ALGEBRA COMPREHENSIVE EXAMINATION
Spring 2008
Chabot, Krebs, Shaheen*

Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Notation: If n is a positive integer, let \mathbb{Z}_n denote the integers modulo n. Let \mathbb{Q} denote the rational numbers.

Groups

1. Show that all groups of order 45 are abelian.

Answer: Let G be a group of order 45. By Sylow, n_3 divides 45 and is congruent to 1 modulo 3. The only such number is $n_3 = 1$, and so G contains a normal subgroup H of order 9. Similarly, n_5 divides 45 and is congruent to 1 modulo 5. The only such number is $n_5 = 1$, and so G contains a normal subgroup K of order 5. As usual, $H \cap K = \{1\}$ so $H \times K \cong HK \leq G$. But $|H \times K| = 45 = |G|$ and so $H \times K \cong G$. Since all groups of groups of order 5 and 9 are abelian, G is also abelian.

2. Let G be a cyclic group and H a subgroup of G. Prove that H is cyclic.

Answer: [See S13] Suppose that $G = \langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$. Let H be a subgroup of G. If $H = \{1\}$ then $H = \langle 1 \rangle$ and so H is cyclic. Otherwise, H contains at least one element of the form a^k with $k \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be the least natural number such that $a^n \in H$. Then $\langle a^n \rangle \leq H$ is automatic. We prove the opposite inclusion: Suppose that $a^k \in H$. Since $n \in \mathbb{N}$, there are $q, r \in \mathbb{Z}$ such that $k = qn + r$ and $0 \leq r < n$. Then $a^r = a^{k-qn} = a^k(a^n)^{-q}$. Because a^n and a^k are in H, so is a^r. But, by the choice of n, this is only possible if $r = 0$. Thus $k = qn$ and $a^k = (a^n)^q \in \langle a^n \rangle$. This shows that $H = \langle a^n \rangle$ and that H is cyclic.

3. Let G be a finite group with $|G| > 1$, and let $\text{Inn}(G)$ be the group of inner automorphisms of G. Show that if G is isomorphic to $\text{Inn}(G)$, then $|G|$ has at least two distinct prime factors. (Hint: Do a proof by contradiction.)

Answer: Reminder: For $g \in G$ the function $\phi_g : G \to G$ defined by $\phi_g(x) = gxg^{-1}$ for all $x \in G$ is an automorphism of G. ϕ_g is called an inner automorphism, the set of inner automorphisms, $\text{Inn}(G)$, is a subgroup of the group of all automorphisms of G. The function $\Phi : G \to \text{Inn}(G)$ defined by $\Phi(g) = \phi_g$ for all $g \in G$ is a surjective group homomorphism. The kernel of Φ is $Z = Z(G)$, the center of G, so $\text{Inn}(G) \cong G/Z$. See Fraleigh, Definition 14.15, p. 141 and Dummit and Foote, Section 4.4, p. 133.

Suppose, to the contrary, that $|G| = p^n$ for some prime p and $n \in \mathbb{N}$. Since G is a p-group, the center of G, Z, is nontrivial (Fraleigh, Theorem 37.4, p. 329). From the above discussion, this means that $\Phi : G \to \text{Inn}(G)$ is not injective, in particular, $|\text{Inn}(G)| = |G|/|Z| < |G|$. Hence $\text{Inn}(G)$ and G cannot be isomorphic.
Rings

1. Let \(p \) be a prime number. Let \(D : \mathbb{Z}_p \rightarrow \mathbb{Z}_p \) be a function such that \(D(a \cdot b) = a \cdot D(b) + b \cdot D(a) \) for all \(a, b \in \mathbb{Z}_p \). Prove that \(D \) is the zero map.

Answer: Lemma: For all \(a \in \mathbb{Z}_p \), \(D(a^n) = na^{n-1}D(a) \). Proof: By induction. For \(n = 1 \), the claim is clear. Suppose that the claim is true for some \(n \). Then

\[
D(a^{n+1}) = D(a \cdot a^n) = a \cdot D(a^n) + a^n \cdot D(a) = a(na^{n-1}D(a)) + a^n \cdot D(a) = (n+1)a^n D(a)
\]

which proves the claim in the next case. \(\square \)

To finished the question we use the facts that \(a^p = a \) and \(pa = 0 \) for all \(a \in \mathbb{Z}_p \):

\[
D(a) = D(a^p) = pa^{p-1}D(a) = 0.
\]

2. Let \(D \) be a Euclidean domain and \(a, b, c \in D \). Prove:

(a) If \(a \) divides \(bc \) and \(\text{GCD}(a, b) = 1 \), then \(a \) divides \(c \).

(b) If \(a \) is irreducible, then \(a \) is prime.

Answer:

(a) Suppose that \(\text{GCD}(a, b) = 1 \). This means that that if \(d \) is a common divisor of \(a \) and \(b \), then \(d \) divides \(1 \), that is \(d \) is a unit of \(D \) (Fraleigh p. 395). Since Euclidean domains are PIDs, there is some \(e \in D \) such that \(Da + Db = De \). Then \(a \in De \) and \(b \in De \) which means that \(e \) is a common divisor of \(a \) and \(b \). By assumption \(e \) is a unit and so \(Da + Db = De = D \). In particular, there are \(x, y \in D \) such that \(ax + by = 1 \) (See also Dummit and Foote, Theorem 4, p. 275). Hence, if \(a \) divides \(bc \), then \(a \) divides \(b \) or \(a \) divides \(c \).

(b) Suppose that \(a \) is irreducible. This means that \(a \) is not a unit, but, if \(a = bc \), then either \(b \) is a unit or \(c \) is a unit. To show that \(a \) is prime we need to show that if \(a \) divides \(bc \), then either \(a \) divides \(b \) or \(a \) divides \(c \).

Suppose that \(a \) divides \(bc \). If \(a \) divides \(b \) we are done. Otherwise, \(a \) does not divide \(b \). Let \(d \) be a common divisor of \(a \) and \(b \). Then \(a = de \) for some \(e \in D \). Since \(a \) is irreducible, either \(e \) or \(d \) is a unit. But if \(e \) is a unit, then \(a \) divides \(d \) \((ae^{-1} = dec^{-1} = d) \) which implies that \(a \) divides \(b \) contrary to assumption. This means that \(d \) is a unit. Since the only common divisors of \(a \) and \(b \) are units, \(\text{GCD}(a, b) = 1 \), then, by (1), \(a \) divides \(c \).

3. Let \(R \) be a commutative ring with identity 1. Prove that an ideal \(M \) is maximal if and only if \(R/M \) is a field.

Fields

1. Let \(\mathbb{Q} \) be the field of rationals and let \(p(x) = x^3 - 4x + 5 \). Assume \(\alpha \) is a root of \(p(x) \).

 (a) Prove that \(p(x) \) is irreducible over \(\mathbb{Q} \).

 (b) Find \(a, b, c \in \mathbb{Q} \) such that \((\alpha + 1)^{-1} = a + b\alpha + c\alpha^2 \).

Answer:

(a) By the Rational Zeros Theorem (or Fraleigh, Corollary 23.12, p. 215), the only possible rational zeros of \(p \) are \(\pm 5 \) and \(\pm 1 \). It is easy to check that these integers are not, in fact, zeros of \(p \) and so \(p \) has no rational zeros and is irreducible over \(\mathbb{Q} \).

(b) Dividing \(p \) by \(x + 1 \) using long division we get \(p(x) = (x^2 - x - 3)(x + 1) + 8 \). Setting \(x = \alpha \) in this and using \(p(\alpha) = 0 \), we get \(0 = (\alpha^2 - \alpha - 3)(\alpha + 1) + 8 \). This can be written as

\[
\frac{1}{\alpha + 1} = -\frac{1}{8}(\alpha^2 - \alpha - 3).
\]

2. Let \(F \) be a field. Let \(G \) be a finite subgroup of the group of units of \(F \). Prove that \(G \) is cyclic. (Hint: Do a proof by contradiction. First show that \(G \) is an abelian group. To get a contradiction, find a positive integer \(n \) such that the polynomial \(x^n - 1 \) has more than \(n \) zeroes. You will need to use a major theorem about finite abelian groups.)

Answer: Dummit and Foote, Proposition 18, p. 314. Since multiplication in \(F \) is commutative, \(G \) is an abelian group. By the Classification Theorem for Finite Abelian Groups, \(G \) is isomorphic to a direct product of cyclic groups:

\[
G \cong \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \cdots \times \mathbb{Z}_{p_k^{a_k}}
\]

where \(p_1, p_2, \ldots, p_k \) are prime and \(a_1, a_2, \ldots, a_k \in \mathbb{N} \). If there is only one prime, or if all the primes are distinct, then \(G \) is cyclic. If \(G \) is not cyclic, then at least two of the primes are equal. WLOG, suppose that \(p_1 = p_2 = p \). Since \(\mathbb{Z}_{p^{a_1}} \) and \(\mathbb{Z}_{p^{a_2}} \) each have subgroups isomorphic to \(\mathbb{Z}_p \), \(G \) has a subgroup \(H \) isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \). The order of \(\mathbb{Z}_p \times \mathbb{Z}_p \) is \(p^2 \) and each element \(x \in \mathbb{Z}_p \times \mathbb{Z}_p \) satisfies \(px = 0 \). So \(H \) has order \(p^2 \) and each element \(h \in H \) satisfies \(h^p = 1 \). But this implies that \(x^p - 1 \) has at least \(p^2 \) zeros in \(F \), contrary to Lagrange’s Theorem.

3. Let \(\xi = e^{2\pi i/n} \) be a primitive \(n \)-th root of unity. Prove that \(\text{Gal}(\mathbb{Q}(\xi)/\mathbb{Q}) \cong \mathbb{Z}_n^\times \). Note: \(\mathbb{Z}_n^\times \) is the group of units under multiplication in \(\mathbb{Z}_n \).

Answer: Dummit and Foote, Theorem 26, p. 596.