Distribution of the provided and the provided

Q1: Convergence Result

Theorem

Starting from any game **M** on *d* stacks, the sequence of games created by the misère-play \star -operator converges to a (reflexive) limit game **M**^{∞}.

9

Convergence Result Proof idea: (for *d* stacks) Weight of a position = sum of stack heights = number of tokens Inductive proof: For game Mⁿ, all positions of weight n or less are fixed as either move or non-move. Basis: In game M⁰, the position of weight 0 (the zero vector) is fixed as an N-position Convergence is faster than increase by one token

Q2: Which Feature of **M** Determines **M**[®]?

Theorem

Two games **M** and **G** (played on the same number of stacks) have the same limit game if and only if their unique **sets of minimal elements** (with the usual partial order) are the same.

where T_A is the set of terminal positions of the game A.

Reflexivity of $M_{j,k}$

Theorem [Bloomfield, Dufour, Heubach, Larsson] The game $M_{j,k}$ is reflexive.

Corollary

The limit game of a set **M** equals the game $M_{j,k}$ if and only if the **set of minimal elements** of **M** is {(j,0),(0,k)}.

THANK YOU!

sheubac@calstatela.edu

Slides will be posted on my web site

http://www.calstatela.edu/faculty/silvia-heubach