Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No calculators.
- Closed books and closed notes.

PART A: Do only TWO problems

1. Let

 \[A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}. \]

 Note that \(A \) has eigenvalues \(\lambda_1 = 2 \) and \(\lambda_2 = -1 \).

 (a) [3 points] Find the eigenvectors \(v_1, v_2 \) of \(A \).

 (b) [8 points] **Without** doing any iteration, verify that the Power Method will converge to the eigenvector of \(A \) associated with \(\lambda_1 \) when we take the initial vector \(q_0 = (1, 0)^T \). Give an example of an initial vector for which it fails to converge. Briefly explain your reasoning.

 (c) [3 points] Taking the initial iterate \(q_0 = (1, 0)^T \), perform two iterations of the Power Method to obtain \(q_1, q_2 \).

 (d) [4 points] Show that if \(\langle \lambda, v \rangle \) is an eigenpair for an \(n \times n \) nonsingular matrix \(B \), then \(\langle 1/\lambda, v \rangle \) is an eigenpair for \(B^{-1} \).

 (e) [4 points] Using part (d), explain how one can modify the Power Method so that it converges to the eigenvector associated with \(\lambda_2 \) of the matrix \(A \) given above.

 (f) [3 points] Give one advantage and one disadvantage of the Power Method when used to find an approximation to the eigenvector.
2. (a) [4 points] What are the criteria for a Cholesky decomposition of a matrix A?
(b) [4 points] Provide the algorithm for Cholesky decomposition.
(c) [2 points] If the algorithm fails at any time, what can you conclude about matrix A?
(d) [5 points] By going through a brief description of work involved, count how many
flops the Cholesky algorithm requires.
(e) [10 points] Solve the system $Ax = b$ using the Gaussian Elimination method with
partial pivoting, where

$$
A = \begin{pmatrix}
2 & 1 & 1 \\
2 & 2 & -1 \\
4 & -1 & 6 \\
\end{pmatrix}, \quad b = \begin{pmatrix}
3 \\
10 \\
11 \\
\end{pmatrix}.
$$

3. (a) [8 points] For

$$
A = \begin{pmatrix}
1 & k & k \\
k & 1 & 0 \\
k & 0 & 1 \\
\end{pmatrix},
$$

where $k > 0$, show that the spectral radius of Jacobi iteration matrix is $k\sqrt{2}$.
(b) [5 points] For what values of k above does Jacobi iteration converge? What is the
rate of convergence?
(c) [8 points] For a given linear system $Ax = b$, and a splitting $A = M - N$, show
that the iterative method $Mx^{(k+1)} = Nx^{(k)} + b$ converges linearly. What is the
rate of convergence?
(d) [4 points] If an iterative method solves a linear system $Ax = b$ with accuracy 10^{-2}
in 230 iterations, then how many iterations will it need to increase accuracy to
10^{-3}? Explain briefly.
PART B: Do only **TWO** problems

1. Consider the following boundary value problem (BVP)

\[u_{xx} + u_{yy} = 4, \quad 0 < x < 1, \quad 0 < y < 1 \]

\[u(x, 0) = x^2, \quad u(x, 1) = (x - 1)^2, \quad 0 \leq x \leq 1 \]

\[u(0, y) = y^2, \quad u(1, y) = (y - 1)^2, \quad 0 \leq y \leq 1 \]

(a) [3 points] Show that \(u(x, y) = (x - y)^2 \) is an exact solution to the above BVP.

(b) [6 points] Show that the solution \(u(x, y) = (x - y)^2 \) is unique.

(c) [10 points] Suppose we partition the domain \([0, 1] \times [0, 1]\) into a mesh with mesh size \(h = \Delta x = \Delta y = 1/3 \). Using central differences to approximate the derivatives, write a finite difference scheme to approximate the solution \(u \) at the resulting four interior mesh points. Simplify your answer in the matrix form \(Au = b \).

(d) [6 points] Suppose the boundary condition \(u(x, 1) = (x - 1)^2 \) is changed to \(u_y(x, 1) = 2x \). Write a second order finite difference formula to approximate the solution at the point \((2/3, 1)\) in the mesh of part (c).

2. Consider the initial boundary value problem (IBVP):

\[U_t = \alpha U_{xx} - \beta U, \quad 0 < x < 1, \quad t > 0 \]

\[U(x, 0) = x(1 - x), \quad 0 \leq x \leq 1 \]

\[U(0, t) = 0, \quad U(1, t) = 0, \quad t > 0 \]

where \(\alpha > 0, \beta > 0 \). An explicit approximation to the PDE with \(r = k/h^2 \) has the matrix form \(u_{j+1} = Au_j \), where \(u_j = (u_{1,j}, u_{2,j}, \ldots, u_{N-1,j})^T \) and \(A \) is the tridiagonal matrix of order \(N - 1 \):

\[
A = \begin{pmatrix}
1 - 2r\alpha - k\beta & r\alpha & 0 & \cdots & 0 \\
-2r\alpha & 1 - 2r\alpha - k\beta & r\alpha & 0 & \vdots \\
0 & -2r\alpha & 1 - 2r\alpha - k\beta & r\alpha & 0 \\
\vdots & \ddots & \ddots & \ddots & r\alpha \\
0 & \cdots & 0 & r\alpha & 1 - 2r\alpha - k\beta
\end{pmatrix}
\]

(a) [12 points] By determining the eigenvalues of the matrix \(A \), obtain a restriction on \(r \) that guarantees that the scheme is stable.

(b) [3 points] Write an expression for the given scheme solved for \(u_{i,j+1} \) in terms of \(u_{i-1,j}, u_{i,j}, u_{i+1,j} \).

(c) [4 points] Give a consistent approximation to each of the initial and boundary conditions. (You need **not** show that your approximations are consistent.)
(d) [3 points] The truncation error for the given scheme is $T(h) = O(h^2)$. Use this fact to explain why the given scheme is consistent with the given PDE.

(e) [3 points] Assume that the given IBVP is well-posed. Explain why you can conclude from your work in the previous parts of this problem that the given scheme converges if r is restricted as found in part (a).

3. Consider the PDE

$$U_{xx} + xU_{xy} - 2x^2U_{yy} = 0$$

with initial data given on $y = 0$.

(a) [4 points] Determine all values of x for which the given PDE is hyperbolic.

(b) [5 points] Determine the two characteristic directions (slopes), dy/dx, for the given PDE at a general point (x, y).

(c) [6 points] Using the result of part (b), find the exact values of the coordinates of the point of intersection, R, of the characteristic curves through the points $P(1, 0)$ and $Q(2, 0)$.

(d) [2 points] Give the interval of dependence for $U(x, y)$ at the point R of part (c).

(e) [4 points] Derive a consistent finite difference approximation for the xU_{xy} term. (You need not show that your approximation is consistent.)

(f) [4 points] Suppose we approximate the given PDE by a consistent explicit difference scheme with $h = k = 1$. Referring to the CFL condition, explain why or why not this scheme converges at the point R of part (c).