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Compositions

Definition

Let A = {a1,a2, . . . ,ak} be an ordered subset of N. A
composition of n with m parts in A is an ordered sequence
σ = σ1σ2 . . . σm with

∑m
i=1 σi = n and σi ∈ A. We denote the set

of all compositions of n with (m) parts in A by CA
n (CA

n;m).

Example

The compositions of 4 (with parts in N) are 4, 31, 13, 22, 211,
121, 112, 1111.
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Patterns

Definition

Let [k ] = {1,2, . . . , k}. Then the elements in [k ]n are called
words of length n over [k ]. A generalized pattern τ is a word in
[ℓ]k that contains each letter from [ℓ], possibly with repetitions
and dashes.

pattern with no adjacency requirement = classical pattern

pattern with no dashes = consecutive or segmented
pattern

1234 1-23-4 1-2-3-4

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions
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Reduced sequence

Definition

For any sequence σ = σ1σ2 . . . σm, we define its reduced form
to be the sequence s1s2 · · · sm, where si = ℓ if the σi is ℓ-th
smallest term.

The reduced form just takes into account the relative size of the
sequence terms, and maps the sequence to the set [k ], where
k is the number of distinct terms in the sequence.

Example

The reduced form of the sequence 35237 is 23124, since the
terms of the sequence are in order 2 < 3 = 3 < 5 < 7.
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Containing and Avoiding Patterns

Definition

A composition σ contains a pattern τ = τ1τ2 . . . τk if the reduced
form of any subsequence of k consecutive terms of σ equals τ .
Otherwise we say that σ avoids the subword pattern τ or is
τ -avoiding and write σ ∈ CA

n (τ) (σ ∈ CA
n;m(τ)).

Example

241874 avoids 312
241874 contains five occurrences of 1-32:
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Partially Ordered Patterns

Definition

A partially ordered pattern POP τ is a word consisting of letters
from a partially ordered alphabet T .

If letters a and b are incomparable in a POP τ , then the
relative size of the letters in σ corresponding to a and b is
unimportant in an occurrence of τ in σ.

Comparable letters have the same number of primes.

Letters without primes are considered to be comparable to
all other letters.
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Partially Ordered Patterns

Example

Let T = {1′,1′′,2′′} with the only relation 1′′ < 2′′. Then 113425
contains three occurrences of 1′1′′2′′ and seven occurrences of
1′-1′′2′′

113425, 113425, 113425

113425, 113425, 113425, 113425

Avoidance of POPs ↔ multi-avoidance of a set of patterns:
avoiding 2′-1-2′′ ↔ simultaneously avoiding {2-1-2, 3-1-2,
2-1-3}.
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One more Definition

Definition

A composition σ quasi-avoids a consecutive pattern τ if σ has
exactly one occurrence of τ and the occurrence consists of the
|τ | rightmost parts in σ.

Example

4112234 quasi-avoids 1123
5223411 and 1123346 do not quasi-avoid 1123
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Some Notation

Generating functions

CA
τ (x) =

∑

n≥0 |C
A
n (τ)|xn

CA
τ (x ; m) =

∑

n≥0 |C
A
n;m(τ)|xn

CA
τ (x , y) =

∑

m≥0 CA
τ (x ; m)ym =

∑

n,m≥0
|CA

n;m(τ)|xnym

DA
τ (x , y) = gf for the number of compositions in CA

n;m that
quasi-avoid τ
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Lemma
Let τ be a consecutive pattern. Then

DA
τ (x , y) = 1 + CA

τ (x , y)

(

y
∑

a∈A

xa − 1

)

.

Proof: Adding the part a to the right of a composition with m−1
parts that avoids τ creates either a composition with m parts
that still avoids τ or one that quasi-avoids τ . Thus, for m ≥ 1,

(

∑

a∈A

xa

)

CA
τ (x ; m − 1) = CA

τ (x ; m) + DA
τ (x ; m).
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Main Result

Theorem

Suppose τ = τ0-φ, where φ is an arbitrary POP, and the letters
of τ0 are incomparable to the letters of φ. Then for all k ≥ 1, we
have

CA
τ (x , y) = CA

τ0
(x , y) + DA

τ0
(x , y)CA

φ (x , y).

Proof: Two possible cases:

σ avoids τ0 ⇒ CA
τ0

(x , y)

σ = σ1σ2σ3 where σ2 is the first occurrence of τ0

σ1σ2 quasi-avoids the pattern τ0

σ3 must avoid φ

⇒ DA
τ0

(x , y)CA
φ (x , y)
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Equivalence of Patterns

Using equivalence of patterns, we will be able to establish
results for families of patterns.

Reversal map R(σ) = R(σ1σ2 . . . σk ) = σkσk−1 . . . σ1

Reversal map R and identity map I are called trivial
bijections of CA

n;m to itself

τ1 and τ2 are equivalent, denoted by τ1≡τ2, if
|CA

n;m(τ1)| = |CA
n;m(τ2)| for all A, m and n.

τ≡R(τ) for any pattern τ

{τ,R(τ)} = symmetry class of τ

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions
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Definitions
Multi-Patterns
Shuffle Patterns
Application

Definition

Let {τ0, τ1, . . . , τs} be a set of consecutive patterns.

τ = τ1-τ2- · · · -τs is a multi-pattern if each letter of τi is
incomparable with any letter of τj for i 6= j

τ = τ0-a1-τ1-a2- · · · -τs−1-as-τs is a shuffle pattern if each
letter of τi is incomparable with any letter of τj for i 6= j and
the letters ai are either all greater or all smaller than any
letter of τj for any i and j .

Shuffle pattern without the letters ai → multi-pattern

1′-2-1′′ is a shuffle pattern, and 1′-1′′ is a multi-pattern.

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions
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Definitions
Multi-Patterns
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Application

Result for a Specific Multi-Pattern

Simplest non-trivial multi-pattern is Φ = 1′ − 1′′2′′. In this case
we can derive the generating function directly:

First letter can be any of the k letters in A

All other letters have to be in non-increasing order

CA
1′-1′′2′′(x , y) = 1 +

(

y
∑

a∈A xa
)
∏

a∈A

(

∑

i≥0(x
ay)i

)

= 1 +
y

P

a∈A xa
Q

a∈A(1−xay) .
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Results for General Multi-Patterns

Theorem
Let τ = τ1-τ2- · · · -τs be a multi-pattern. Then

CA
τ (x , y) =

s
∑

j=1

CA
τj
(x , y)

j−1
∏

i=1

[(

y
∑

a∈A

xa − 1

)

CA
τi
(x , y) + 1

]

.

Proof: Follows from the lemma and the main result, together
with induction.
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Results for Families of Multi-Patterns

Theorem

Let τ = τ0-τ1 and φ = f1(τ0)-f2(τ1), where f1 and f2 are any of
the trivial bijections. Then τ ≡ φ.

Proof : Claim: τ0-τ1 ≡ τ0-f (τ1). If σ avoids τ0-τ1, then either

σ has no occurrence of τ0, so σ also avoids τ0-f (τ1)

σ can be written as σ = σ1σ2σ3, where σ1σ2 has exactly
one occurrence of τ0, namely σ2. Then σ3 must avoid τ1,
so f (σ3) avoids f (τ1) and σf = σ1σ2f (σ3) avoids τ0-f (τ1).

Converse also true ⇒ bijection between class of
compositions avoiding τ and those avoiding τ0-f (τ1).

This result and properties of trivial bijections finish proof.
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Results for Families of Multi-Patterns

Theorem

Suppose we have multi-patterns τ = τ1-τ2- · · · -τs and
φ = φ1-φ2- · · · -φs, where τ1τ2 . . . τs is a permutation of
φ1φ2 . . . φs. Then τ ≡ φ.

Proof : By induction. For s = 2, the previous theorem and
properties of reversal maps give that

τ1-τ2 ≡ τ1-R(τ2) ≡ R(R(τ2))-R(τ1) ≡ τ2-R(R(τ1)) ≡ τ2-τ1.

General case follows with careful arguments and distinguishing
two different cases.
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Results for Shuffle Patterns

Theorem

If φ be the shuffle pattern τ -ℓ-ν, then for all k ≥ ℓ,

CA
φ (x , y) =

CA−{ak}
φ

(x , y) − xak yCA−{ak}
τ (x , y)CA−{ak }

ν (x , y)

(1 − xak yCA−{ak}
τ (x , y))(1 − xak yCA−{ak}

ν (x , y))
.

Note: For the shuffle pattern ψ = τ -1-ν, replace ak with a1.
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Results for Shuffle Patterns

Proof: Let φ = τ -ℓ-ν, A′ = A − {ak}, and assume σ contains
exactly s copies of ak .

If s = 0 ⇒ CA′

φ (x , y).
If s ≥ 1 then σ = σ0akσ1ak · · · akσs, where each σj is a
φ-avoiding composition with parts in A′. Then either

σj avoids τ for all j ⇒ xsak ys
(

CA′

τ (x , y)
)s+1

∃ j0 such that σj0 contains τ , σj avoids τ for all
j = 0, 1, . . . , j0 − 1 and σj avoids ν for any j = j0 + 1, . . . , s ⇒

xsak ys∑s
j=0

(

CA′

τ (x , y)
)j (

CA′

ν (x , y)
)s−j

(CA′

φ (x , y) − CA′

τ (x , y))

Combine, simplify, use
∑

n≥0

xn
n
∑

j=0

pjqn−j =
1

(1 − xp)(1 − xq)
to obtain result.
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Results for Families of Shuffle Patterns

Corollary

Let φ = τ -ℓ-ν (resp. φ = τ -1-ν) be a shuffle pattern, and let
f (φ) = f1(τ)-ℓ-f2(ν) (resp. f (φ) = f1(τ)-1-f2(ν)), where
f1, f2 ∈ {R, I} are any trivial bijections. Then φ ≡ f (φ).

Corollary

For any shuffle pattern τ -ℓ-ν (resp. τ -1-ν), we have
τ -ℓ-ν ≡ ν-ℓ-τ (resp. τ -1-ν ≡ ν-1-τ ).
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Non-Overlapping Occurrences of POPs

Two occurrences of a pattern τ overlap if they have any
parts of σ in common

τ -nlap(σ) = maximum number of non-overlapping
occurrences of a consecutive pattern τ

descent = 21 occurs at position i if σi > σi+1

Two descents at positions i and j overlap if j = i + 1

MND = maximum number of non-overlapping descents
MND(333211) = 1
MND(1332111143211) = 3

S. Heubach, S. Kitaev, T. Mansour Avoidance of partially ordered patterns in compositions



Background
Definitions

Main Result
Special Types of Patterns

Summary

Definitions
Multi-Patterns
Shuffle Patterns
Application

Non-Overlapping Occurrence of POPs

Theorem

Let τ be a consecutive pattern, τ -nlap(σ) is the maximum
number of non-overlapping occurrences of τ in σ, and
gA

τ (x , y , t) =
∑

n,m≥0
∑

σ∈CA
n;m

xnymtτ-nlap(σ). Then

gA
τ (x , y , t) =

CA
τ (x , y)

1 − t
[(

y
∑

a∈A xa − 1
)

CA
τ (x , y) + 1

]
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Non-Overlapping Occurrence of POPs

Proof: Fix s and let Φs = τ -τ - · · · -τ with s copies of τ

σ avoids Φs ⇒ σ has at most s − 1 non-overlapping
occurrences of τ

Compute CA
Φs+1

(x , y) from general theorem for multi
patterns

Gf for number of compositions with exactly s
non-overlapping copies of τ is given by
CA

Φs+1
(x , y) − CA

Φs
(x , y)

Sum over s
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Non-Overlapping Occurrence of POPs

Example

CA
21(x , y) =

∏

a∈A
1

(1−xay)

Distribution of MND for the set A = {1,2} is given by

1
(1 − x)(1 − x2) − x3t

=
∑

s≥0

x3s

(1 − x)2s+2(1 + x)s+1 ts

For s = 2, the sequence for the number of compositions for
n = 6, . . . ,20 is given by {1, 3, 9, 19, 39, 69, 119, 189,
294, 434, 630, 882, 1218, 1638, 2178}
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Gave recursive result for the gf for number of compositions
that avoid a pattern of the form τ = τ0 − Φ

Result applies directly to Multi-Patterns

Result for Shuffle Patterns

Application: gf for max number of non-overlapping
occurrence of a POP in compositions
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Preprint and this talk available from my web site at
sheubac@calstatela.edu

Preprint also at ArXiv
(http://www.arxiv.org/pdf/math.CO/0610030)

Article to appear in Pure Mathematics and Applications

Thanks!
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