PART A (Do two problems)

A-1 Consider the following elliptic boundary-value problem in the region $D = \{(x, y) | 0 \leq x \leq 1, 0 \leq y \leq 1\}$:

$$ u_{xx} + u_{yy} = 0 \quad 0 < x < 1, 0 < y < 1 $$

$$ u(0, y) = -y^2, \quad u(1, y) = 1 - y^2, \quad 0 \leq y \leq 1 $$

$$ u(x, 0) = x^2, \quad u(x, 1) = x^2 - 1, \quad 0 \leq x \leq 1 $$

a. Show that $u(x, y) = x^2 - y^2$ is an exact solution of this boundary-value problem. [5%]

b. What are the maximum and minimum values achieved by the solution, u, to the given boundary-value problem in the region D? At what points (x, y) do they occur? [4%]

c. With $\Delta x = \Delta y = 1/3$, use the usual five-point difference scheme for approximating the given PDE to obtain a system of linear equations for solving this problem. Express this system in the form $Au = b$, where A is a 4×4 matrix. [12%]

d. Explain why the solution to your difference approximation in part c is unique. [4%]
A-2 Consider the following difference approximation to

\[u_t = c u_{xx} \quad (\text{where } c > 0) \quad 0 < x < 1, \ t > 0 \]

\[u(x, 0) = x(1 - x) \quad 0 < x < 1 \]

\[u(0, t) = 0, \ u(1, t) = 0 \quad t > 0 \]

\[\frac{u_{i,j+1} - u_{i,j}}{k} = c \left[\frac{u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}}{h^2} \right], \quad \text{where } u_{i,j} = u(ih, jk) \]

a. Is this an explicit or implicit scheme? [2%]

b. If this scheme is written as \(B u_{j+1} = C u_j \), where

\[u_j = (u_{1,j}, u_{2,j}, \ldots, u_{N-1,j}) \]

taking \(r = k/h^2 \), determine the matrices \(B \) and \(C \). [8%]

c. Use the Neumann (Fourier) method to determine all values of \(r = k/h^2 \) for which this scheme is stable. [12%]

d. Assume that this scheme is consistent with the given PDE. Is the scheme convergent? Why or why not? [3%]

A-3 Given the hyperbolic initial value problem

\[\begin{cases} u_{tt} - 9u_{xx} = 0, & (-\infty \leq x \leq \infty, \ t > 0) \\ u(x, 0) = f(x), \ u_t(x, 0) = g(x), & (-\infty \leq x \leq \infty) \end{cases} \]

where \(f(x) \) and \(g(x) \) are given continuous functions.

a. Derive an explicit finite difference scheme with \(u_{i,j} = u(ih, jk) \) (\(h = \Delta x, \ k = \Delta t \), and taking \(r = k/h \)), solved for \(u_{i,j+1} \), for obtaining approximate solutions to this problem. Explain how to use this scheme to compute values along the “first row”; that is, when \(t = k \). [12%]

b. Find the characteristic curves of the given PDE through the point \((0, \frac{1}{2}) \). [6%]

c. State the Courant-Friedrichs-Levy (C.F.L) condition. What values of \(r = k/h \) will ensure that the C.F.L condition will be satisfied for your scheme? If \(r \) is less than this value, what conclusion can you draw concerning your scheme? [7%]
PART B (Do two problems)

B-1 Let \(A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \), where \(a, b, c \) are real numbers with \(a > 0, c > 0 \).

a. Find the spectral radius of the Jacobi iteration matrix for \(A \). [8%]
b. Using the results of part a, give conditions on \(a, b, \) and \(c \) that ensure that Jacobi iteration will converge for the linear system \(Ax = b \) (\(b \) arbitrary). [3%]
c. Give necessary and sufficient conditions on \(a, b, \) and \(c \) that ensure that the matrix \(A \) is diagonally dominant. [3%]
d. Show that \(A \) is positive definite if and only if \(ac - b^2 > 0 \). [5%]
e. Is each statement true or false for this matrix \(A \)? [3% each]
 i. If \(A \) is diagonally dominant, then it is positive definite.
 ii. If \(A \) is positive definite, then it is diagonally dominant.

B-2 a. Let \(A = \begin{bmatrix} 2 & 4 & 2 \\ 4 & 7 & 7 \\ -2 & -7 & 5 \end{bmatrix} \).

Find the LU decomposition of \(A \), \(A = LU \), where \(L \) is unit lower-triangular and \(U \) is upper-triangular. [8%]
b. Use your result from part a to find the LDU factorization of \(A \), where \(L \) is unit lower-triangular, \(D \) is diagonal, and \(U \) is unit upper-triangular. [3%]
c. Let \(B \) be an \(n \times n \) matrix and suppose we have obtained the LU factorization of \(B \). Determine the number of multiplications / divisions it takes to solve \(Ux = c \) by backward substitution, where \(c \) is an arbitrary \(n \)-vector. [6%]
d. Let \(B \) be an \(n \times n \) matrix. Show that if \(B \) can be factored as \(B = LU \), where \(L \) is unit lower-triangular and \(U \) is upper-triangular, then this factorization is unique. [8%]
The matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ has eigenvalues 2 and 4 and corresponding eigenvectors $[s \ -s]^T$ and $[s \ s]^T$, respectively, where $s \neq 0$.

a. Apply two iterations of the Power Method to the matrix A with initial vector $x^{(0)} = [1, 0]^T$ to obtain $x^{(2)}$, an approximation to the eigenvector of A corresponding to eigenvalue 4.

b. Will the Power Method converge in this case? Explain why or why not.

c. Give an example of an initial vector for which the Power Method will not converge.

d. Obtain the QR factorization of the matrix A.

e. Obtain the first iterate in the QR method for A.