ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2013
Brookfield*, Krebs, Shaheen, Webster

Directions: Answer 5 questions only. If you answer more than five questions, your exam score will be based on the five lowest scoring questions. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work so that your answers are adequately supported.

Groups

(1) Show that, if \(G \) is a cyclic group, then every subgroup of \(G \) is cyclic.

Answer: [See also S08] Suppose that \(G = \langle a \rangle = \{a^k \mid k \in \mathbb{Z} \} \). Let \(H \) be a subgroup of \(G \). If \(H = \{1\} \) then \(H = \langle 1 \rangle \) and so \(H \) is cyclic. Otherwise, \(H \) contains at least one element of the form \(a^k \) with \(k \in \mathbb{N} \).

Let \(n \in \mathbb{N} \) be the least natural number such that \(a^n \in H \). Then \(\langle a^n \rangle \leq H \) is automatic. We prove the opposite inclusion: Suppose that \(a^n \in H \). Since \(n \in \mathbb{N} \), there are \(q, r \in \mathbb{Z} \) such that \(k = qn + r \) and \(0 \leq r < n \). Then \(a^r = a^{k-qn} = a^k(a^n)^{n-q} \). Because \(a^n \) and \(a^k \) are in \(H \), so is \(a^r \). But, by the choice of \(n \), this is only possible if \(r = 0 \). Thus \(k = qn \) and \(a^k = (a^n)^q \in \langle a^n \rangle \).

This shows that \(H = \langle a^n \rangle \) and that \(H \) is cyclic.

(2) (a) Let \(a \) and \(b \) be elements of a group \(G \) such that \(|a| = 3 \), \(|b| = 2 \) and \(ab = ba \). Show that \(|ab| = 6| \).

(b) Find a group \(G \) and elements \(a, b \in G \) such that \(|a| = 3 \), \(|b| = 2 \) and \(|ab| \neq 6 \).

Answer:
(a) On one hand \((ab)^6 = a^6b^6 = 1\) and so \(|ab|\) divides \(6\). On the other hand, \(\langle ab \rangle \) contains an element of order \(2\), namely \((ab)^3 = a^3b^3 = b\), and an element of order \(3\), namely \((ab)^4 = a^4b^4 = a\), and so \(|\langle ab \rangle|\) is a multiple of \(2 \cdot 3\). Thus \(|ab| = (ab) = 6|\).

(b) For example, \(a = (1,2,3), \) and \(b = (1,2) \) in \(S_3 \).

(3) Prove that any nonabelian group \(G \) of order \(6\) contains elements \(r \) and \(s \) such that \(|r| = 3 \), \(|s| = 2 \) and \(|rs| = 2 \). Do not use the fact that such a group is isomorphic to \(S_3 \). Hint: How many Sylow-3 subgroups are there?

Answer: No element of \(G \) can have order \(6 \) because otherwise \(G \) is cyclic and abelian. Thus all elements of \(G \) have order \(1 \), \(2 \) or \(3 \).

By the Sylow Theorems, the number of Sylow-3 subgroups, \(n_3\), satisfies \(n_3|6 \) and \(n_3 \equiv 1 \mod 3 \). These conditions imply that \(n_3 = 1 \) and there is a unique normal Sylow-3 subgroup \(H \). This subgroup has order \(3 \), so is cyclic, generated by an element \(r \) such that \(|r| = 3 \) and \(H = \{1, r, r^2\}\). All other nonidentity elements of \(G \) must have order \(2 \). Let \(s \) be such an element.

To prove \(|sr| = 2 \) it suffices to show that \(sr \) does not have order \(1 \) or \(3 \), that is, \(sr \neq 1 \), \(sr \neq r \) and \(sr \neq r^2 \). But if \(sr = 1 \), then \(s = s(sr) = s^2r = r \) which is impossible because \(|s| \neq |r| \). If \(sr = r \), then cancellation gives \(s = 1 \) which is impossible because \(|s| \neq |1| \). And, if \(sr = r^2 \), then cancellation gives \(s = r \), which is impossible. Thus \(|sr| = 2 \).
Rings

(1) (a) Suppose that \(f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \in \mathbb{Q}[x] \) is irreducible over the rationals. Show that \(g(x) = a_n + a_{n-1} x + a_{n-1} x^2 + \cdots + a_0 x^n \in \mathbb{Q}[x] \) is irreducible over the rationals.

Answer: Since \(g(x) = x^n f(1/x) \), if \(f \) is reducible then so is \(g \). Specifically, if \(f(x) = h(x) k(x) \), with \(\deg h = a \) and \(\deg k = b \), then \(a + b = n \) and \(g(x) = (x^a h(1/x)) (x^b k(1/x)) \) with \(\deg x^a h(1/x) = a \) and \(\deg x^b k(1/x) = b \).

(b) Show that every ideal \(2x^5 - 4x^2 - 3 \) is irreducible in \(\mathbb{Z}[x] \).

Answer: By Gauss’s Lemma and (a), \(2x^5 - 4x^2 - 3 \) is irreducible over \(\mathbb{Z} \) iff it is irreducible over \(\mathbb{Q} \) iff \(-3x^5 - 4x^3 + 2 \) is irreducible over \(\mathbb{Q} \). But \(-3x^5 - 4x^3 + 2 \) is irreducible over \(\mathbb{Q} \) by Eisenstein with \(p = 2 \).

(2) Let \(R \) and \(S \) be commutative rings with unity.

(a) If \(A \) is an ideal of \(R \) and \(B \) is an ideal of \(S \), show that \(A \times B \) is an ideal of \(R \times S \).

Answer:

(i) Let \((a_1, b_1), (a_2, b_2) \in A \times B \). Since \(a_1 - a_2 \in A \) and \(b_1 - b_2 \in B \), we have \((a_1, b_1) - (a_2, b_2) = (a_1 - a_2, b_1 - b_2) \in A \times B \).

(ii) Let \((a, b) \in A \times B \) and \((r, s) \in R \times S \). Since \(ra \in A \) and \(sb \in B \) we have \((r, s)(a, b) = (ra, sb) \in A \times B \).

(iii) Since \(A \times B \) is nonempty, (i) and (ii) imply that \(A \times B \) is an ideal.

(b) Show that every ideal \(I \) of \(R \times S \) has the form \(I = A \times B \) where \(A \) is an ideal of \(R \) and \(B \) is an ideal of \(S \). Hint: \(A = \{ a \in R \mid (a, 0) \in I \} \).

Answer: Given the ideal \(I \), let \(A = \{ a \in R \mid (a, 0) \in I \} \) and \(B = \{ b \in S \mid (0, b) \in I \} \). We need to show that \(A, B \) are ideals and \(I = A \times B \).

(i) Let \(a_1, a_2 \in A \). Then \((a_1, 0), (a_2, 0) \in I \) and so \((a_1 - a_2, 0) = (a_1, 0) - (a_2, 0) \in I \). This means that \(a_1 - a_2 \in A \).

(ii) Let \(a \in A \) and \(r \in R \). Then \((a, 0) \in I \) and \((r, 0) \in R \times S \) and so \((ra, 0) = (r, 0)(a, 0) \in I \). This implies that \(ra \in A \).

(iii) Since \(A \) is nonempty, (i) and (ii) imply that \(A \) is an ideal of \(R \). Similarly, \(B \) is an ideal of \(S \).

(iv) Suppose that \((a, b) \in I \). Because \((1, 0) \in R \times S \) and \(I \) is an ideal, \((a, 0) = (1, 0)(a, 0) \) is in \(I \). This means \(a \in A \). Similarly, \(b \in B \) and consequently \((a, b) \in A \times B \). This shows that \(I \subseteq A \times B \).

(v) Suppose that \((a, b) \in A \times B \). Then \((a, 0), (0, b) \in I \) and so \((a, 0) = (a, 0) + (0, b) \in I \). This shows that \(A \times B \subseteq I \).

(iv) and (v) imply that \(I = A \times B \).

(3) Let \(p \) be a prime and let \(R \) be the ring of all \(2 \times 2 \) matrices of the form \(\begin{bmatrix} a & b \\ pb & a \end{bmatrix} \), where \(a, b \in \mathbb{Z} \). Prove that \(R \) is isomorphic to \(\mathbb{Z}(\sqrt{p}) \).

Answer: Note: The claim is true for any \(p \) that is not a square in \(\mathbb{Z} \). If we can assume without proof that every element of \(\mathbb{Z}(\sqrt{p}) \) has the form \(a + b\sqrt{p} \) for uniquely determined \(a, b \in \mathbb{Z} \), then the function \(\phi : R \to \mathbb{Z}(\sqrt{p}) \) defined by \(\phi \left(\begin{bmatrix} a & b \\ pb & a \end{bmatrix} \right) = a + b\sqrt{p} \) is a bijection. It remains to show only that \(\phi \) is a
homomorphism. And this is just confirmation of the equations

$$\phi \left(\begin{bmatrix} a_1 & b_1 \\ pb_1 & a_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ pb_2 & a_2 \end{bmatrix} \right) = (a_1 + b_1 \sqrt{p}) + (a_2 + b_2 \sqrt{p})$$

$$\phi \left(\begin{bmatrix} a_1 & b_1 \\ pb_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ pb_2 & a_2 \end{bmatrix} \right) = (a_1 + b_1 \sqrt{p})(a_2 + b_2 \sqrt{p})$$

for all $a_1, a_2, b_1, b_2 \in \mathbb{Z}$.

Fields

(1) Here’s a fact from trigonometry that you may use without proof in this problem: Let n be a positive integer. Then there exists a polynomial $f \in \mathbb{Z}[x]$ such that $\cos nx = f(\cos x)$. [For example, when $n = 2$, the polynomial is $f(x) = 2x^2 - 1$; this is the double-angle formula $\cos 2x = 2\cos^2 x - 1$.]

Prove that if q is a rational number, then $\tan q\pi$ is algebraic over \mathbb{Q}.

Answer: First we prove that $\cos q\pi$ is algebraic over \mathbb{Q}. Let $q = m/n$ with $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then there is a polynomial $f \in \mathbb{Z}[x]$ such that $f(\cos q\pi) = \cos(nq\pi) = \cos m\pi$. Since $\cos m\pi$ is an integer, $\cos q\pi$ is a root of the polynomial $f(x) - \cos m\pi \in \mathbb{Z}[x]$ and so $\cos q\pi$ is algebraic over \mathbb{Q}.

Now we prove the same for the sine function: $\sin q\pi = \cos((1/2 - q)\pi)$, and so, because $1/2 - q \in \mathbb{Q}$, $\sin q\pi$ is also algebraic over \mathbb{Q}.

Finally, because, the set of algebraic numbers is a field, $\tan q\pi = (\sin q\pi)/(\cos q\pi)$ is algebraic over \mathbb{Q}.

(2) Let $\alpha = \sqrt{3 + \sqrt{5}}$. Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$. Hint: $(x^2 - 3)^2 - 5 = (x^2 + 2)^2 - 10x^2$.

Answer: $\sqrt{5} = \alpha^2 - 3$ and so $\sqrt{5} \in \mathbb{Q}(\alpha)$. Using the hint we get

$$0 = (\alpha^2 - 3)^2 - 5 = (\alpha^2 + 2)^2 - 10\alpha^2$$

and so $\alpha^2 + 2 = \pm\sqrt{10}\alpha$. This implies that $\sqrt{10} = \pm(\alpha^2 + 2)/\alpha \in \mathbb{Q}(\alpha)$. Also $\sqrt{2} = \sqrt{10}/\sqrt{5}$ is in $\mathbb{Q}(\alpha)$. This implies $\mathbb{Q}(\sqrt{2}, \sqrt{5}) \subseteq \mathbb{Q}(\alpha)$.

For the opposite inclusion, a bit of playing around yields $(1 + \sqrt{5})^2 = 6 + 2\sqrt{5} = 2\alpha^2$ and so

$$\alpha^2 = \left(\frac{1 + \sqrt{5}}{\sqrt{2}} \right)^2.$$

Consequently, $\alpha = \pm(1 + \sqrt{5})/\sqrt{2} \in \mathbb{Q}(\sqrt{2}, \sqrt{5})$ and $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{5})$.

(3) Let E be the splitting field of $f(x) = x^4 - 2x^2 - 3$ over \mathbb{Q}.

(a) Calculate $[E : \mathbb{Q}]$.

Answer: The roots of f are $\pm i$ and $\pm \sqrt{3}$. So $E = \mathbb{Q}(i, \sqrt{3})$. Since $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$ and $[E : \mathbb{Q}(\sqrt{3})] = 2$, we have $[E : \mathbb{Q}] = 4$.

(b) Classify the Galois group G of E over \mathbb{Q}.

Answer: Since E is a Galois extension of \mathbb{Q}, the order of G is $[E : \mathbb{Q}] = 4$. Each automorphism in G sends $\sqrt{3}$ to a conjugate of $\sqrt{3}$ over \mathbb{Q}, and sends i to a conjugate of i over \mathbb{Q}. Moreover, the automorphism is determined by where it sends $\sqrt{3}$ and i. Thus $G = \{\phi_0, \phi_1, \phi_2, \phi_3\}$ is given by the table:
\[
\begin{array}{c|cc}
 x & \sqrt{3} & i \\
 \phi_0(x) & \sqrt{3} & i \\
 \phi_1(x) & -\sqrt{3} & i \\
 \phi_2(x) & \sqrt{3} & -i \\
 \phi_3(x) & -\sqrt{3} & -i \\
\end{array}
\]

\(\phi_0\) is the identity function. The other elements of \(G\) have order 2, so \(G\) is isomorphic to the Klein group \(V = \mathbb{Z}_2 \times \mathbb{Z}_2\).

(c) Find all intermediate fields. That is, find all fields \(F\) with \(\mathbb{Q} \subseteq F \subseteq E\).

Answer: Each intermediate field is the fixed field of a subgroup of \(G\). The subgroups and corresponding fields are as below:

<table>
<thead>
<tr>
<th>Group</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>{\phi_0}</td>
<td>(E)</td>
</tr>
<tr>
<td>{\phi_0, \phi_1}</td>
<td>(\mathbb{Q}(i))</td>
</tr>
<tr>
<td>{\phi_0, \phi_2}</td>
<td>(\mathbb{Q}(\sqrt{3}))</td>
</tr>
<tr>
<td>{\phi_0, \phi_3}</td>
<td>(\mathbb{Q}(i\sqrt{3}))</td>
</tr>
<tr>
<td>(G)</td>
<td>(\mathbb{Q})</td>
</tr>
</tbody>
</table>

For example, the fixed field of \(\{\phi_0, \phi_1\} \leq G\) has degree 2 over \(\mathbb{Q}\) and contains \(i\). Hence the fixed field is \(\mathbb{Q}(i)\).