Do five of the following eight problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\text{Re}(z)$ denotes the real part of the complex number z.
$\text{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$C([a, b])$ denotes the space of all continuous functions on the interval $[a, b]$. If there is need to specify the possible values, $C([a, b], \mathbb{R})$ will denote the space of all continuous real valued functions on $[a, b]$ and $C([a, b], \mathbb{C})$ the space of all continuous complex valued functions.
$L^2([a, b])$ denotes the space of all functions on the interval $[a, b]$ such that $\int_{a}^{b} |f(x)|^2 \, dx < \infty$.

MISCELLANEOUS FACTS

\[
\begin{align*}
\sin(a + b) &= \sin a \cos b + \cos a \sin b & \cos(a + b) &= \cos a \cos b - \sin a \sin b \\
2 \sin a \sin b &= \cos(a - b) - \cos(a + b) & 2 \cos a \cos b &= \cos(a - b) + \cos(a + b) \\
2 \sin a \cos b &= \sin(a + b) + \sin(a - b) & 2 \cos a \sin b &= \sin(a + b) - \sin(a - b) \\
\int \sin^2(ax) \, dx &= \frac{x}{2} - \frac{1}{4a} \sin(2ax) & \int \cos^2(ax) \, dx &= \frac{x}{2} + \frac{1}{4a} \sin(2ax) \\
\int x \sin(ax) \, dx &= \frac{1}{a^2} \sin(ax) - \frac{x}{a} \cos(ax) & \int x \cos(ax) \, dx &= \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax)
\end{align*}
\]
Fall 2002 # 1. Let \(f \) be defined on \([-\pi, \pi]\) by \(f(x) = \begin{cases} x + \pi, & \text{for } -\pi \leq x \leq 0 \\ \pi - x, & \text{for } 0 < x \leq \pi \end{cases} \).

a. Compute the Fourier series for \(f \) on \([-\pi, \pi]\).
(Trigonometric or exponential, your choice)

b. Show that \(1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \frac{1}{9^4} + \cdots = \frac{\pi^4}{96} \).

Fall 2002 # 2. a. Suppose \(\langle \cdot, \cdot \rangle \) is an inner product on a vector space \(V \) and \(\| \cdot \| \) is the associated norm. Show that if \(f \) and \(g \) are vectors in \(V \), then \(\| f + g \|^2 + \| f - g \|^2 = 2 \| f \|^2 + 2 \| g \|^2 \).

b. Show that there is no possible inner product on the space \(C([-\pi, \pi]) \) of continuous real valued functions on the interval \([-\pi, \pi]\) for which the uniform norm, \(\| f \|_\infty = \sup \{|f(t)| : t \in [-\pi, \pi]\} \), is the associated norm.
(Hint: What happens if one function is 0 when \(x \leq 0 \) and the other when \(x \geq 0 \)?)

Fall 2002 # 3. Let \(\{f_n\}_{n=1}^\infty \) be a sequence of continuous real valued functions on the interval \([a, b]\).

a. State definitions for each of the following:
 (i) \(f_n \to f \) pointwise on \([a, b]\)
 (i) \(f_n \to f \) uniformly on \([a, b]\)
 (i) \(f_n \to f \) with respect to the \(L^2 \)-norm (that is, in \(L^2 \)-mean) on \([a, b]\)

b. Show that if \(f_n \to f \) in \(L^2 \)-norm, then \(\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx \).

c. Give an example in which \(f_n \to f \) pointwise on \([a, b]\) but \(\lim_{n \to \infty} \int_a^b f_n(x) \, dx \neq \int_a^b f(x) \, dx \).

d. Show that if \(f_n \to f \) uniformly on \([a, b]\), then \(f_n \to f \) in \(L^2 \)-norm on \([a, b]\).

Fall 2002 # 4. a. Show that the operator \(L = -\frac{d^2}{dx^2} \) acting on the space \(\mathcal{W} = \{ f : [0, 1] \to \mathbb{R} : f'' \text{ is continuous}, f(0) = 0, \text{ and } f(1) - f'(1) = 0 \} \)
is a symmetric operator with respect to the inner product \(\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt \).

b. Show that if \(f \) and \(g \) are in \(\mathcal{W} \) with \(LF = \lambda f \), \(LG = \mu g \) and \(\mu \neq \lambda \), then \(f \) and \(g \) are orthogonal with respect to that inner product.

c. Show that there are infinitely many positive values of the number \(\lambda \) for which the problem \(LF = \lambda f \) with \(f(0) = 0 \) and \(f(1) - f'(1) = 0 \) has nonzero solutions \(f \). (You need not find the \(\lambda \)'s, but, if you don't, then say something about where they are on the positive real axis.)
(Hint: sketch the graphs of \(y = x \) and \(y = \tan x \) on the same set of axes.)
Fall 2002 # 5. Suppose $k(x, t)$ is a continuous real valued function on the square $[a, b] \times [a, b]$ such that $k(x, t) = k(t, x)$ for all x and t in $[a, b]$. For each continuous f on $[a, b]$, let Kf be defined by
\[
(Kf)(x) = \int_a^b k(x, t)f(t) \, dt
\]
Suppose $\{\phi_j\}_{j=1}^\infty$ is a complete orthonormal family of functions on $[a, b]$ with respect to the inner product $\langle f, g \rangle = \int_a^b f(t)g(t) \, dt$ with $K\phi_j = \mu_j \phi_j$. For continuous g on $[a, b]$ and a nonzero number λ, consider the equation
\[
(A) \quad f(x) = g(x) + \lambda \int_a^b k(x, t)f(t) \, dt
\]

a. Show how to write the solution to equation (A) in terms of g, λ, $\{\phi_j\}_{j=1}^\infty$, and $\{\mu_j\}_{j=1}^\infty$ if $1/\lambda$ is not one of the μ_j.

b. What happens if $1/\lambda$ is one of the μ_j?

Fall 2002 # 6. Let W be the subspace of \mathbb{R}^4 spanned by the vectors $\begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

a. Use the Gram-Schmidt process to find an orthonormal basis for W.

b. Find the vector in W closest to $v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Call it w.

c. What does the Bessel inequality state for the vectors in (b) (with numerical values)?

Fall 2002 # 7. For each continuous function f on the interval $[0, 1]$, let
\[
(Kf)(x) = \int_0^1 f(t) \sin \pi x \sin \pi t \, dt.
\]

a. Find a function $R(x, t; \lambda)$ such that the solution to the equation $f = g + \lambda Kf$ is given by
\[
f(x) = g(x) + \lambda \int_0^1 R(x, t; \lambda)g(t) \, dt.
\]

b. Find a function f such that
\[
f(x) = 1 + \int_0^1 f(t) \sin \pi x \sin \pi t \, dt
\]
Fall 2002 # 8. For each continuous function f on the interval $[0, 1]$, let

$$(Tf)(x) = x + \lambda \int_0^x f(t) \sin \pi t \, dt.$$

a. Find a range of values of the parameter λ for which the transformation T is a contraction with respect to the supremum norm. Justify your answer.

b. Find a range of values of the parameter λ for which the transformation T is a contraction with respect to the L^2 norm. Justify your answer.

c. Describe the iterative process for solving the integral equation

$$f(x) = x + \lambda \int_0^x f(t) \sin \pi t \, dt$$

specifying the transformation to be iterated and explaining how an why this leads to a solution. With $f_0(x) = 0$ for all x as the starting function, compute the iterates $f_1(x)$ and $f_2(x)$.

End of Exam