Compositions and Multisets

Restricted by Patterns of Length 3

Silvia Heubach

Department of Mathematics
California State University Los Angeles
joint work with
Toufik Mansour

Pattern Avoidance

- Knuth - Permutations avoiding a permutation pattern of length $3 \rightarrow$ Catalan numbers
- Simion \& Schmidt - Permutations avoiding any given set of permutation patterns of length 3
- Burstein - Words avoiding a set of permutation patterns of length 3
- Burstein \& Mansour - Words avoiding patterns with repeated letters
- Heubach \& Mansour - Compositions avoiding patterns of length 2
- Savage \& Wilf - Compositions avoiding permutation patterns of length 3

Things to come ...

- Compositions and multisets avoiding a single pattern of length 3 with repeated letters
- Compositions and multisets avoiding pairs of patterns of length 3 with repeated letters
- Compositions and multisets avoiding special patterns of arbitrary length: 111... 111 \& 11... $121 . . .11$

Notation and Definitions

- $\mathbb{N}=$ set of all positive integers
- $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ ordered subset of $\mathbb{N} ; A^{\prime}=A-\left\{a_{1}\right\}$, $\tilde{A}=A-\left\{a_{d}\right\}$
- $[k]=\{1,2, \ldots, k\} ;[k]^{n}=$ set of all words of length n over $[k]$
- pattern $\tau=$ word in $[\ell]^{k}$ that contains each letter from $[\ell]$, possible with repetitions. Sets of patterns denoted by T
- $S=1^{m_{1}} 2^{m_{2}} \ldots k^{m_{k}}, m_{i}>0$ multiset
- $\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}=$ set of permutations on a multiset S
- $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m}=$ composition of $n \in \mathbb{N}$ with m parts where $\sum_{i=1}^{m} \sigma_{i}=n$
- $C_{n}^{A}\left(C_{n ; m}^{A}\right)=$ the set of all compositions of n with parts in A (m parts in A)

Notation and Definitions

- $\sigma \in C_{n}^{A}\left(C_{n ; m}^{A}\right)$ contains τ if σ contains a subsequence isomorphic to τ. Otherwise, σ avoids τ and we write $\sigma \in C_{n}^{A}(\tau)\left(\sigma \in C_{n ; m}^{A}(\tau)\right)$
- T_{1} and T_{2} are Wilf-equivalent, denoted by $T_{1} \stackrel{\text { Wilf }}{\equiv} T_{2}$, if $\left|C_{n ; m}^{A}\left(T_{1}\right)\right|=\left|C_{n ; m}^{A}\left(T_{2}\right)\right|$ for all A, m and n.
- reversal map $r(\tau)=r\left(\tau_{1} \tau_{2} \ldots \tau_{k}\right)=\tau_{k} \tau_{k-1} \ldots \tau_{1} ; r(\tau) \stackrel{\text { Wilf }}{\equiv} \tau$
- $\{\tau, r(\tau)\}=$ symmetry class of τ
- Generating functions

$$
\begin{aligned}
& -C_{T}^{A}(x ; m)=\sum_{n \geq 0}\left|C_{n ; m}^{A}(T)\right| x^{n} \\
& -C_{T}^{A}(x, y)=\sum_{m \geq 0} C_{T}^{A}(x ; m) y^{m} \\
& -C_{T}^{A}(x)=C_{T}^{A}(x, 1)=\sum_{n \geq 0}\left|C_{n}^{A}(T)\right| x^{n}
\end{aligned}
$$

Single Patterns of Length 3

- 111
- 121 and 112
- 221 and 212
- 123,132 and 213 (permutation patterns)

Wilf equivalence for compositions and multisets and generating function for compositions (Savage and Wilf)

The pattern 111

Theorem: Let $A=\left\{a_{1}, \ldots, a_{d}\right\}$ be any ordered finite or infinite set of positive integers. Then

$$
\sum_{m \geq 0} C_{111}^{A}(x ; m) \frac{y^{m}}{m!}=\prod_{a \in A}\left(1+x^{a} y+\frac{1}{2} x^{2 a} y^{2}\right)
$$

Theorem: The number of permutations of the multiset $S=1^{m_{1}} 2^{m_{2}} \cdots k^{m_{k}}$ which avoid the pattern 111 is

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(111)\right|= \begin{cases}\frac{\left(m_{1}+\cdots+m_{k}\right)!}{m_{1}!\cdots m_{k}!} & \text { if } m_{i} \leq 2 \quad \forall i \\ 0 & \text { otherwise } .\end{cases}
$$

Proof: Let $\sigma \in C_{n ; m}^{A}(111)$ and $A^{\prime}=\left\{a_{2}, \ldots, a_{d}\right\} . \sigma$ avoids $111 \Rightarrow$ a_{1} occurs 0,1 or 2 times. Hence, for all $n, m \geq 0$,

$$
\begin{aligned}
C_{n ; m}^{A}(111) & =C_{n ; m}^{A^{\prime}}(111)+m C_{n-a_{1} ; m-1}^{A^{\prime}}(111) \\
& +\binom{m}{2} C_{n-2 a_{1} ; m-2}^{A^{\prime}}(111)
\end{aligned}
$$

Multiplying by $\frac{1}{m!} x^{n} y^{m}$ and summing over all $n, m \geq 0$ we get that

$$
\sum_{m \geq 0} C_{111}^{A}(x ; m) \frac{y^{m}}{m!}=\left(1+x^{a_{1}} y+\frac{1}{2} x^{2 a_{1}} y^{2}\right) \sum_{m \geq 0} C_{111}^{A^{\prime}}(x ; m) \frac{y^{m}}{m!}
$$

Since $\sum_{m \geq 0} C_{111}^{\left\{a_{1}\right\}}(x ; m) \frac{y^{m}}{m!}=1+x^{a_{1}} y+\frac{1}{2} x^{2 a_{1}} y^{2}$, we get the desired result by induction on d.

The result for multisets follows since the letter i occurs either once or twice, and we can arrange the letters in $\frac{\left(m_{1}+\cdots+m_{k}\right)!}{m_{1}!\cdots m_{k}!}$ ways.

The patterns 121 and 112

Structure of compositions avoiding 121

- If more than one a_{1} occurs in σ, they have to be consecutive
- Removing all $a_{1} \mathrm{~s}$ from σ gives $\sigma^{\prime} \in A^{\prime}$ which avoids 121
- If more than one a_{2} occurs in σ^{\prime}, they have to be consecutive
- Deletion of parts a_{1} through a_{j} leaves a (possibly empty) composition $\sigma^{(j)}$ on parts a_{j+1} through a_{d} in which all parts a_{j+1}, if any, occur consecutively.
Structure of compositions avoiding 112
- Only leftmost a_{1} can occur before any larger part in σ
- All other $a_{1} \mathrm{~s}$ (excess a_{1} s) have to occur at the right end
- Deletion of parts a_{1} through a_{j} leaves a (possibly empty) composition $\sigma^{(j)}$ on parts a_{j+1} through a_{d} in which all excess $a_{j+1} \mathrm{~s}$ occur at the end.

Bijection: $\quad \rho: C_{n ; m}^{A}(121) \rightarrow C_{n ; m}^{A}(112) \quad(*)$
Let $\sigma^{(0)}=\sigma \in C_{n ; m}^{A}(121)$ and apply the following transformation of d steps.

- $\sigma^{(j-1)}$ composition after $j-1$ steps
- $\sigma^{(j)}$ composition that results by cutting out the block of excess a_{j} 's and inserting it immediately before the final block of all smaller excess parts in $\sigma^{(j-1)}$, or at the end of $\sigma^{(j-1)}$ if there are no smaller excess parts.

Example:

$$
43221113 \rightarrow 43221311 \rightarrow 43213211 \rightarrow 43213211
$$

Theorem: Let $A=\left\{a_{1}, \ldots, a_{d}\right\} \subset \mathbb{N}$. Then $112 \stackrel{\text { wilf }}{=} 121$ and

$$
\left(1-x^{a_{1}} y\right) C_{112}^{A}(x, y)=C_{112}^{A^{\prime}}(x, y)+x^{a_{1}} y^{2} \frac{\partial}{\partial y} C_{112}^{A^{\prime}}(x, y),
$$

or, for all $m \geq 1$,

$$
\begin{aligned}
C_{112}^{A}(x ; m) & =C_{112}^{A^{\prime}}(x ; m)+x^{a_{1}} C_{112}^{A}(x ; m-1) \\
& +(m-1) x^{a_{1}} C_{112}^{A^{\prime}}(x ; m-1)
\end{aligned}
$$

where $C_{112}^{A}(x ; 0)=1$ for any ordered set A.

Theorem: The number of permutations of the multiset S that avoid the patterns 112 and 121, respectively, is

$$
\begin{aligned}
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112)\right| & =\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(121)\right| \\
& =\prod_{j=2}^{k}\left(m_{j}+\cdots+m_{k}+1\right)
\end{aligned}
$$

Proof: Wilf equivalence follows from the bijection ρ. Let $H_{112}^{A}(x, y)$ be the gf for compositions in $C_{n ; m}^{A}(112)$ which contain at least one part a_{1}. Write gf in two different ways:

$$
\begin{aligned}
H_{112}^{A}(x, y) & =C_{112}^{A}(x, y)-C_{112}^{A^{\prime}}(x, y) \\
H_{112}^{A}(x, y) & =x^{a_{1}} y C_{112}^{A}(x, y) \\
& +\sum_{n \geq a_{1}, m \geq 1}(m-1)\left|C_{n-a_{1} ; m-1}^{A^{\prime}}(112)\right| x^{n} y^{m}
\end{aligned}
$$

Express the sum as a derivative and combine.
For multiset result, count 112 avoiding permutations: all excess 1's occur at the end, so exactly one 1 occurs in $\sigma^{\prime}=\sigma_{1} \ldots \sigma_{m+1-m_{1}}$ and σ avoids $112 \Longleftrightarrow \sigma^{\prime}$ avoids 112. The single 1 can occur in $\left(m_{2}+\cdots+m_{k}+1\right)$ positions. Thus

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112)\right|=\left(m_{2}+\cdots+m_{k}+1\right)\left|\mathfrak{S}_{m_{2} \ldots m_{k}}(112)\right|
$$

and formula follows using induction.

Example: Compositions avoiding 112 for $A=\{1,2\}$

- $\{1,1,2,3,4,6,7,10,11,15,16,21,22,28,29,36,37,45,46$, $55,56\}$ for $n=0 \ldots 20$.
- occurs as sequence A055802; odd terms are triangle numbers (A000217), which also count $\#$ of permutations of n which avoid 132 and have exactly one descent
- $a(n)=\left|C_{n}^{\{1,2\}}(112)\right| ; a(2 i)=a(2 i-1)+1, a(2 i+1)=a(2 i)+i$.
- Compositions either end in 1 or if they end in 2 , they can have at most one 1. Create recursively:

1. Append a 1 to each composition of $n-1$.
2. If $n=2 i \rightarrow$ all 2 's (of which there is one)

If $n=2 i+1 \rightarrow$ all 2 's and single 1 (of which there are i)

- $a(2 i)=\left(i^{2}+i+2\right) / 2, a(2 i+1)=(i+1)(i+2) / 2$
- $a(n)=\frac{1}{16}\left(2 n^{2}+6 n+11-(2 n-5)(-1)^{n}\right)$

Example: Compositions avoiding 112 for $A=\{1, s\}$

- For $s=4:\{1,1,1,1,2,3,3,3,4,6,6,6,7,10,10,10,11,15$, $15,15,16\}$ for $n=0 \ldots 20$.
- now certain values repeat - extend from case $s=2$
- $b(n)=\left|C_{n}^{\{1, s\}}(112)\right|$
- Compositions either end in 1 or if they end in s, they can have at most one 1. Create recursively:

1. Append a 1 to each composition of $n-1$.
2. If $n=s \cdot i \rightarrow$ all s 's (of which there is one)

If $n=s \cdot i+1 \rightarrow$ all s 's and single 1 (of which there are i)

- If $n=s \cdot i+j, 2 \leq j \leq(s-1) \rightarrow$ no additional compositions ending in s
- $b(s \cdot i)=a(2 i)=\left(i^{2}+i+2\right) / 2$ $b(s \cdot i+j)=a(2 i+1)=(i+1)(i+2) / 2,1 \leq j \leq(s-1)$

The patterns 221 and 212
Theorem: Let $A=\left\{a_{1}, \ldots, a_{d}\right\}$ and $\tilde{A}=\left\{a_{1}, \ldots, a_{d-1}\right\}$ be ordered sets. Then patterns 221 and 212 are Wilf-equivalent on compositions, and

$$
\left(1-x^{a_{d}} y\right) C_{221}^{A}(x, y)=C_{221}^{\tilde{A}}(x, y)+x^{a_{d}} y^{2} \frac{\partial}{\partial y} C_{221}^{\tilde{A}}(x, y)
$$

Theorem: The number of permutations of the multiset $S=1^{m_{1}} 2^{m_{2}} \cdots k^{m_{k}}$ which avoid the patterns 221 and 212, respectively, is

$$
\begin{aligned}
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(221)\right| & =\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(212)\right| \\
& =\prod_{j=1}^{k-1}\left(m_{1}+\cdots+m_{j}+1\right)
\end{aligned}
$$

Proof: Either redo proofs for 112 and 121 with 112 replaced by $221, a_{1}$ replaced by a_{d}, etc., or use a bijection based on the complement map

$$
c\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{m}}\right)=a_{d+1-i_{1}} a_{d+1-i_{2}} \ldots a_{d+1-i_{m}}
$$

If σ avoids 221, then $c(\sigma)$ avoids 112 . Since c is one-to-one, $c^{-1} \circ \rho^{-1} \circ c$ is a bijection between the sets $C_{n ; m}^{A}(221)$ and $C_{n ; m}^{A}(212)$.

$$
\begin{array}{ccc}
C_{n ; m}^{A}(221) & \xrightarrow{c^{-1} \circ \rho^{-1} \circ c} & C_{n ; m}^{A}(212) \\
\quad{ }^{c} \downarrow & & \\
\quad & & \uparrow c^{-1} \\
C_{n^{\prime} ; m}^{A}(112) & \xrightarrow[\rho^{-1}]{ } & C_{n^{\prime} ; m}^{A}(121)
\end{array}
$$

Example: Compositions avoiding 221 for $A=\{1, s\}$

- For $s=2:\{1,1,2,3,5,7,10,13,17,21,26,31,37,43,50$, $57,65,73,82,91,101\}$ for $n=0 \ldots 20$
- occurs as sequence A033638; $\left|C_{n}^{\{1,2\}}(221)\right|=\frac{1}{8}\left(2 n^{2}+7+(-1)^{n}\right)$.
- counts the number of $(3412,123)$-avoiding involutions in \mathfrak{S}_{n} (see Egge, 2004)
- for $s=4:\{1,1,1,1,2,3,4,5,7,9,11,13,16,19,22,25,29$, $33,37,41,46\}$ for $n=0 \ldots 20$
- Recursive creation for $n=i \cdot s+\ell$

1. Prepend a 1 to each composition of $n-1$
2. Start with s, place $n-j \cdot s$ 1's, then the remaining $j-1$ s's. (of which there i ones).

- $a(i \cdot s+\ell)=\frac{2+i(i-1) s+2 i(\ell+1)}{2}$ for $n \geq 0$

Pairs of Patterns

- σ avoids $\left\{\tau_{1}, \tau_{2}\right\} \Rightarrow \sigma$ avoids $\left\{r\left(\tau_{1}\right), r\left(\tau_{2}\right)\right\}$.
- 21 possible pairs reduced to 13 symmetry classes of pairs
- $\{111,112\},\{111,121\},\{111,212\},\{111,221\}$
- $\{112,121\},\{122,212\}$
- $\{112,211\},\{122,221\}$
- $\{112,212\},\{122,121\}$
- $\{121,212\}$
- $\{112,221\}$
- \{112, 122 $\}$ - no result

The patterns $\{111,112\},\{111,121\}$ and $\{111,212\},\{111,221\}$
Theorem: Let $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\} \subseteq \mathbb{N} .\{111,112\} \stackrel{\text { Wilf }}{=}\{111,121\}$ and $\{111,212\} \stackrel{\text { Wilf }}{\equiv}\{111,221\}$, and for all $m \geq 0$,

$$
\begin{aligned}
C_{111,112}^{A}(x ; m) & =C_{111,112}^{A^{\prime}}(x ; m)+m x^{a_{1}} C_{111,112}^{A^{\prime}}(x ; m-1) \\
& +(m-1) x^{2 a_{1}} C_{111,112}^{A^{\prime}}(x ; m-2), \\
C_{111,212}^{A}(x ; m) & =C_{111,212}^{\tilde{A}}(x ; m)+m x^{a_{d}} C_{111,212}^{\tilde{A}}(x ; m-1) \\
& +(m-1) x^{2 a_{d}} C_{111,212}^{\tilde{A}}(x ; m-2) .
\end{aligned}
$$

Proof: Avoiding 111 implies no, one or two a_{i} s. ρ preserves number of occurrences, so $\rho_{\left.\right|_{111}}: C_{n ; m}^{A}(111,121) \rightarrow C_{n ; m}^{A}(111,112)$ is a bijection. One a_{1} can occur in any of m positions. If there are two copies of a_{1}, second one is at the end because σ avoids 112 , and the other a_{1} can occur at any of $m-1$ positions.

Theorem: The number of permutations of the multiset S which avoid the patterns $\{111,112\} \stackrel{\text { wilf }}{=}\{111,121\}$ and $\{111,212\} \stackrel{\text { Wilf }}{=}\{111,221\}$ are

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(111,112)\right|= \begin{cases}0 & \text { if } \exists i \text { with } m_{i} \geq 3 \\ \prod_{j=2}^{k}\left(m_{j}+\cdots+m_{k}+1\right) & \text { otherwise }\end{cases}
$$

and

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(111,212)\right|= \begin{cases}0 & \text { if } \exists i \text { with } m_{i} \geq 3 \\ \prod_{j=1}^{k-1}\left(m_{1}+\cdots+m_{j}+1\right) & \text { otherwise } .\end{cases}
$$

Proof: Wilf-equivalence follows from $\rho_{\left.\right|_{111}}$. Avoiding 111 restricts the multisets to those where $m_{i} \leq 2$ for all i. On these multisets, avoiding 112 (221, respectively) is the only restriction, and results for 112 and 221 give the stated results.

The patterns $\{112,121\}$ and $\{122,212\}$
Theorem: Let $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ be any ordered finite set of positive integers. Then for any $m \geq 0$,

$$
\begin{aligned}
C_{112,121}^{A}(x ; m) & =C_{112,121}^{A^{\prime}}(x ; m)+m x^{a_{1}} C_{112,121}^{A^{\prime}}(x ; m-1) \\
& +\sum_{j=2}^{m} x^{j a_{1}} C_{112,121}^{A^{\prime}}(x ; m-j)
\end{aligned}
$$

and

$$
\begin{aligned}
C_{122,212}^{A}(x ; m) & =C_{122,212}^{\tilde{A}}(x ; m)+m x^{a_{d}} C_{122,212}^{\tilde{A}}(x ; m-1) \\
& +\sum_{j=2}^{m} x^{j a_{d}} C_{122,212}^{\tilde{A}}(x ; m-j)
\end{aligned}
$$

Proof: Avoiding 112 and 121 simultaneously implies that for $j>1$, all copies of a_{1} have to appear in a block at the end. A single a_{1} can occur anywhere.

Theorem: The number of permutation of the multiset S which avoid $\{112,121\}$ and $\{122,212\}$, respectively, are
$\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112,121)\right|=\prod_{j=1}^{k-1} b_{j}$, with $b_{j}= \begin{cases}\left(m_{j}+\cdots+m_{k}\right) & \text { if } m_{j}=1 \\ 1 & \text { otherwise }\end{cases}$
and
$\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(122,212)\right|=\prod_{j=2}^{k} c_{j}$, with $c_{j}= \begin{cases}\left(m_{1}+\cdots+m_{j}\right) & \text { if } m_{j}=1 \\ 1 & \text { otherwise }\end{cases}$
Proof: Avoiding 112 and 121 simultaneously implies that for $j>1$, all 1 s have to appear in a block at the end. A single a_{1} can occur in any of $m_{2}+\ldots+m_{k}+1$ positions.

The patterns $\{112,211\}$ and $\{122,221\}$
Theorem: Let $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ be any ordered finite set of positive integers. Then for all $m \geq 0$,

$$
\begin{aligned}
C_{112,211}^{A}(x ; m) & =C_{112,211}^{A^{\prime}}(x ; m)+m x^{a_{1}} C_{112,211}^{A^{\prime}}(x ; m-1) \\
& +x^{2 a_{1}} C_{112,211}^{A^{\prime}}(x ; m-2)+x^{m a_{1}}
\end{aligned}
$$

and

$$
\begin{aligned}
C_{122,221}^{A}(x ; m) & =C_{122,221}^{\tilde{A}}(x ; m)+m x^{a_{d}} C_{122,221}^{\tilde{A}}(x ; m-1) \\
& +x^{2 a_{d}} C_{122,221}^{\tilde{A}}(x ; m-2)+x^{m a_{d}}
\end{aligned}
$$

Proof: σ avoids 112 and $211 \Rightarrow a_{1}$ occurs either $0,1,2$, or m times. If $j=2, a_{1}$ occurs at the beginning and end.

Theorem: The number of permutation of the multiset S which avoid $\{112,211\}$ and $\{122,221\}$, respectively, are

$$
\begin{aligned}
&\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112,211)\right|= \prod_{j=1}^{k-1} b_{j}, \quad \text { where } \\
& b_{j}= \begin{cases}\left(m_{j}+\cdots+m_{k}\right) & \text { if } m_{j}=1 \\
1 & \text { if } m_{j}=2 \\
0 & \text { if } m_{j} \geq 2\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(122,221)\right|= \prod_{j=2}^{k} c_{j}, \quad \text { where } \\
& c_{j}= \begin{cases}\left(m_{1}+\cdots+m_{j}\right) & \text { if } m_{j}=1 \\
1 & \text { if } m_{j}=2 \\
0 & \text { if } m_{j} \geq 2\end{cases}
\end{aligned}
$$

The patterns $\{112,212\}$ and $\{122,121\}$
Theorem: Let $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$. Then

$$
\begin{aligned}
C_{112,212}^{A}(x, y)= & \prod_{j=1}^{d} \frac{1+x^{a_{j}} y}{1-x^{a_{j}} y}-\sum_{i=1}^{d}\left[\frac{x^{a_{i}} y}{1-x^{a_{i}} y} \prod_{j=1}^{i-1} \frac{1+x^{a_{j}} y}{1-x^{j_{j}} y}\right. \\
& \left.\left(1-\sum_{U \sqcup V=A_{i}^{\prime}}\left(C_{112,212}^{U}(x, y)-1\right)\left(C_{112,212}^{V}(x, y)-1\right)\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
C_{122,121}^{A}(x, y)= & \prod_{j=1}^{d} \frac{1+x^{a_{j}} y}{1-x^{a_{j}} y}-\sum_{i=1}^{d}\left[\frac{x^{a_{i}} y}{1-x^{a_{i}} y} \prod_{j=i+1}^{d} \frac{1+x^{a_{j}} y}{1-x^{a_{j}} y}\right. \\
& \left.\left(1-\sum_{U \sqcup V=\tilde{A}_{i}}\left(C_{122,121}^{U}(x, y)-1\right)\left(C_{122,121}^{V}(x, y)-1\right)\right)\right]
\end{aligned}
$$

where $C_{T}^{\varnothing}(x, y)=1$, and $U \sqcup V=D$ denotes the collection of sets U and V such that $U \cup V=D$ and $U \cap V=\emptyset$.

Proof: Focus on where a_{1} occurs. Assume there are j occurrences of a_{1}.

- $j=0 \rightarrow C_{112,212}^{A^{\prime}}(x, y)$
- $j \geq 1: \sigma$ avoids $112 \Rightarrow$ excess $a_{1} \mathrm{~s}$ at right end and $\sigma=\sigma^{1} a_{1} \sigma^{2} a_{1} \cdots a_{1}$, where σ^{1}, σ^{2}, and block of a_{1} 's may be empty
- σ avoids $212 \Rightarrow$ parts in σ^{1} distinct from parts in σ^{2}. Thus, $\sigma \in C_{112,212}^{A} \Longleftrightarrow \sigma^{1} \in C_{112,212}^{U}$ and $\sigma^{2} \in C_{112,212}^{V}$, with $U \sqcup V=A^{\prime}$
- 3 cases to consider
$-\sigma^{1}=\sigma^{2}=\emptyset$
- exactly one of σ^{1} and σ^{2} is the empty set
- neither σ^{1} nor σ^{2} is empty

Then use induction on n.

Example: Compositions avoiding $\{112,212\}$ for $A=\{1, s\}$

- $C_{112,212}^{A}(x)=\frac{1+x}{1-x} \cdot \frac{1+x^{s}}{1-x^{s}}-\frac{x}{1-x} \cdot \frac{1+x^{s}}{1-x^{s}}-\frac{x^{s}}{1-x^{s}}=\frac{1+x^{s+1}}{(1-x)\left(1-x^{s}\right)}$.
- $s=2:\{1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20\}$ for $n=0, \ldots, 20$
- $s=4:\{1,1,1,1,2,3,3,3,4,5,5,5,6,7,7,7,8,9,9,9,10\}$
- Recursive creation:

1. Append a 1 to each composition of $n-1$ (ending in 1)
2. If $n=k \cdot s \rightarrow s s \ldots s s$

If $n=k \cdot s+1 \rightarrow 1 s s \ldots s s$ (ending in s, distinct parts)

- $\left|C_{n}^{\{1, s\}}(112,212)\right|= \begin{cases}1 & \text { for } n=0, \ldots, s-1 ; \\ 2 k & \text { for } n=k \cdot s, k \geq 1 ; \\ 2 k+1 & \text { for } n=k \cdot s+j, k \geq 1,1 \leq j<s .\end{cases}$

Theorem: The number of permutation of the multiset S which avoid $\{112,212\}$ and $\{122,121\}$, respectively, are

$$
\begin{aligned}
& \left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112,212)\right|= \\
& \quad \sum_{Q \sqcup P=\{2, \ldots, k\}}\left|\mathfrak{S}_{m_{q_{1}} \ldots m_{q_{s}}}(112,212)\right|\left|\mathfrak{S}_{m_{p_{1}} \ldots m_{p_{k-s}-1}}(112,212)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(122,121)\right|= \\
& \quad \sum_{Q \sqcup P=\{1, \ldots, k-1\}}\left|\mathfrak{S}_{m_{q_{1}} \ldots m_{q_{s}}}(122,121)\right|\left|\mathfrak{S}_{m_{p_{1}} \ldots m_{p_{k-s-1}}}(122,121)\right|
\end{aligned}
$$

where $Q=\left\{q_{1}, \ldots, q_{s}\right\}, P=\left\{p_{1}, \ldots, p_{k-1-s}\right\}$, and the number of permutations of the empty multiset are defined to be 1 .

The pattern $\{121,212\}$
Theorem: Let A be any ordered set of positive integers. Then

$$
C_{121,212}^{A}(x, y)=1+\sum_{\varnothing \neq B \subset A}\left(|B|!\prod_{b \in B} \frac{x^{b} y}{1-x^{b} y}\right)
$$

and the number of permutations of the multiset S which avoid $\{121,212\}$ is given by

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(121,212)\right|=k!.
$$

Proof: Avoiding 121 and 212 implies that all copies of each part $a_{i_{1}}$ through $a_{i_{j}}$ must be consecutive, i.e., σ is a concatenation of j constant strings.

The pattern $\{122,221\}$
Theorem: Let $A=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ be any ordered finite set of positive integers. Then

$$
C_{122,221}^{A}(x, y)=1+\sum_{\varnothing \neq B \subset A}\left(|B|!\prod_{b \in B}\left(x^{b} y\right) \sum_{b^{\prime} \in B} \frac{1}{1-x^{b^{\prime}} y}\right),
$$

and the number of permutations of the multiset S which avoid $\{112,221\}$ is given by
$\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}(112,221)\right|= \begin{cases}0, & \text { if there exist } i, j \text { such that } m_{i}, m_{j} \geq 2 ; \\ k! & \text { otherwise. }\end{cases}$
Proof: Let $\sigma \in C_{n ; m}^{A}(112,221)$ and let $j \leq m$ be the largest index such that $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{j}$ are all distinct. If $j<m$, then σ_{j+1} repeats one of the preceding parts, and the parts to the right of σ_{j+1}, if any, have to be equal to σ_{j+1} since σ avoids 112 and 221 .

Patterns of arbitrary length

The pattern $\{11 \cdots 11\}=\langle 1\rangle_{\ell}$

Theorem: For any $\ell \geq 1$ and any finite ordered set of positive integers A,

$$
\sum_{m \geq 0} C_{\langle 1\rangle_{\ell}}^{A}(x ; m) \frac{y^{m}}{m!}=\prod_{a \in A}\left(\sum_{j=0}^{\ell-1} \frac{x^{j a} y^{j}}{j!}\right),
$$

and the number of permutations of the multiset S which avoid $\langle 1\rangle_{\ell}$ is given by

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}\left(\langle 1\rangle_{\ell}\right)\right|= \begin{cases}\frac{\left(m_{1}+\cdots+m_{k}\right)!}{m_{1}!\cdots m_{k}!} & \text { if } m_{i} \leq \ell-1 \quad \forall i ; \\ 0 & \text { otherwise }\end{cases}
$$

The pattern $\{11 \cdots 121 \cdots 11\}$

Theorem:Let $A=\left\{a_{1}, \ldots, a_{d}\right\}$ be any finite ordered set of positive integers. Then $v_{s, t} \stackrel{\text { will }}{=} v_{s+t, 0}$, and for all $m \geq 1$,

$$
C_{v_{s, t}}^{A}(x ; m+1)-x^{a_{1}} C_{v_{s, t}}^{A}(x ; m)=\sum_{j=0}^{s+t-1} x^{j a_{1}}\binom{m}{j} C_{v_{s, t}}^{A^{\prime}}(x ; m+1-j) .
$$

The of permutations of the multiset S which avoid $v_{s, t}$ is given by

$$
\left|\mathfrak{S}_{m_{1} m_{2} \ldots m_{k}}\left(v_{s, t}\right)\right|=\prod_{j=1}^{k-1}\binom{m_{j+1}+\ldots+m_{k}+\min \left\{m_{j}, s+t-1\right\}}{\min \left\{m_{j}, s+t-1\right\}},
$$

where $v_{s, t}$ has s 1's on left and t 's on right of the single 2 .

Proof: Let $j=$ number of occurrences of a_{1}. Need to consider two cases:

- $j<s+t \rightarrow a_{1}$ is not part of $v_{s, t}$, i.e. they can occur in any of the m positions
- $j \geq s+t$, then there are three possibilities:
$-s, t \neq 0 \rightarrow$ leftmost $s-1 a_{1}$'s and rightmost $t-1 a_{1}$'s can occur anywhere, and the remaining $j-t-s+2 a_{1}$'s have to occur as a block
$-s=0 \rightarrow$ block of $j-t+1 a_{1}$'s have to occur as a block on the left
$-t=0 \rightarrow$ block of $j-s+1 a_{1}$'s have to occur as a block on the right

In either case, can choose $s+t-1$ positions out of the
$m-(s+t-1)+1$

Thus,

$$
\begin{aligned}
C_{v_{s, t}}^{A}(x ; m) & =\sum_{j=0}^{\mathbf{s}+\mathbf{t}-1} x^{j a_{1}}\binom{m}{j} C_{v_{s, t}}^{A^{\prime}}(x ; m-j) \\
& +\sum_{j=\mathbf{s}+\mathbf{t}}^{m} x^{j a_{1}}\binom{m-j+\mathbf{s}+\mathbf{t}-1}{\mathbf{s}+\mathbf{t}-1} C_{v_{s, t}}^{A^{\prime}}(x ; m-j)
\end{aligned}
$$

which gives result after simplifying.

Remark:

1. Note that this theorem gives Wilf equivalence of 112,121 , and 211. 112 and 211 are in same symmetry class, but Wilf equivalence of 112 and 121 had to be proved.
2. There is also a bijection than can show Wilf equivalence directly, based on a generalization of the bijection ρ.

Preprint available from my web site at sheubac@calstatela.edu

