and distinguishing two different cases.

(日)

Definitions Multi-Patterns Shuffle Patterns Application

Results for Families of Multi-Patterns

Theorem

Suppose we have multi-patterns $\tau = \tau_1 - \tau_2 - \cdots - \tau_s$ and $\phi = \phi_1 - \phi_2 - \cdots - \phi_s$, where $\tau_1 \tau_2 \dots \tau_s$ is a permutation of $\phi_1 \phi_2 \dots \phi_s$. Then $\tau \equiv \phi$.

Proof: By induction. For s = 2, the previous theorem and properties of reversal maps give that

$$\tau_1 \cdot \tau_2 \equiv \tau_1 \cdot R(\tau_2) \equiv R(R(\tau_2)) \cdot R(\tau_1) \equiv \tau_2 \cdot R(R(\tau_1)) \equiv \tau_2 \cdot \tau_1.$$

General case follows with **careful** arguments and distinguishing two different cases.

< ロ > < 同 > < 回 > < 回 > < □ > <

Definitions Multi-Patterns Shuffle Patterns Application

Results for Shuffle Patterns

Theorem

If ϕ be the shuffle pattern τ - ℓ - ν , then for all $k \geq \ell$,

$$C^{\mathcal{A}}_{\phi}(x,y) = rac{C^{\mathcal{A}-\{a_k\}}_{\phi}(x,y) - x^{a_k}yC^{\mathcal{A}-\{a_k\}}_{\tau}(x,y)C^{\mathcal{A}-\{a_k\}}_{\nu}(x,y)}{(1-x^{a_k}yC^{\mathcal{A}-\{a_k\}}_{\tau}(x,y))(1-x^{a_k}yC^{\mathcal{A}-\{a_k\}}_{\nu}(x,y))}.$$

Note: For the shuffle pattern $\psi = \tau - 1 - \nu$, replace a_k with a_1 .

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Definitions Multi-Patterns Shuffle Patterns Application

Results for Shuffle Patterns

Proof: Let $\phi = \tau - \ell - \nu$, $A' = A - \{a_k\}$, and assume σ contains exactly *s* copies of a_k .

- If $s = 0 \Rightarrow C_{\phi}^{\mathcal{A}'}(x, y)$.
- If $s \ge 1$ then $\sigma = \sigma_0 a_k \sigma_1 a_k \cdots a_k \sigma_s$, where each σ_j is a ϕ -avoiding composition with parts in A'. Then either
 - σ_j avoids τ for all $j \Rightarrow x^{sa_k}y^s \left(C_{\tau}^{A'}(x,y)\right)^{s+1}$
 - $\exists j_0$ such that σ_{j_0} contains τ , σ_j avoids τ' for all $j = 0, 1, ..., j_0 1$ and σ_j avoids ν for any $j = j_0 + 1, ..., s \Rightarrow x^{sa_k} y^s \sum_{j=0}^{s} \left(C_{\tau}^{A'}(x, y) \right)^j \left(C_{\nu}^{A'}(x, y) \right)^{s-j} \left(C_{\phi}^{A'}(x, y) C_{\tau}^{A'}(x, y) \right)$

• Combine, simplify, use

$$\sum_{n\geq 0} x^n \sum_{j=0}^n p^j q^{n-j} = \frac{1}{(1-xp)(1-xq)}$$
 to obtain result.

Definitions Multi-Patterns Shuffle Patterns Application

Results for Families of Shuffle Patterns

Corollary

Let $\phi = \tau \cdot \ell \cdot \nu$ (resp. $\phi = \tau \cdot 1 \cdot \nu$) be a shuffle pattern, and let $f(\phi) = f_1(\tau) \cdot \ell \cdot f_2(\nu)$ (resp. $f(\phi) = f_1(\tau) \cdot 1 \cdot f_2(\nu)$), where $f_1, f_2 \in \{R, I\}$ are any trivial bijections. Then $\phi \equiv f(\phi)$.

Corollary

For any shuffle pattern τ - ℓ - ν (resp. τ -1- ν), we have τ - ℓ - $\nu \equiv \nu$ - ℓ - τ (resp. τ -1- $\nu \equiv \nu$ -1- τ).

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definitions Multi-Patterns Shuffle Patterns Application

Non-Overlapping Occurrences of POPs

- Two occurrences of a pattern τ overlap if they have any parts of σ in common
- τ-nlap(σ) = maximum number of non-overlapping
 occurrences of a consecutive pattern τ
- descent = 21 occurs at position *i* if $\sigma_i > \sigma_{i+1}$
- Two descents at positions *i* and *j* overlap if j = i + 1
- MND = maximum number of non-overlapping descents MND(333211) = 1 MND(1332111143211) = 3

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Definitions Multi-Patterns Shuffle Patterns Application

Non-Overlapping Occurrence of POPs

Theorem

Let τ be a consecutive pattern, τ -nlap(σ) is the maximum number of non-overlapping occurrences of τ in σ , and $g_{\tau}^{A}(\mathbf{x}, \mathbf{y}, t) = \sum_{n,m \ge 0} \sum_{\sigma \in C_{n,m}^{A}} \mathbf{x}^{n} \mathbf{y}^{m} t^{\tau-\operatorname{nlap}(\sigma)}$. Then

$$g^{\mathcal{A}}_{\tau}(x,y,t) = \frac{C^{\mathcal{A}}_{\tau}(x,y)}{1 - t\left[\left(y \sum_{a \in \mathcal{A}} x^{a} - 1\right) C^{\mathcal{A}}_{\tau}(x,y) + 1\right]}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Definitions Multi-Patterns Shuffle Patterns Application

Non-Overlapping Occurrence of POPs

Proof: Fix *s* and let $\Phi_s = \tau \cdot \tau \cdot \cdots \cdot \tau$ with *s* copies of τ

- σ avoids Φ_s ⇒ σ has at most s − 1 non-overlapping occurrences of τ
- Compute $C^{A}_{\Phi_{s+1}}(x, y)$ from general theorem for multi patterns
- Gf for number of compositions with exactly s non-overlapping copies of τ is given by C^A_{Φ_{s+1}}(x, y) - C^A_{Φ_s}(x, y)
- Sum over s

< 日 > < 同 > < 回 > < 回 > < □ > <

э.

Definitions Multi-Patterns Shuffle Patterns Application

Non-Overlapping Occurrence of POPs

Example

•
$$C_{21}^{A}(x,y) = \prod_{a \in A} \frac{1}{(1-x^{a}y)}$$

• Distribution of *MND* for the set $A = \{1, 2\}$ is given by

$$\frac{1}{(1-x)(1-x^2)-x^3t} = \sum_{s \ge 0} \frac{x^{3s}}{(1-x)^{2s+2}(1+x)^{s+1}} t^s$$

For s = 2, the sequence for the number of compositions for n = 6,..., 20 is given by {1, 3, 9, 19, 39, 69, 119, 189, 294, 434, 630, 882, 1218, 1638, 2178}

< ロ > < 同 > < 回 > < 回 > < □ > <

- Gave recursive result for the gf for number of compositions that avoid a pattern of the form $\tau = \tau_0 \Phi$
- Result applies directly to Multi-Patterns
- Result for Shuffle Patterns
- Application: gf for max number of non-overlapping occurrence of a POP in compositions

< ロ > < 同 > < 回 > < 回 > < 回 >

Preprint and this talk available from my web site at sheubac@calstatela.edu

Preprint also at ArXiv (http://www.arxiv.org/pdf/math.CO/0610030)

Article to appear in Pure Mathematics and Applications

Thanks!

< 同 > < 回 > < 回 >